Comments on "Five, Six, and Seven-Term Karatsuba-Like Formulae"

Haining Fan and M. Anwar Hasan Senior Member, IEEE

Abstract

We show that multiplication complexities of n-term Karatsuba-Like formulae of $G F(2)[x](7<$ $n<19$) presented in the above paper can be further improved using the Chinese Remainder Theorem and the construction multiplication modulo $(x-\infty)^{w}$.

Index Terms

Karatsuba algorithm, polynomial multiplication, finite field.

I. Introduction

The Karatsuba-Ofman 2-term multiplication algorithm and its extensions, i.e., n-term Karatsubalike formula ($n>2$), are often used to design subquadratic complexity $G F\left(2^{n}\right)$ multiplication algorithms. In [1], for $1<n<19$, Montgomery presents values of the multiplication complexity $M(n)$, which is defined as the minimum number of multiplications needed to multiply two n-term polynomials $a(x)=\sum_{i=0}^{n-1} a_{i} x^{i}$ and $b(x)=\sum_{i=0}^{n-1} b_{i} x^{i}$ in $G F(2)[x]$.

Applying the Chinese Remainder Theorem (CRT) for the design of polynomial multiplication algorithms is well known in the literature [2], [3], [4] and [5]. In this comment, we use the CRT and the construction multiplication modulo $(x-\infty)^{w}$ to improve values of $M(n)(7<n<19)$ obtained in [1]. Unless otherwise stated, we assume that all polynomials considered here are in $G F(2)[x]$. The CRT for $G F(2)[x]$ states that:

Theorem 1: Let $m_{1}(x), m_{2}(x), \cdots, m_{t}(x)$ be pairwisely coprime polynomials, and $m(x)=$ $\prod_{i=1}^{t} m_{i}(x)$. Then for any polynomials $r_{1}(x), r_{2}(x), \cdots, r_{t}(x)$, there is a unique polynomial $r(x) \bmod m(x)$ such that $r(x) \equiv r_{i}(x)\left(\bmod m_{i}(x)\right)$, where $1 \leq i \leq t$. A formula for $r(x)$ is

$$
\begin{gathered}
r(x)=\sum_{i=1}^{t} r_{i}(x)\left(\frac{m(x)}{m_{i}(x)}\right)\left(\left(\frac{m(x)}{m_{i}(x)}\right)^{-1} \bmod m_{i}(x)\right) . \\
\text { II. IMPROVED } M(n)
\end{gathered}
$$

Let $\operatorname{deg}(a(x))$ denote the degree of $a(x)$, and $\operatorname{deg}(a(x))<n$ and $\operatorname{deg}(b(x))<n$. When the CRT is used to compute the product $c(x)=\sum_{i=0}^{2 n-2} c_{i} x^{i}=a(x) b(x)$, first, a set of modulus polynomials $m_{i}(x)(1 \leq i \leq t)$ are chosen such that $\operatorname{deg}(m(x))>2 n-2$. Then $A_{i}(x)=$ $a(x) \bmod m_{i}(x)$ and $B_{i}(x)=b(x) \bmod m_{i}(x)$ are computed. Since the operation of the reduction modulo a fixed polynomial $m_{i}(x)$ may be converted to subtraction operations, this step involves no multiplications. Next, the t products $A_{i}(x) B_{i}(x) \bmod m_{i}(x)$ are computed, and each requires $M\left(\operatorname{deg}\left(m_{i}(x)\right)\right)$ multiplications. Finally, $c(x)$ is obtained via the CRT. This step needs no multiplication operations since multiplying by a fixed polynomial may be converted to addition operations.

Therefore, the minimum number of multiplications needed to multiply $a(x)$ and $b(x)$, i.e., $M(n)=\sum_{i=1}^{t} M\left(\operatorname{deg}\left(m_{i}(x)\right)\right)$, depends on the set of modulus polynomials. In order to minimize $M(n)$, these polynomials are selected such that $\operatorname{deg}(m(x))=2 n-1$. However, if we know the $w(1 \leq w \leq 2 n-2)$ coefficients $c_{2 n-2}, c_{2 n-3}, \cdots, c_{2 n-1-w}$, the degree of $m(x)$ can be reduced to $2 n-1-w$. This construction is referred to the multiplication modulo $(x-\infty)^{w}$ [2, p.34]. Let $e(f, i)$ denote the coefficient of x^{i} in $f(x)$. The following lemma is a formal statement of this construction.

Lemma 2: Let $1 \leq w \leq 2 n-2, c(x)=\sum_{i=0}^{2 n-2} c_{i} x^{i}$ and $m(x)$ be polynomials with $\operatorname{deg}(m(x))=$ $2 n-1-w$. Given $c_{2 n-2}, c_{2 n-3}, \cdots, c_{2 n-1-w}$ and $r(x)=c(x) \bmod m(x)$, then $d(x)=r(x)+$ $h_{w}(x)$ is equal to $c(x)$, where $h_{w}(x)$ is defined as:

$$
\left\{\begin{array}{l}
h_{0}(x)=m(x) x^{w-1} \\
h_{i}(x)=h_{i-1}(x)+\left[c_{2 n-1-i}+e\left(h_{i-1}, 2 n-1-i\right)\right] m(x) x^{w-i}, \quad 1 \leq i \leq w
\end{array}\right.
$$

Proof:
If $1 \leq i \leq w$, then we claim that

$$
\begin{equation*}
e\left(h_{i}, j\right)=c_{j} \tag{1}
\end{equation*}
$$

where $2 n-2 \geq j \geq 2 n-i-1$.
Since $\operatorname{deg}\left(m(x) x^{w-i}\right)=2 n-i-1(1 \leq i \leq w)$, we have $e\left(m(x) x^{w-i}, 2 n-i-1\right)=1$. Therefore, we obtain

$$
\begin{align*}
& e\left(h_{i}, 2 n-i-1\right) \\
= & e\left(h_{i-1}, 2 n-i-1\right)+\left[c_{2 n-i-1}+e\left(h_{i-1}, 2 n-i-1\right)\right] * e\left(m(x) x^{w-i}, 2 n-i-1\right) \\
= & c_{2 n-i-1} \quad(\text { since } 1+1=0 \text { in } G F(2)) . \tag{2}
\end{align*}
$$

For $i=1$, (2) is simplified as $e\left(h_{1}, 2 n-2\right)=c_{2 n-2}$, i.e., statement (1) is true.
Now we consider $2 \leq i \leq w$. Since the polynomial $m(x) x^{w-i}$ is of degree $2 n-i-1$, for $2 n-2 \geq j \geq 2 n-i$, we can write $e\left(m(x) x^{w-i}, j\right)=0$. Therefore, from the definition of $h_{i}(x)$, we have

$$
\begin{equation*}
e\left(h_{i}, j\right)=e\left(h_{i-1}, j\right) \tag{3}
\end{equation*}
$$

where $2 n-2 \geq j \geq 2 n-i$.
From (2) and (3), we know that statement (1) is true for $1 \leq i \leq w$.
Especially, (1) shows that $e\left(h_{w}, j\right)=c_{j}$ for $2 n-2 \geq j \geq 2 n-1-w$. Since $\operatorname{deg}(r(x))<2 n-1-$ w, it is clear that $e(d, j)=e\left(h_{w}, j\right)=c_{j}$ for $2 n-2 \geq j \geq 2 n-1-w$. Therefore, if $c(x)$ and $d(x)$ are uniquely rewritten as $c(x)=c_{H}(x) x^{2 n-1-w}+c_{L}(x)$ and $d(x)=d_{H}(x) x^{2 n-1-w}+d_{L}(x)$, where $c_{L}(x)$ and $d_{L}(x)$ are polynomials of degrees less than $2 n-1-w$, we can write $c_{H}(x)=d_{H}(x)$.

Since $\operatorname{deg}(m(x))=2 n-1-w>\operatorname{deg}\left(c_{L}(x)\right)$, we have $c_{L}(x)=c_{L}(x) \bmod m(x)$. Similarly, we have $d_{L}(x)=d_{L}(x) \bmod m(x)$. The construction of $h_{w}(x)$ shows that $0=h_{w}(x) \bmod m(x)$. This leads to $r(x) \equiv d(x)(\bmod m(x))$. So we have $\left(c_{L}(x) \bmod m(x)\right)=\left(d_{L}(x) \bmod m(x)\right)$, i.e. $c_{L}(x)=d_{L}(x)$. This completes the proof.

Using the CRT and this construction, we obtain improved values of $M(n)(7<n<19)$ and they are given in Table I. In the table, $f_{i j}$ denotes the j-th irreducible polynomial of degree i over $G F(2)$, e.g., $f_{11}=x, f_{12}=x+1, f_{21}=x^{2}+x+1, f_{31}=x^{3}+x+1, f_{32}=x^{3}+x^{2}+1$, $f_{41}=x^{4}+x+1, f_{42}=x^{4}+x^{3}+1, f_{43}=x^{4}+x^{3}+x^{2}+x+1$ and $f_{51}=x^{5}+x^{2}+1$.

Remarks:

1. Values of $M(4)=9$ and $M(5)=13$ of [1] have been used for obtaining new bounds.
2. While computations of $(x-\infty)$ and $(x-\infty)^{2}$ require 1 and 3 multiplications, respectively, computing $(x-\infty)^{3}$ requires 5 multiplications: $a_{n-1} b_{n-1},\left(a_{n-1}+a_{n-2}\right)\left(b_{n-1}+b_{n-2}\right)+a_{n-1} b_{n-1}+$ $a_{n-2} b_{n-2}$ and $a_{n-1} b_{n-3}+b_{n-1} a_{n-3}+a_{n-2} b_{n-2}$.

TABLE I
UPPER BOUND FOR $M(n)$

n	$M(n)[1]$	New Bound	Modulus polynomials
2	3	3	$(x-\infty), f_{11}, f_{12}$
3	6	6	$(x-\infty), f_{11}, f_{12}, f_{21}$
4	9	10	$(x-\infty), f_{11}^{2}, f_{12}^{2}, f_{21}$
5	13	14	$(x-\infty)^{3}, f_{11}^{2}, f_{12}^{2}, f_{21}$
6	17	18	$(x-\infty)^{2}, f_{11}^{2}, f_{12}^{2}, f_{21}, f_{31}$
7	22	22	$(x-\infty), f_{11}^{2}, f_{12}^{2}, f_{21}, f_{31}, f_{32}$
8	27	26	$(x-\infty)^{3}, f_{11}^{2}, f_{12}^{2}, f_{21}, f_{31}, f_{32}$
9	34	31	$(x-\infty), f_{11}^{2}, f_{12}^{2}, f_{21}, f_{31}, f_{32}, f_{41}$
10	39	35	$(x-\infty)^{3}, f_{11}^{2}, f_{12}^{2}, f_{21}, f_{31}, f_{32}, f_{41}$
11	46	40	$(x-\infty), f_{11}^{2}, f_{12}^{2}, f_{21}, f_{31}, f_{32}, f_{41}, f_{42}$
12	51	44	$(x-\infty)^{3}, f_{11}^{2}, f_{12}^{2}, f_{21}, f_{31}, f_{32}, f_{41}, f_{42}$
13	60	49	$(x-\infty), f_{11}^{2}, f_{12}^{2}, f_{21}, f_{31}, f_{32}, f_{41}, f_{42}, f_{43}$
14	66	53	$(x-\infty)^{3}, f_{11}^{2}, f_{12}^{2}, f_{21}, f_{31}, f_{32}, f_{41}, f_{42}, f_{43}$
15	75	59	$(x-\infty)^{3}, f_{11}^{2}, f_{12}^{2}, f_{21}^{2}, f_{31}, f_{32}, f_{41}, f_{42}, f_{43}$
16	81	64	$(x-\infty)^{2}, f_{11}^{2}, f_{12}^{2}, f_{21}, f_{31}, f_{32}, f_{41}, f_{42}, f_{43}, f_{51}$
17	94	69	$(x-\infty)^{3}, f_{11}^{3}, f_{12}^{2}, f_{21}, f_{31}, f_{32}, f_{41}, f_{42}, f_{43}, f_{51}$
18	102	75	$(x-\infty)^{3}, f_{11}^{3}, f_{12}^{2}, f_{21}^{2}, f_{31}, f_{32}, f_{41}, f_{42}, f_{43}, f_{51}$

3. Detailed descriptions and examples of constructing the n-term Karatsuba-like formulae using the set of modulus polynomials can be found in the literature, e.g., [3].

ACKNOWLEDGMENT

The authors thank the reviewers for their useful comments. This work was supported in part by NSERC Discovery and NSERC Strategic Project grants awarded to Dr. Hasan.

REFERENCES

[1] P. L. Montgomery, "Five, Six, and Seven-Term Karatsuba-Like Formulae," IEEE Transactions on Computers, vol. 54, no. 3, pp. 362-369, Mar. 2005.
[2] S. Winograd, Arithmetic Complexity of Computations, SIAM, 1980.
[3] B. Sunar, "A Generalized Method for Constructing Subquadratic Complexity GF (2^{k}) Multipliers," IEEE Transactions on Computers, vol. 53, no. 9, pp. 1097-1105, Sept. 2004.
[4] J.-C. Bajard, L. Imbert and G. A. Jullien, "Parallel Montgomery Multiplication in $G F\left(2^{k}\right)$ Using Trinomial Residue Arithmetic," Proc. 17th IEEE Symposium on Computer Arithmetic (ARITH 2005), pp. 164-171, June 2005.
[5] J.-C. Bajard, L. Imbert and C. Nègre. "Arithmetic Operations in Finite Fields of Medium Prime Characteristic using the Lagrange Representation." IEEE Transactions on Computers, vol. 55, no. 9, pp. 1167-1177, Sept. 2006.

