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Abstract

We show that multiplication complexities of n-term Karatsuba-Like formulae of GF (2)[x] (7 <

n < 19) presented in the above paper can be further improved using the Chinese Remainder Theorem

and the construction multiplication modulo (x−∞)w.
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I. INTRODUCTION

The Karatsuba-Ofman 2-term multiplication algorithm and its extensions, i.e., n-term Karatsuba-

like formula (n > 2), are often used to design subquadratic complexity GF (2n) multiplication

algorithms. In [1], for 1 < n < 19, Montgomery presents values of the multiplication complexity

M(n), which is defined as the minimum number of multiplications needed to multiply two n-term

polynomials a(x) =
∑n−1

i=0 aix
i and b(x) =

∑n−1
i=0 bix

i in GF (2)[x].

Applying the Chinese Remainder Theorem (CRT) for the design of polynomial multiplication

algorithms is well known in the literature [2], [3], [4] and [5]. In this comment, we use the CRT

and the construction multiplication modulo (x−∞)w to improve values of M(n) (7 < n < 19)

obtained in [1]. Unless otherwise stated, we assume that all polynomials considered here are in

GF (2)[x]. The CRT for GF (2)[x] states that:
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Theorem 1: Let m1(x), m2(x), · · · , mt(x) be pairwisely coprime polynomials, and m(x) =∏t
i=1 mi(x). Then for any polynomials r1(x), r2(x), · · · , rt(x), there is a unique polynomial

r(x) mod m(x) such that r(x) ≡ ri(x) (mod mi(x)), where 1 ≤ i ≤ t. A formula for r(x) is

r(x) =
t∑

i=1

ri(x)

(
m(x)

mi(x)

)((
m(x)

mi(x)

)−1

mod mi(x)

)
.

II. IMPROVED M(n)

Let deg(a(x)) denote the degree of a(x), and deg(a(x)) < n and deg(b(x)) < n. When the

CRT is used to compute the product c(x) =
∑2n−2

i=0 cix
i = a(x)b(x), first, a set of modulus

polynomials mi(x) (1 ≤ i ≤ t) are chosen such that deg(m(x)) > 2n − 2. Then Ai(x) =

a(x) mod mi(x) and Bi(x) = b(x) mod mi(x) are computed. Since the operation of the re-

duction modulo a fixed polynomial mi(x) may be converted to subtraction operations, this step

involves no multiplications. Next, the t products Ai(x)Bi(x) mod mi(x) are computed, and each

requires M(deg(mi(x))) multiplications. Finally, c(x) is obtained via the CRT. This step needs no

multiplication operations since multiplying by a fixed polynomial may be converted to addition

operations.

Therefore, the minimum number of multiplications needed to multiply a(x) and b(x), i.e.,

M(n) =
∑t

i=1 M(deg(mi(x))), depends on the set of modulus polynomials. In order to minimize

M(n), these polynomials are selected such that deg(m(x)) = 2n− 1. However, if we know the

w (1 ≤ w ≤ 2n− 2) coefficients c2n−2, c2n−3, · · · , c2n−1−w, the degree of m(x) can be reduced

to 2n − 1 − w. This construction is referred to the multiplication modulo (x −∞)w [2, p.34].

Let e(f, i) denote the coefficient of xi in f(x). The following lemma is a formal statement of

this construction.

Lemma 2: Let 1 ≤ w ≤ 2n−2, c(x) =
∑2n−2

i=0 cix
i and m(x) be polynomials with deg(m(x)) =

2n − 1 − w. Given c2n−2, c2n−3, · · · , c2n−1−w and r(x) = c(x) mod m(x), then d(x) = r(x) +

hw(x) is equal to c(x), where hw(x) is defined as: h0(x) = m(x)xw−1,

hi(x) = hi−1(x) + [c2n−1−i + e(hi−1, 2n− 1− i)]m(x)xw−i, 1 ≤ i ≤ w.

Proof:

If 1 ≤ i ≤ w, then we claim that

e(hi, j) = cj, (1)
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where 2n− 2 ≥ j ≥ 2n− i− 1.

Since deg(m(x)xw−i) = 2n − i − 1 (1 ≤ i ≤ w), we have e(m(x)xw−i, 2n − i − 1) = 1.

Therefore, we obtain

e(hi, 2n− i− 1)

= e(hi−1, 2n− i− 1) + [c2n−i−1 + e(hi−1, 2n− i− 1)] ∗ e(m(x)xw−i, 2n− i− 1)

= c2n−i−1 (since 1 + 1 = 0 in GF (2)). (2)

For i = 1, (2) is simplified as e(h1, 2n− 2) = c2n−2, i.e., statement (1) is true.

Now we consider 2 ≤ i ≤ w. Since the polynomial m(x)xw−i is of degree 2n − i − 1, for

2n− 2 ≥ j ≥ 2n− i, we can write e(m(x)xw−i, j) = 0. Therefore, from the definition of hi(x),

we have

e(hi, j) = e(hi−1, j), (3)

where 2n− 2 ≥ j ≥ 2n− i.

From (2) and (3), we know that statement (1) is true for 1 ≤ i ≤ w.

Especially, (1) shows that e(hw, j) = cj for 2n−2 ≥ j ≥ 2n−1−w. Since deg(r(x)) < 2n−1−

w, it is clear that e(d, j) = e(hw, j) = cj for 2n−2 ≥ j ≥ 2n−1−w. Therefore, if c(x) and d(x)

are uniquely rewritten as c(x) = cH(x)x2n−1−w+cL(x) and d(x) = dH(x)x2n−1−w+dL(x), where

cL(x) and dL(x) are polynomials of degrees less than 2n− 1−w, we can write cH(x) = dH(x).

Since deg(m(x)) = 2n− 1− w > deg(cL(x)), we have cL(x) = cL(x) mod m(x). Similarly,

we have dL(x) = dL(x) mod m(x). The construction of hw(x) shows that 0 = hw(x) mod m(x).

This leads to r(x) ≡ d(x) (mod m(x)). So we have (cL(x) mod m(x)) = (dL(x) mod m(x)),

i.e. cL(x) = dL(x). This completes the proof.

Using the CRT and this construction, we obtain improved values of M(n) (7 < n < 19) and

they are given in Table I. In the table, fij denotes the j-th irreducible polynomial of degree i

over GF (2), e.g., f11 = x, f12 = x + 1, f21 = x2 + x + 1, f31 = x3 + x + 1, f32 = x3 + x2 + 1,

f41 = x4 + x + 1, f42 = x4 + x3 + 1, f43 = x4 + x3 + x2 + x + 1 and f51 = x5 + x2 + 1.

Remarks:

1. Values of M(4) = 9 and M(5) = 13 of [1] have been used for obtaining new bounds.

2. While computations of (x−∞) and (x−∞)2 require 1 and 3 multiplications, respectively,

computing (x−∞)3 requires 5 multiplications: an−1bn−1, (an−1+an−2)(bn−1+bn−2)+an−1bn−1+

an−2bn−2 and an−1bn−3 + bn−1an−3 + an−2bn−2.



4

TABLE I

UPPER BOUND FOR M(n)

n M(n) [1] New Bound Modulus polynomials

2 3 3 (x−∞), f11, f12

3 6 6 (x−∞), f11, f12, f21

4 9 10 (x−∞), f2
11, f2

12, f21

5 13 14 (x−∞)3, f2
11, f2

12, f21

6 17 18 (x−∞)2, f2
11, f2

12, f21, f31

7 22 22 (x−∞), f2
11, f2

12, f21, f31, f32

8 27 26 (x−∞)3, f2
11, f2

12, f21, f31, f32

9 34 31 (x−∞), f2
11, f2

12, f21, f31, f32, f41

10 39 35 (x−∞)3, f2
11, f2

12, f21, f31, f32, f41

11 46 40 (x−∞), f2
11, f2

12, f21, f31, f32, f41, f42

12 51 44 (x−∞)3, f2
11, f2

12, f21, f31, f32, f41, f42

13 60 49 (x−∞), f2
11, f2

12, f21, f31, f32, f41, f42, f43

14 66 53 (x−∞)3, f2
11, f2

12, f21, f31, f32, f41, f42, f43

15 75 59 (x−∞)3, f2
11, f2

12, f2
21, f31, f32, f41, f42, f43

16 81 64 (x−∞)2, f2
11, f2

12, f21, f31, f32, f41, f42, f43, f51

17 94 69 (x−∞)3, f3
11, f2

12, f21, f31, f32, f41, f42, f43, f51

18 102 75 (x−∞)3, f3
11, f2

12, f2
21, f31, f32, f41, f42, f43, f51

3. Detailed descriptions and examples of constructing the n-term Karatsuba-like formulae

using the set of modulus polynomials can be found in the literature, e.g., [3].
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