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Abstract

The Massey-Omura multiplier of GF(2™) uses a normal basis and its bit parallel version is usually
implemented using m identical combinational logic blocks whose inputs are cyclically shifted from one
another. In the past, it was shown that for a class of finite fields defined by irreducible all-one poly-
nomials, the parallel Massey-Omura multiplier had redundancy and a modified architecture of lower
circuit complexity was proposed. In this article, it is shown that, not only does this type of multipliers
contain redundancy in that special class of finite fields, but it also has redundancy in fields GF(2™)
defined by any irreducible polynomial. By removing the redundancy, we propose a new architecture for
the normal basis parallel multiplier, which is applicable to any arbitrary finite field and has significantly
lower circuit complexity compared to the original Massey-Omura normal basis parallel multiplier. The
proposed multiplier structure is also modular and hence suitable for VLSI realization. When applied to
fields defined by the irreducible all-one polynomials, the multiplier’s circuit complexity matches the best
result available in the open literature.
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1 Introduction

The arithmetic operations in finite fields are mainly used in cryptography and error control coding [14], [18§].
Addition and multiplication are two basic operations in the finite field GF(2™). Addition in GF(2™) is
easily realized using m two-input XOR gates while multiplication is costly in terms of gate count and time
delay. The other operations of finite fields, such as exponentiation, division, and inversion can be performed
by repeated multiplications [25], [1], [7]. As a result, there is a need to have a fast multiplication architecture
with low complexity.

The space and time complexities of a multiplier heavily depends on how the field elements are represented.
An element of GF(2™) is usually represented with respect to one of the three popular bases: polynomial
(canonical or standard) basis (PB), dual basis (DB), and normal basis (NB). Correspondingly, parallel
multipliers are categorized into PB multiplier, DB multiplier and NB multiplier [11]. Recently, several
architectures for PB and DB multiplication over G F(2™) have been proposed, for example, [17], [8], [5], [27].
Also, in order to reduce hardware complexity, some PB and DB multipliers have been proposed for specific
classes of fields, such as trinomials [23], [4], all-one polynomials and equally-spaced polynomials [9], [13],
[26], and composite fields [20], [21]. Tt appears that PB multipliers for classes of trinomials and composite
fields still achieve the lowest circuit complexity (see for examples [4], [21]). In a normal basis, squaring of an
element of GF(2™) can be easily performed by cyclic shift. Although multiplication in this basis appears to
be more complex compared to the other bases for the general case, it is still desirable in many applications
to represent the field elements with respect to a normal basis.

The original normal basis multiplication algorithm was invented by Massey and Omura [15] and its first
VLSI implementation (both bit-serial and bit-parallel) was reported by Wang et al. [24]. A normal basis
exists for every finite field, so does this type of multipliers which are hereafter referred to as Massey-Omura
(MO) multipliers. In [10], Hasan et al. proposed a novel architecture to reduce the complexity of the bit-
parallel MO multiplier by restricting the irreducible polynomial to be an all-one polynomial (AOP), which
is the best known architecture in terms of gate counts and time complexity for this class of fields. Recently,
Koc and Sunar [13] developed a parallel normal basis multiplier by extension of a PB multiplier for the
same class of fields generated by the AOPs. On the other hand, Mullin et al. [19] gave a lower bound on
the complexity of normal bases and defined the normal bases that have this lower bound as optimal normal
bases (ONB). They defined two types of optimal normal bases, type-1 and type-II, where the normal bases
generated by an irreducible AOP belongs to type-I. Gao and Lenstra [6] showed that these two types are all
the ONBs in GF(2™). Also, Ash et al. presented methods to find other low complexity normal bases and
techniques to determine their complexities [2].

In this paper, a generalized procedure and architecture for reducing the complexity of parallel normal
basis multiplier over GF(2™) are developed. The upper bounds of the gate count and time complexity of
the proposed architecture are derived. The proposed procedure is then applied to two types of optimal
normal bases and their architectures are proposed. To further reduce the complexity of the multiplier, the
architecture is optimized in terms of gate count by reusing partial sums. The complexities of the proposed
architectures are compared with those of the previously reported structures.

The organization of this paper is as follows. In Section 2, normal basis representation and the MO
multiplier is briefly introduced. In Section 3, a reduced redundancy MO multiplication scheme is derived
and its bit-parallel architecture is considered. This method is applied to two types of ONBs and the results
are compared with the previous ones. In Section 4, we present an optimized multiplier based on irreducible
all-one polynomials. In Section 5, we apply the technique of signal reuse to further reduce the gate count of
the proposed architecture as well as compare the complexities of a non-ONB with an ONB for finite fields
of GF(2°) with and without reusing signals for the proposed architecture. Finally, in Section 6, concluding
remarks are made.



2 Preliminaries

2.1 Normal Basis Representation
It is well known that there always exists a normal basis in the field GF(2™) over GF(2) for all positive

integers m [14]. By finding an element S€G F(2™) such that {3, g%, ---, B2} is a basis of GF(2™) over
GF(2), any element A € GF(2™) can be represented as

A= aif? = aoB+arf’+ -+ am18> (1)

=0

where a; € GF(2),0 <i < m — 1, is the i-th coordinate of A with respect to the NB. In short, the normal
basis representation of A will be written as A = (ag, a1, -+, am—1). In vector notation, equation (1) however
can be written as

A=axpl=pxad", (2)

where @ = [ag, a1, -+, am_1], B = [B, %, -+, ﬂ2m_1], and T denotes vector transposition.

The main advantage of the NB representation is that an element A can be easily squared by applying
right cyclic shift of its coordinates, since

A? = (am-1, Aoy *++y Gm_2) = Am_1B +aoB* + -+ + am_28""". (3)
2.2 Massey-Omura Parallel Multiplier
Let A and B be two elements of GF(2™) and are represented with respect to the NB as A = E;H:BI a; B*

and B = E;»n:_ol bj/3’2j, respectively. Let C denote their product as

C=AB=(ax ") x (Bxb)=axMxb", (4)

where the multiplication matrix M is defined by

/32”+2” 520”1 L. x32“+2m—1
s 321+2° 321+21 . 321+2m—1
M=glxp= )= T P T )
ﬂ2m—'1+20 /32m—'1+21 L. x32""‘—1'+2"”L—1

If all entries of M are written with respect to the NB, then the following is obtained

2m—1

M:M0/3+M162++Mm—1/3 ’ (6)

where Mj’s are m x m matrices whose entries belong to G F(2). By substituting (6) into (4), the coordinates
of C' are found as follows

i = axM;xb, 0<i<m-—1,

= a® x Mo x b, 0<i<m-—1, (7)



where al!) = [ai, ajy1, - -, ai—1] and b(i) = [b;, biy1, -+ -, bi—1] are respectively the i-fold left cyclic shift of @
and b [10]. Tt is not difficult to verify that the number of 1’s in each Mj, 0 < ¢ < m — 1, is the same, which
is hereafter denoted as Cy. Since these non-zero entries of M; determine the gate count of the normal basis
multiplier, Cy is referred to as the complexity of the NB [19].

The coordinate ¢; in (7) can be written as modulo 2 sum of exactly Cy terms. Each of these terms is
a modulo 2 product of exactly two coordinates (one of A and B each). Thus, the generation of ¢; requires
C'y multiplications and Cy — 1 additions over GF(2). In hardware, this corresponds to Cy AND gates and
(Cn —1) XOR gates, assuming that all gates have two inputs. If these XOR gates are arranged in the binary
tree form, then the total gate delay to generate ¢; is T4 + [log, Cn| Tx, where T4 and Tx are the delays of
one AND gate and one XOR gate, respectively. For parallel generation of all ¢;’s, 2 =0, 1, ---, m — 1, one
needs mCnx AND and m(Cx — 1) XOR gates (see also [3], [16]). Also, one can reduce the number of AND
gates to m? by reusing multiplication terms over GF(2). Thus, to reduce the number of XOR gates, we have
to choose a normal basis such that Cy is minimum. It was proved that Cy > 2m — 1. If Cy = 2m — 1, then
the NB is called an optimal normal basis (type-I or type-IT).

3 A Reduced Redundancy Massey-Omura Parallel Multiplier

In this section, we present a new low complexity architecture for bit-parallel Massey-Omura multiplier. The
improvement of the new architecture is based on a formulation of the multiplication operation, which is given
below.

3.1 Formulation of Multiplication

In (5), the multiplication matrix M is symmetric and its diagonal entries are the elements of the NB. Thus,
we can write

M =U+UT + D, (8)
where D is a diagonal matrix and U is an upper triangular matrix having zeros at diagonal entries as given
below

Bgr 0 0 0

0o p* 0 0

D= : SN (9)

0 0 32" 0

0 0 0 B

0 /31+21 .. ﬂ1+2m—2 /31+2m—1
0 0 .. ﬂ2+2m—2 ﬂ2+2m—1
0 0 0 g
0 0 0 0
Then (4) can be written as
C=axUxb +bxUxa’ +axDxb’. (11)

Let R={214+2/:0<i,j<m—1,1i+#j} be the set of exponents of 3 in the U matrix. Elements
of R belong to the set of the ring of integers modulo 2™ — 1. The binary representation of & € R, using m
bits, has only 2 ones and zeros elsewhere. Let us classify these elements of R to different subsets R; such
that each element of a specific subset is found by consecutive multiplications of 1 + 2° by 2 as

R ={(2°+2)2'mod (2™ —1): [ =0,1,---,m— 1}, 1 <i<ow, (12)



where v is the number of subsets with elements whose binary representations have two 1’s. In (12), R; is
essentially the cyclotomic coset of 1 + 2 modulo 2 — 1. Let us define

5 & g i=1,2 -, v, (13)

and its NB representation as

—_

m—

8i = (10, 0ity -y Bimo1) = . 1ufF i=1,2,-, v, (14)
=0

where §;; € GF(2),0 < j<m-—1,1< i< v, is the j-th coordinate of ;. Then, we have the following
lemma.

Lemma 1. For v and ; as defined above, the following holds

and for m even,

du,j = 0u,j4vy 0<j <o — 1 (16)

m

Proof. The number of elements in R = Ry|J Rz---|J Ry is ( 9

> = ﬂ”;—_ll Each subset R; (1 <i <)

forms a partition of R. For odd values of m, each R; (1 < i < v) has m elements, then ﬂn;—_ll = mv and so

v = 21 For m being even, each R; (1 <i < v, i # 2) has m elements and Rz has 7 elements. Thus,

2

m(m-1) _ m(v — 1) + & and so v = F. Thus, for any non-zero positive integer, v = {mT_l] , and the proof

2
of the first part is complete.

In order to prove (16), we have to show that after T cyclic shifts of the representation of J,, the

representation of J, is achieved again, i.e., we have to prove that (53U = d,. By using the definition of (13),
we have

§2" = pli+27)2" — gat+2*" (17)

Since v = 5, one has [)’22” = A?" = j and substituting it into (17), the proof is complete.! [l
Now, let us denote

2ji = (ab((i4g)) F a(i)bi)» 1 <1<, 0<j<m—1, (18)

then the multiplication of (11) can be performed by using the following theorem. In (18) and the remainder
of the paper, ((k)) means “k reduced modulo m”.

Theorem 1. Let A and B be two elements of GF(2™) and C be their product. Then

! An alternate and more concise proof of (16), as suggested by one of the reviewers, is obtained by noting that if m is even,

then the cardinality of Ry is 5. Thus 8y, j = 8y, j4+v where v = 7.



Z_: N()?j, for m odd

2((G+1)) "= 9 | e 27
> ajbp + 2 X @b + X zjudy, for meven

7j=0 i=1 j=0 j=1

where a;’s and b; ’s are the NB coordinates of A and B, respectively, and v = {m_l]

=1

Proof. By substituting (9) into (11), we have

m—1 -
C=3aib " 4ax U +bxUxd. (20)
j=0
Using (13) in (10), we obtain
[0 5 by - 6y §2m7 52
0 0 o & . & . o
0 0 0 & & ... g
U= m—4 Hm—4 21
0 0 0 0 &2 82 (1)
0 0 0 0 0 &2 osm
0 0 0 0 0 0o 82"
L0 0 0 0 0 0 0 |

Notice that using Lemma 1, only v variables are needed in the representation of U in (21). Therefore,
by substituting (21) in (20), the proof is complete.

O
Using Theorem 1, coordinates of C' can be obtained from the following.
Corollary 1.
ab; + Z Z 25,00 (141-4))» for m odd
7=0i=1 ¢
(1) = 1T fu- (22)
arb; + Z [ E (41— J))) + ajb((u+j))5u,((l+1—j)) , for meven
where 6;n, 1 <i<wv, 0 <n<m-—1, is the n-th coordinate of J;.
Proof. Assume that m is odd, then equation (19) becomes
m—1 L v )
C = ( Z((J+ ) Z 1‘772522J> ) (23)
7=0 i=1



Using (14), the coordinates of 5fj are easily obtained by j-fold right cyclic shifts of the coordinates of §;, i.e.,

67 = (8i,((m=j))s =+ "5 05,0, Gis1s =+ i (m=j—1))) (24)

m—1
= Si,((1-3)) B

, L 1<i<0,0<j<m-— 1. (25)
=0

By substituting (25) into (23) and using C' = 27;61 01/321, we have

m—1 m—1 m—1 v
9! 2((741)) !
D_abt = ) abf +ZZ%ZZ@ (=i B*
=0 7j=0 7j=0 i=1
m—1 . m—1 fm-1 v .
= ai-1)) 1152+2: zj,ii,((1-5)) | B
=0 = j=0 i=1
m—1 m—1 v
= ((1-1))D( )+ j,i0i,((1-7)) /3
=0 7=0 i=1
Thus,
m—1 v
€ = a(-1)b(u-1) + 25,1, ((1-4))
7=0 i=1

and by changing [ to [ + 1, the first part of (22) is obtained. The similar method can be used for m being
even and so the proof is complete. O

Below we discuss how Theorem 1 and Corollary 1 can be used to implement an efficient architecture
for realizing a parallel NB multiplier. We show that Theorem 1 yields circuits with the lowest space and
time complexities presented so far for the general case of an arbitrary GF(2™). For the special case of the
irreducible all-one-polynomials (AOP), our result matches the best known result available in the literature.

3.2 Architecture

Here, we use the results of the previous subsection and present a bit-parallel architecture for normal basis
multiplier. The architecture is shown in Figure 1 and is hereafter referred to as reduced redundancy Massey-
+1))

Omura (RR-MO) multiplier. In this architecture, block By generates E m-l /32((]

—o a;b; and the remaining

terms of (19) are generated by B; and S; (i = 1,2, -+, v) blocks. In this figure, AU) = (@j,ajq1,---,aj-1),1 <
j < m—1, can be obtained from AU=1) by a cyclic shift.

It is worth mentioning here the differences in circuits of B, blocks for odd and even values of m. In
Figure 1, parameter € can take one of the following two values depending on m:

(26)

0.5 for m even

GA{ 1 for m odd



Thus, for m being odd, the number of B, is identical to those of other B;, 1 < 7 < » blocks, i.e., m. For
even values of m, there are only %+ B, blocks in Figure 1.

By using (24), the terms of 5fjin Theorem 1 are essentially free of cost. The pass-thru module in Figure

1 (which is denoted by double circle with a dot inside) with inputs z;; and ij for0<j<m-1,1<:<w,
has the following output

25,07 = (25,605 (moj))s "+ 3,000y Tj,i0i1, * s 25,60 (m—j—1)))- (27)

Since the coordinates of (522j are known, the pass-thru module is realized by simply connecting z;; to the

coordinates where the representation of 522] has 1’s. That is, the single input line of the pass-thru module is
directly connected to its H(d;) output lines, where H(;) refers to the Hamming weight, i.e., the number of
1’s, in the NB representation of §;.

In Figure 1, the first level of sum blocks, S; (1 < i < v), consist of GF(2™) adders. Each of the m output
bits of S; is realized by adding H(d;) terms. The next level of summation block S also consists of GF(2™)
adders and has m XOR, binary-trees each with v+ 1 inputs. The details of this architecture is shown with an
example in Figure 2. This multiplier uses a type-II optimal normal basis (ONB) and is implemented in finite
field of GF(2°) where 8 = o® = a? + 1. By using the table of [19], we have 3% = 3+ 3% and ° = 38 + p16.
Then, the outputs of the first row are connected to the weights of 33(1,8) and 3°(8, 16), respectively. The
outputs from the second row is obtained by a cyclic shift from the previous one. The doted lines in Figure
2 are sketched to illustrate this cyclic shift and are not connected to any parts of the circuit.

3.3 Gate and Time Complexities

In Table 1, the complexity of the proposed architecture is shown. The number of XOR gates in S, is different
from the other S; when m is an even number. Note that although € = 0.5 for m being an even integer, the
number of XOR gates in S, is still an integer. Then, from (16), one can see that H(d,) is an even integer for
all even values of m. Thus, the total number of XOR gates in the RR_MO multiplier shown in Figure 1 is

Nx
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>
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+
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>

where ¢ and v are defined in (26) and (15), respectively.
In the literature, gate count is often expressed in terms of Cy. Towards this effort, we have the following
theorem.

Theorem 2. The upper bound of the number of the two-input XOR gates in the RR_MO parallel multiplier
is

Ny = %(C’N+m—2). (29)

Proof. The total number of ones in the representation of all entries of M, Ny, is found by adding the ones
in Mj, 0<i<m—1, (refer to (6)). Since Cy = H(M;),i=20,1,---, m — 1, thus Nyy = mCyn. By using



(8), this number is equal to the sum of the number of ones in the representation of all entries of D and twice
of those in U, i.e.,
Nyv = Np + 2Ny . (30)

By writing entries of (21) with respect to NB and noting that the number of ones in (5?(1 <i<wv,0<

J < m—1) is the same as that in §;, i.e., H(éfj) = H(4;), the number of ones in the representation of entries
of U is

No = m(Y H(:) + cH(,), (31)

i=1

where ¢ is defined in (26) and used here because we have half of the d, terms in (21) for even values of m.
By substituting (31) into (30) and assigning Ny = mCy and Np = m, we have

v—1 _CN—l

Z H(6:) + eH(0) = —5— (32)

The proof is complete by substituting (32) into (28).
O

The number of XOR gates Nx as given in Theorem 2 can be reduced by using optimization techniques.
In S; blocks of Figure 1, the number of XOR, gates is reduced when the representation of §; has more than
two consecutive ones or the representation is symmetric for composite values of m, i.e.,

m
7

0i,j = 0ijrg, 0S5 <

(33)

where k is a divisor of m. These techniques will be explained later. Below, we give the complexity of the

RR_-MO multiplier.

Theorem 3. The time delay of the RR_-MO multiplier, T, is given by

To =Ty + |—10g2(CN + 1)—| Tx, (3)4)
where Ty and Tx are the time delays of an AND gate and an XOR gate respectively.

Proof. Since the number of bits to be XORed in the S; and S blocks is E;}:_ll H(3;)+eH(6)+ 1= Ontl
then the time delay of the RR_-MO multiplier is

C 1
Te=T4+Tx <1+ [10g2< N2+ >-‘>,

which reduces to (34) after simplification. O

Table 2 compares gate and time complexities of proposed architecture with of the MO multiplier of [24].
Since C'y > 2m — 1, this table shows the significant reduction in the gate count of the proposed multiplier
compared to that of [24]. Tt is noted that the number of XOR gates in this table can be reduced when
more than two consecutive ones or a symmetrical property exist in the representation of §;. Therefore, this
number in the table is an upper bound.



Corollary 2. The number of XOR gates and the time delay of type-II optimal normal basis multiplier are
Nx = 1.5m(m—1), (35)

Te = Ta + (1 + [logy m]) T, (36)
respectively.

Proof. For an optimal normal basis (ONB), we have Cny = 2m — 1. Substituting this value of Cn into
(29) and (34), one obtains equations (35) and (36). The representation of ¢; (1 < ¢ < v) with respect to
type-I1 ONB has only two coordinates. Therefore, optimization technique cannot be applied to reduce the
complexity of XOR gates. Hence, the upper bound for Nx would be the exact number of XOR, gates. O

Remark. One can take advantage of the fact that for m even, the representation of §, is symmetric, i.e.,
k =2 in (33), and one can reduce the number of XOR gates in the RR_MO multiplier. Towards this, using
(16), one obtains that the upper 5 coordinates of the output signals in the S, block of Figure 1 are identical

to the lower 7 coordinates. Thus, by reusing these signals, the number of XOR gates needed in the S, block

is reduced to one half of the previous one, i.e., T (0.5H(d,) — 1). Therefore, for even values of m, the new
upper bound for the number of XOR gates in the RR_MO parallel multiplier becomes as

Ny = %(GN +m—2)— %(0.5}1(&) —1)= %(CN +m—0.5H(5,)— 1).

In the following, we attempt to reduce the XOR gate count of the proposed architecture by reusing signals
for the type-I ONB multiplier and compare it with the previous ones for the same class of finite fields.

4 An Optimized Multiplier Using Irreducible All-One Polynomi-
als

A type-1 ONB is generated by roots of an irreducible all-one polynomial (AOP). An AOP of degree m has
its all m + 1 coefficients equal to 1, i.e.,

Plz)=z"42""" 4 p 24 1. (37)
The AOP is irreducible if m + 1 is prime and 2 is primitive modulo m + 1 [18]. Thus, the roots of (37) i.e.,

¥, j=0,1,---m—1, form a type-I ONB if and only if m + 1 is prime and 2 is primitive in modulo m + 1.

Now, we like to introduce an optimized version of the multiplier shown in Figure 1. This new structure
is for finite fields constructed by an irreducible AOP of degree m. First, all §;’s, 1 < i < %, have to be
determined and are obtained using the following lemma.

Lemma 2.

ﬂZkl 121727"'7%_17
e m—1 .
%= 12"y i=m, (38)
7=0
where k; is obtained from '
2 +1=2% mod (m+1). (39)

10



Proof. Since m + 1 is odd prime, i.e., m is even, thus v = 3. When f is a root of (37), one has

i=1
Thus, using (13) and (40), we have
S = ﬂ2l+1 = ﬂ2l+1 mod m+1

= g, 0<I<m. (41)
Thus, '

2+ 1=1 mod (m+1) (42)
In (42), if [ = 0 then i = v = . Also, for 2 being primitive modulo m + 1, there exists a unique k;,
0 < k; < m such that

1 =2 mod (m+1),1#0. (43)

By substituting (43) into (41) and (43), the proof is complete.
O

If one uses the architecture of Figure 1, then the S, (v = 7) block has redundant XOR gates. Recall that
m is even and so the number of B, blocks in Figure 1 is half of the number of B;, 1 <i < v — 1. Because all
coordinates of d, are 1’s, then the S, (v = %) block of the proposed architecture has m(% — 1) XOR gates.
This value is reduced to (3 — 1) if all I outputs of B, blocks are XORed once, instead of m times, and then
the resulting output is used for all m bits emerging from the S, block. The resultant architecture is shown
in Figure 3. Comparing to general architecture of Figure 1, the S, block is changed to a binary tree of XOR
(BTX) gates whose inputs are v outputs of the B, blocks. The number of XOR gates and the depth BT X
are v — | and [log, v], respectively as shown at the bottom of the figure. Also, the S; (1 < i <wv — 1) block

is replaced by k;-fold left cyclic shift block where k; is found from either (39) or
&=p"" (1<i<v—1). (44)

Using the generalized architecture and (44), the output of the B; block in the first row is the [)’Zk’—th
coordinate of §; and the output of the second row is in the (k; 4 1)-th position and so on. This is accomplished
by re-wiring module S; as shown at the bottom of Figure 3.

The total number of AND gates of this circuit is m? which is the same as the one in the general
case, but the number of XOR gate is reduced to m? — 1. In order to determine the time delay of the
architecture in Figure 3, we have to determine the longest path from the input to the output and it is
the sum of delays of B;, BT X and the very last XOR gate. Therefore, the time delay of this structure is
(Ta+Tx)+ [logyv] Tx +Tx = Ta+ (1 4 [log, m]) Tx . Since m is even, we have [log, m] = [log,(m — 1)]
and thus the time delay is Te = Ta + (1 + [logy(m — 1)]) Tx .

The above gate count and delay can be compared with those of other parallel multipliers of the same class
generated by irreducible AOPs. The comparison is shown in Table 3. It is easily seen the best architectures in
terms of area and time complexities are those of Hasan et al. [10] and the architecture in Figure 3 in normal
basis and Wu-Hasan [26] in weakly dual basis. Also, the proposed circuit is regular and is derived from the
general case. The modularity of the proposed architecture makes it suitable for VLST implementation.

11



5 Optimization by Signal Reuse

If coordinates of d; (1 < i < v) have consecutive ones (more than two) in its representation with respect to
the NB, then the XOR count of the S; block of Figure 1 can be reduced by reusing partial sums. One such
method has been shown in the architecture of Figure 3 where all coordinates of §, are one. Since the number
of XOR gates saved by this method depends on the representation of J;, we show it with an example. Recall
that the upper bounds of the number of XOR gate of the S; block and the proposed architecture are given
in Table 1 and Table 2, respectively.

Example 1. Let GF(2%) be the finite field generated by the irreducible polynomial F(z) = z° 4+ 2% + 1 whose
root is a, i.e., F(a) = 0. If we choose 3 = a3, then {8, 2, B*, 3%, B'%} is a NB. Using Table 1 of [19], the
representation of §1and 8y and their consecutive squares are found from Table 4.

Let xj; = ajb(itj)) + a(ainb; (G = 0,1, ---,4 , i = 1,2) be the output of the j-th B; block and

sin (0 < n < 4) denote the B%" -th coordinate of the outputs of the S; block of Figure 1. Using Table { and
equation (19), the outputs of Sy are found as

$1,0 = 1,1+ Z2,1+ Z31
$1,1 = Zo,1 + Z1,1 + X211
$1,2 = %41+ Zo,1 + 21,1 -
$1,3 = 3,1 + Z4,1 + Zo,1
$1,4 = X321+ ¥31+ 41

Since both 51,0 and s1,1 have common term, x11+ 2,1, then it is not needed to generate this common terms
twice. Similar expression exists for s1 o and s1 3 with common term, x41+ xo,1. Therefore, the total number
of XOR gates used in Sy is reduced from ten to eight.

Similar optimization is accomplished in the Sy block. Since the representation of 02 has one zero in Figure
4, then all coordinates of the output of Sa, i.e., s2., (0 < n < 4), can be obtained by adding a single bit with

m—1
Tp = ijo Zj,2 as

S$2,0 =32+ Zp
S2,1 = X222+ Zp
Sp0=ZF12+Tp
S2,3 = Zo,2+ Zp

It is noted that x, is obtained from one of the outputs, for example s34, as x, = s34 + %24, where
S2,4 = Zo2+ 212+ 22+ 232

Therefore, the total XOR gates of this block would be eight instead of fifteen. This optimization method
may however increase time delay of the architecture.

O

Table 5 shows a comparison of this method with the general NB multiplier as well as the type-II ONB.
Using (32), Cn for this example and type-IT ONB are fifteen and nine, respectively. Tt is seen that the
number of XOR gates of the multiplier with grater value of Cy has less XOR gate counts than that in the
optimal normal basis using MO multiplier (36 versus 40).

6 Conclusions

In this article, a reduced redundancy Massey-Omura parallel multiplier has been proposed. This multiplier
reduces the complexity of the parallel Massey-Omura multiplier for any normal basis and is not limited to

12



any special class of finite fields. In particular, the space complexity of the proposed structure is about half
of the other architectures. Also, by reusing signals, the number of XOR gates have been further reduced and
the results of the application of this technique have been compared to the original one using an example.

Since only 23% of all normal bases in GF(2™) for m < 1200 are optimal [19], the proposed architecture
is useful in the design of an efficient multiplier, especially for non-optimal normal bases.
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Multipliers | #AND #XOR Time Delay

MO [24] mCN m(CN - 1) TA + ﬂogz CN—I TX

RR_MO m? %(CN +m —2) | Ty + [log,(Cn +1)] Tx




Multipliers Basis #AND #XOR Time delay

Itoh-Tsujii [12] | Polynomial | (m+1)* | m?+2m | T4 + ([log, m] + [log,(m +2)]) T'x
Hasan et al. [9] | Polynomial m? m?+m —2 Ty + (m+ [logy(m —1)]) Tx
Koc-Sunar [13] | Polynomial m? m? — 1 Ta+ (2 + [logy(m —1)]) Tx
Wu-Hasan [26] | Weakly dual m? m? —1 Ta+ (1+ [logy(m —1)]) Tx

MO [24] Normal m? 2m? — 2m Ta+ (14 [logy(m —1)])Tx
Koc-Sunar [13] Normal m? m? —1 Ta+ (2+ [logy(m —1)]) Tx
Hasan et al. [10] Normal m? m? —1 Ta+ (14 [logy(m —1)])Tx

RR_MO Normal m? m? —1 Ta+ (1+ [logy(m —1)])Tx
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B | Cn Multipliers #AND | #XOR | Time Delay

a® | 15 MO [24] 75 70 | Ta+4Tx

General || o® | 15 RR_MO 25 45 Ts+4Tx
Case a? | 15 | Optimized RR_ MO 25 36 Tis+ 5Ty
TypeIl | ® | 9 MO [24] 45 40 Ty+4Tx

ONB | &’ | 9 | RR_MO (Figure 2) 25 30 Tx+4Tx




