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Abstract

Multiple error-correcting Reed-Solomon (RS) codes have many practical applications. The
complexity of an RS encoder depends on multiplications in the finite field over which the code
is defined. In this article, we consider a triangular basis for representing the field elements,
and present architecture for a rate adaptive RS encoder using a triangular basis multiplication
algorithm. The architecture supports pipeline and bit-serial operations, and has a low circuit
complexity.

Index Terms: Bit-serial structure, finite field multiplication, generator polynomial, rate-
adaptive Reed-Solomon encoder, triangular basis.

I. INTRODUCTION

A Reed-Solomon (RS) code is a multiple-error-correcting code. It is also a mazimum distance
code: no code having the same block length and code rate can have a larger minimum distance
than an RS code [2]. The multiple-error-correcting capability of RS codes has been used in many
practical applications. Examples of important practical applications include magnetic and optical
storage systems, space and mobile communications, etc.

An (n, k) RS code with symbols from a finite field consists of £ data symbols and n — k parity
symbols, and can correct a maximum of ¢ = [ (n—k)/2] symbols in error. In this article, we consider

k-1 .
the field GF(2™). Let the data symbols be represented by the coefficients of D(z) 2 Y D,z
=0
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Then the parity symbols are the coefficients of 2" *D(z) mod G(z) where G(z) is the generator
polynomial of the code and is defined as follows:

G(z) 2 Z Giz' = H (m — 7b+i) . (1)

In (1), v is a primitive nth root of unity in GF(2™) and b is an integer constant.

The calculation of the parity symbols requires multiplications in the field GF(2™). The com-
plexity of an RS encoder depends mainly on the associated multiplication circuitry. A parallel-type
multiplier usually requires O(m?) two-input AND gates and XOR gates; however, the circuit com-
plexity of a bit-serial multiplier is only O(m) [3], [4], [5]. Using Berlekamp’s bit serial multiplication
algorithm an RS encoder has been developed by Hsu et al. [6]. The encoder results in RS codes
with a fixed error correcting capability. A designer usually considers the worst possible channel
condition to determine this capability. However, in many applications the channel remains in its
worst state for only a small fraction of the total time of use. Thus it is advantageous to have an
option to vary the number of redundant symbols.

In this article, we present a rate adaptive RS encoder using a triangular basis multiplication
algorithm. The encoder can provide code rates from unity to a minimum value determined by
the associated hardware circuitry. The encoder is of low circuit complexity and suitable for VLSI
implementation.

The organization of this article is as follows. In Section II, we consider triangular basis and
multiplication in GF(2™). In Section III, a scheme for forming generator polynomials of RS codes is
given and a structure for a rate-adaptive RS encoder is presented. Finally, in Section IV, concluding
remarks are made.

II. TRIANGULAR BASIS AND MULTIPLICATION IN
GF(2™)

A. Triangular Basis

Let f(z) = Tf: f:z* be a monic irreducible polynomial of degree m over GF(2) so that GF(2™)=GF(2)[z]/f(z).
=0

Then GF(2™) can be viewed as a vector space of dimension m over GF(2) and any ordered basis

A= (Ao, A1, -+, A1) is a vector A over GF(2™) (or an m X m matrix over GF(2) if each 4; is a

column vector). B = AM is the vector of another basis B iff the basis transformation matrix M is

an m X m non-singular matrix over GF(2). Any ¢ €GF(2™) can be written uniquely as ¢ = c4 A7,

with ¢, €GF(2™) being the vector of coordinates of ¢ with respect to A. Clearly, ¢, = cgM T and
eg=ca(MT)7".

Let M = [M,'J‘] with

) Jigjr 0Zitj<m—1
MZ’J_{ 0 m<i+j<2m-—2 (2)

which is a Hankel matrix with constants on its back-diagonals. Then M ™! is a matrix with entries

B 0 0<itj<m—2
1 _ = =
<M )l] o { hi+j+1—m m—1 S Z-l—] S 2m — 27 (3)
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with hg = 1 and hr = Ef:_ol fm—k+ihi. Given this particular choice of M, B is referred to as the
triangular basis with respect to A.

The advantage of the triangular basis is that the change of coordinates between A and B can
be easily implemented by shift register techniques using;:

m—j—1
= Y firj+r(cp); 0<ji<m-—1 (4)
=0
and
(QA)m—l—k k=m-—1
C e k—1 5
(ch)s (CA)m1k t+ '—Zo Jm—kyi(cp); 0<k<m-—2. (5)

The realization of (4) requires an m — 1 stage linear feed-forward shift register while that of (5)
requires an m — 1 stage linear feed-back shift register.

Consider the canonical ordered basis A = {1, a, a? - -,a™ !} where « satisfies f(a) = 0.
Then, field element representation with respect to the corresponding triangular basis has the feature:

. . k_l .
al = (tj1, tjs2, “oy tigm) Withtg = 1,8 = - = ¢4 = 0, and & = Y fm—itk—; which can
=1

be realized using a conventional m stage linear feed-back shift register (LFSR) with f(z) as its
connection polynomial.

B. Multiplication in GF(2™)

Proposition 1 Let u, v € GF(2™) and U be an m x m matrix with row vectors ug, uwag, - - -,

ua/s™". Then U is a Hankel matrix and Uv’ = (uvg)T.

Again, the calculation of the Hankel matrix constants can be implemented using an m stage
LFSR initially loaded with ug, since

(m{g),k 0<ithk<m-—1

Zj2 i Ul . = m l+ 6
! 1 Y Uisk—tfmot m<i+k<2m-—2. ( )
=1

Given u, and vy, the product wv can be computed using the following steps which apply
triangular basis and require O(m?) arithmetic operations over the prime field GF(2).

Step 1. Transform u, to ug.
Step 2. Generate the rows of the Hankel matrix U.
Step 8. Perform the matrix-vector multiplication Uv’ to obtain (uvg)?.

Step 4. Transform uvg to uvy.

,1,1,1). Then ug = (1,0,1,0)
6),U4—1 U5—1andU6_0
(4) results in wvy4 = (0,0,1,1).

which is the 0th row of the corresponding Hankel matrix U. Using
Then Uv’, = (uwvg)’ = (1,0,0,0)T and a back transformation using

Example 1 Let f(z) be 1 + 2%+ 2% uy = (1,1,1,1) and vy = (0
(

~—



Note that w4 is required at Step 1 and v, at Step 3. This feature may reduce hardware cost
in applications where several (say, s) multiplications are to be performed simultaneously with one
factor common to all the multiplications; because s of each of Steps 3 and 4, but only one of each
of Steps 1 and 2 are to be implemented. Furthermore, at the output of Step 3 each product is
available with respect to B. If these s products are to be added to obtain a single result, the
addition operation can be performed with respect to B at Step 3 and then the resultant sum can
be transformed to the A basis coordinates at Step 4. Consequently, the total number of Step 4
reduces from s to 1. This idea can be applied to develop area efficient architecture for VLSI design

of RS encoder.

C. Triangular and Dual Bases

The following theorem gives a condition under which the canonical and its triangular bases are dual
to each other. The concept of dual basis has been efficiently used to obtain finite field multipliers [3].

Theorem 1 Let A be the canonical basis, and B, its triangular basis as defined above. Then A
and B are dual bases iff m is even and

1 i=1
f"‘{o odd i and 1 < i < m. (7)

Proof: A and B are dual bases iff the matrix [Tr(A4;B;)] = I where Tr is the trace function
and I is the m x m identity matrix. Since A is the canonical basis and B = AM, Tr(a'B;) =
Tr(a! Y @F My ;) = 3 My jTr(a'tF), so I = [Tr(A;B;)] = [Tr(A;)]M, which means that [Tr(A4;)] =

M~!. This in turn results in:

I 0 0<i<m-2
Tr(o‘)_{ higiom m—1<1<2m—2.

m = Tr(a®) = 0 means m is even. Tr(a?) = Tr(a!) = 0 for 0 <1 < m — 2 gives hgy1_m = 0 for
m < 2t < 2m — 2, and hy,,—1 = hg = 1 which lead to Equation (7).

Examples of irreducible polynomials, for which the canonical and its triangular bases are dual,
are 14z —}—$4, 14z —|—x67 14+z+22+2° —|—$267 etc. To obtain a low complexity basis transformation
circuitry, if an irreducible trinomialis chosen then the type of trinomial which results such canonical
and triangular bases is 1 + x + ™. This type of irreducible trinomial does exist for certain m [7]
and the corresponding triangular basis is {a~!, o™ 2, ™3, ... 1}.

III. A RATE-ADAPTIVE RS ENCODER

A. Basic Structure

A rate-adaptive RS encoder can be seen as a fixed-rate RS encoder capable of changing generator
polynomials to provide variable redundancy in codewords. A structure for obtaining different
generator polynomials will be discussed in the next subsection. Here we consider a fixed-rate RS
encoder which supports pipeline and bit-serial operations. Fig. 1 shows such an encoder using
the triangular basis multiplication algorithm. More on its structure, complexity and comparison
can be found in [1]. As an informal description of how does it work, note that the data sequence
{Dy, Dy, ---,Dr_1} is shifted bit-by-bit into the encoder circuit and simultaneously into the



communication channel with the switches S1 and S2 at position P1. The incoming bit stream is
first buffered into the m — 1 stage shift register before a block of m bits is loaded into the LFSR.
The loading operation corresponds to the formation of the 0th row of the Hankel matrix in the
multiplication algorithm. The other rows are generated by the LFSR in the subsequent clock cycles.
Module M; (0 < i < 2t —1) performs an inner product of two input vectors to implement Step 3 of
the algorithm. As soon as the complete data sequence has entered the encoder, both switches are
placed at position P2. Over the next 2tm clock cycles, the parity check symbols are transmitted
by shifting the contents of the registers.

The above encoder has a fixed number of redundant symbols r = n—k which is usually sufficient
to meet the worst possible channel condition. In many applications, the channel, however, remains
in its worst state for only a small fraction of the total time of use. So an option to vary the number of
redundant symbols may achieve a higher code rate during other times. In the following discussion,
we do not address the issue of how the system detects the need for a change in redundancy, but we
do present an encoder architecture for which such a change can be efficiently implemented.

B. Formation of Generator Polynomials

Algorithm

Denote r; € {0,1,2,---,r} and G(%, ) as the redundancy and generator polynomial of the codeword
C® (i=0, 1, ---). Let the encoder start forming G(i,z) and then transmitting C) at the time
instances F; and T;, respectively. If the encoder requires w; clock cycles to form G(%, z), then for a
pipeline bit-serial operation T;41 — T; = mn clock cycles and mn > T;41 — Fiy1 > w;41. The value
of w;41 depends on how the encoder forms G(i 4+ 1,z). The latter, in this article, is formed from

G(i,z) with the assumption that Ar; 2 ri+1 — 1; be made available to the encoder prior to F;yq.
To generate G(i + 1,z), first consider the case where the maximum difference between the
number of redundant symbols of two successive codewords is unity, i.e.,

|Ari|ma:r = |ri+1 - rilma:r. =1. (8)

For the sake of simplicity we take b = 1 and v = o in (1), where « is a root of the polynomial

i ri—1

defining the field. Because G(i,z) 2y Gj(i)z? = [] (z + o’*!) where G;(i) is the jth order
7=0 7=0
coefficient of G (7, z),
rig1 4 (z + "t G(i,z) if Ar;=1
G(i+1,2)2 3 Gj(i+1)27 ={ G(i,z) if Ar; =0 (9)
7=0 (z4+a) ' Gi,z) if Ary=—1.
For Ar; =1,
Gy, (1) J="rig
Gili+1) = Gii(i)+Gi()Ja™™ 1ig1 > >0 (10)
Go(i)amit! j=0,



and for Ar; = —1,

(4 — Gri(i) J=riv1
Gty = { Gir1(1) + G (i + 1™ rigg > 5> 0. (1)

Equations (10) and (11) give a sequential scheme to obtain G(i + 1,z). When Ar; = 1, the
coeflicients of G(i + 1,z) are obtained using only the coefficients of G(7,z). On the other hand,
when Ar; = —1, the coefficients of G(i+1, z) are obtained using the next higher order coeflicients of
both G(i+1,z) and G(z,z). Whether Ar; =1 or — 1, a maximum of one finite field multiplication
and one addition is involved in obtaining a coefficient of G(i + 1, z).

Structure

A structure for obtaining G(i + 1,z) is shown in Fig. 2. It is divided into three main units-
Root Generation Unit, Coefficient Updating Unit and Coefficient Waiting Unit which are briefly
described below.

Root Generation Unit: It consists of a bidirectional LFSR as shown in Fig. 3. The LFSR
contents are the canonical basis coordinates of one element of the set {a?, o!, --+, a"}. At i =0,
the LFSR is initialized to o{ where rq is the redundancy initially set to the encoder. If the LFSR
contains v4, then after one shift with L = 1 (resp. 0), it contains va 4 (resp. uaj'). The value of
L is determined as follows:

I { 1 if Ary >0
0 if Ar; <O0.
If Ar; =0, the LESR is not clocked. Also if Ar; > 0 (resp. Ar; < 0) the LFSR is clocked at Fj4q
[resp. m(r 4+ 1) cycles after F;yq].

Coeflicient Updating Unit: Depending on the position of the switch, this unit performs the
multiplication and addition operations of (10) and (11) in bit-serial fashion. It consists of an adder
and one pipeline bit-serial triangular basis multiplier with a latency of m clock cycles. The inputs
to the multiplier are the canonical basis coordinates of the generator polynomial coefficients and
a'[t" generated by the Root Generation Unit.

Coeflicient Waiting Unit: A copy of the currently used generator polynomial coefficients waits
in this unit to be updated, if required. At the time instant F;;;, the contents of R,_; are the
canonical basis coordinates of G,;,_;(¢) for j =0, 1, ---,r; and ¢t =0, 1, 2, ---. Registers Rg, Ry,
-+, R, and the Coefficient Updating Unit form a unidirectional ring. To obtain G(i + 1,z), the
register contents are circulated once along the ring in a bit-serial manner starting one clock cycle
after F;y1. The circulation takes m(r + 1) clock cycles. The new coefficients wait in this unit until
a next update is required (the earliest update can start at F4o if Ar;y; # 0), and prior to the
time instant T;4q1 the outputs of Rg, Ry, -+, R,_1 are down loaded to the buffers which hold the
generator polynomial coefficients.

Depending on the value of Ar;, the structure operates in one of the following three modes.

Mode 1. (Ar; > 0) At the instant Fj.,, the switch is placed at position P3 and the output of
the Root Generation Unit is updated from a"¢ to a"i+! = o™ - & which is done in one clock
cycle. From the next cycle, the contents of the coefficient registers Rg, Ry, - -+, R, are shifted
m(r + 1) times to obtain G(i + 1,z) = (z + "+ )G(¢, z).

Mode 2. (Ar; = 0) The coefficient registers are not shifted and the output of the Root Generation
Unit is left unchanged.



Mode 3. (Ar; < 0) At the instant F;1;, the switch is placed at position P4. From the next cycle,
the contents of the coefficient registers are shifted m(r + 1) times to obtain G(i + 1,z) =
(z 4+ o")"'G(i,z). The output of the Root Generation Unit is then updated from o' to
it = @i -l

Among the three modes, Mode 3 requires the maximum number of clock cycles for its execution
and determines w;y; which is m(r 4+ 1)+ 1fori=0, 1, ---.

C. Comments

Although only |Ar;|mae = 1 has been considered so far, the structure can also be used for higher
values of |Ar;|maz, in which case if Ar; is greater (resp. less) than zero, then the structure of Fig.
2 operates in Mode 1 (resp. Mode 3) for Ar; times, and w;t1 = (m(r + 1) + 1)|Ari|;mas. Because
of the constraint from pipeline operation, the value of |Ar;|;as is, however, bounded as follows:

1 < |A7i|mazr < min {{LJ ,7‘}. (12)
m(r+1)+1

Given that the redundancy in a codeword does not need to be more than r, (12) enables the encoder
to add /remove the required number of redundant symbols without sacrificing its pipeline operation.

Instead of the structure presented here, a straightforward approach to obtain the coefficients of
all possible generator polynomials' would be to store them in a ROM and down load the appropriate
coeflicients into the buffers holding the generator polynomial coefficients. This approach requires
a total ROM size of about %mrz bits. On the other hand, the structure presented here mainly
requires m(r + 5) — 2 flip flops, m 4+ 4(W; — 2) two-input XOR gates and m two-input AND gates.
Since m is usually less than 10 and the circuit complexity of the proposed structure is only linearly
proportional to r, for applications where the value of r is even moderately large (say 10), the use of
the structure for the generator polynomial formation, in conjunction with the fixed-rate RS encoder
as shown in Fig. 1, would result in an area efficient rate-adaptive RS encoder.

IV. CONCLUSIONS

In this article, a triangular basis has been considered. Transformations from a primal basis to
its triangular basis and vise versa can be implemented using shift registers. A class of irreducible
polynomials has been given, for which the canonical and its triangular bases are dual. A structure
for rate-adaptive RS encoding over GF(2™) is presented. The structure can be easily extended for
RS codes with different values of m and ¢. Also, if a different primitive polynomial is chosen to
define the field GF(2™), then the proposed structure can be readily modified to incorporate this
change without any pre-algebraic manipulation. Moreover, the encoder is of low circuit complexity;
thus it is well suited for use in applications where silicon area is a prime concern such as satellites
and pocket size wireless terminals.
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Fig. 2. Structure for the formation of generator polynomials.
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Fig. 3. Root Generation unit using bidirectional LFSR.
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