
Finite Field Multiplier Using Redundant
Representation

�
Huapeng Wu,

�
M. Anwar Hasan,

�
Ian F. Blake,

�
Shuhong Gao

January 3, 2002

Abstract

This article presents simple and highly regular architectures for finite field multipliers
using a redundant representation. The basic idea is to embed a finite field into a cyclotomic
ring which has a basis with the elegant multiplicative structure of a cyclic group. One im-
portant feature of our architectures is that they provide area-time trade-offs which enable us
to implement the multipliers in a partial-parallel/hybrid fashion. This hybrid architecture has
great significance in its VLSI implementation in very large fields. The squaring operation
using the redundant representation is simply a permutation of the coordinates. It is shown
that when there is an optimal normal basis, the proposed bit-serial and hybrid multiplier ar-
chitectures have very low space complexity. Constant multiplication is also considered and
is shown to have advantage in using the redundant representation.

Index terms:

Finite field arithmetic, cyclotomic ring, redundant set, normal basis, multiplier, squaring.
�
H. Wu is with the Centre for Applied Cryptographic Research, University of Waterloo, Waterloo, Canada. E-

mail:h3wu@cacr.math.uwaterloo.ca.�
M. A. Hasan is with the Department of Electrical and Computer Engineering, University of Waterloo. E-mail:

ahasan@ece.uwaterloo.ca.�
I. F. Blake is with the Department of Electrical and Computer Engineering, University of Toronto, Toronto,

Canada. E-mail: ifblake@comm.utoronto.ca.�
S. Gao is with the Department of Mathematical Sciences, Clemson University. E-mail:

sgao@math.clemson.edu. Gao was supported in part by NSF grant #DMS9970637, NSA grant #MDA904-
00-1-0048 and ONR grant #N00014-00-1-0565.

1

1 INTRODUCTION

Efficient computations in finite fields and their architectures are important in many applications

including coding theory, computer algebra systems and public-key cryptosystems (e.g., ellip-

tic curve cryptosystems). Although all finite fields of the same cardinality are isomorphic, their

arithmetic efficiency depends greatly on the choice of bases for field element representations. The

most commonly used bases are polynomial bases (PB) and normal bases (NB), sometimes com-

bined with dual bases (DB)[15]. A major advantage of normal bases in the fields of characteristic

two is that the squaring operation in NB is simply a cyclic shift of the coordinates of elements, so

these are useful for computing large exponentiations and multiplicative inverses [13, 11, 1]. Also,

the multiplication table of a normal basis is symmetric, so suitable for hardware implementation.

This is the basis for the multiplier of Massey-Omura [16] and that of Onyszchuk et al. [18].

Recently, Gao et al. [7, 8] have proposed a novel method to perform fast multiplication with

a normal basis generated by Gauß periods. The main idea is to embed a field in a larger ring,

perform multiplication (using the Fast Fourier Transform) there and then convert the result back

to the field. The ring they use is referred to as a cyclotomic ring which has an extremely simple

basis whose elements form a cyclic group. One purpose of this paper is to make this idea more

explicit and present architectures that are suitable for hardware implementation.

We are mainly interested in finite fields of characteristic two, i.e.
�����

, which are one of the

two types of fields used most commonly in practice (the other one is
���

where � is a prime). We

show how to find the smallest cyclotomic ring in which
��� �

can be embedded. Since “embed-

ding” is not unique, each element in the ring can be represented in more than one way, i.e., the

representation contains certain amount of redundancy. In this article, we also discuss how this

redundant representation of a field element can be efficiently converted to a normal basis and vice

versa.

Another purpose of our paper is to present architectures for arithmetic in
�	�
�

. Both bit-serial

and hybrid multipliers using the redundant representation are proposed and their complexities are

discussed. A modified form of the multipliers using the redundant representation with reduced

complexity are also presented. The bit-serial and hybrid architectures of this modified multiplier

have lower complexity compared to the previously reported normal basis multipliers. A constant

2

multiplier using the redundant representation is also considered.

We should mention other related work here. Itoh and Tsujii [14] constructed a multiplier for a

class of fields defined by irreducible all-one-polynomials (AOPs) and equally-spaced-polynomials

(ESPs). Wolf [22] found a simple multiplication architecture for irreducible AOP’s. Drolet [4]

uses maximum subfields in cyclotomic rings. Silverman [19] considered a special case when

there is a type I optimal normal basis. This case is also considered in [7, 8]. A more recent article

on redundant representation is [10].

The organization of this paper is as follows: Section 2 shows how redundant representation of

a field element can be derived from cyclotomic rings. In Section 3, multiplication operation using

the redundant representation is discussed and then basis conversions are given. Architectures of

bit-serial, bit-parallel, hybrid, and constant multipliers are presented in Section 4. For the field

which has a type II ONB, we show in Section 5 that more efficient architectures can be developed

using a basis derived from the redundant representation. This multiplier architecture is highly

regular and also has low complexity. Finally, a few concluding remarks are given in Section 6.

2 CYCLOTOMIC FIELDS AND REDUNDANT REPRESEN-
TATION

Let
�

be any field and � a positive integer. The � -th cyclotomic field, denoted by
�������

, over
�

is defined to be the splitting field of � �
	��
over

�
. In particular, � divides � ������	��

for some �
and is thus coprime to the characteristic. Let � be a primitive � -th root of unity in some extension

of
�

. Then
�������

is generated by � over
�

and elements of
�������

can be written in the form

����������� � � ��� � �
� �"!�!�!#��� �%$ � � �%$

� & �('*) �,+
(1)

Here the representation is not unique, that is, each � -tuple - � � & � � & +�+�+ & � �.$ �0/ , � ') �
, gives an

element of
�1�2�3�

but different tuples may give the same element. For example, since
� � � �

�
� �4!�!�!5� � �%$

� �76
, the two � -tuples - 6 & 6 & +�+�+ & 6 / and - � & � & +�+�+ & � / both represent

6
, while

- 	8� & 6 & +�+�+ & 6 / and - 6 & � & +�+3+ & � / both represent
	8�

. Because of such redundant representations,

and by a slight abuse of terminology, we denote 9 � & � & �
� & +�+�+ & � �%$

�;:
1 as a redundant basis for

1An ordered set of field elements is denoted by <>=?=@=BA .

3

any subfield of
���2�3�

containing
�

. Note that a redundant basis is unique up to order for a given� �2�3�
.

On the other hand, we may consider the ring
� 9>�

: � -�� � 	�� /
, called the � -th cyclotomic ring,

denoted by � � - � /
. If we let � be the congruence class of � , then � ��� �

and elements of � �
can also be represented in the form (1). But now the representation is unique and so the elements� & � & �

� & +�+�+ & � �%$
�

form a true basis for � � . Note that the elements
� & � & �

� & +3+�+ & � �.$
�

form a

cyclic group of order � and

� ! �
' ��� �

'�� �	��
� � 	�� &� � � � 	�� + (2)

This simple multiplication table allows us to design efficient architectures of low complexity as

shown in Section 3.

Suppose that
��
�

is embedded in
� �2�3�� � , where � is a prime power. Then arithmetic in

��� �
using the redundant representation can be performed following these three steps:

1. Represent elements in
���
�

in the form (1);

2. View them in the ring � � and do arithmetic there;

3. Finally convert the result back to
���
�

.

We characterize here all the fields that can be embedded in
� �2�3�

when
� � ���

.

Theorem 1 [15] Let � be a prime power and � be a positive integer with ����� -�� & � / � �
. Then

���
�
is contained in

� ���%��
iff � divides the multiplicative order of � modulo � .

Proof: Let � be the multiplicative order of � modulo � . By Theorem 2.47 (page 65) of [15],
� �2�3��

has degree � so it is isomorphic to
� ���

. The theorem follows, as
�� �

is contained in
� ���

if

and only if ����� .
Remark 1 If there is a type I optimal normal basis in

� � �
then

� � �
is contained in

� �"! �5� ��
, so

there is a redundant basis of size � � �
for

� �
�
.

4

Here a basis for
� �
�

is
� � & � � & +3+�+ & � !�� and the correspondence between field elements and ring

elements is

� � � � � � �
� �"!�!�!#� � ! � ! �� 6 ! � ��� � � ��� � �

� �"!�!�!#� � ! � !
- � �*����� / � � - � � � �(� / �

� ��!�!�!#� - � ! � �(� / � ! ��� ����! � � � � � � � � �
� ��!3!�!#��� ! � ! +

This is the case considered by Silverman, Gao, et al. [19, 7, 8].

Remark 2 If there is a type II optimal normal basis in
� � �

then
� � �

is contained in
� � � ! � � ��

, so

there is a redundant basis of size � � � �
for

�	�
�
.

This case will be considered in more detail in Section 5. In concluding this section, in Table 1 we

give the smallest values of � for
�
	 ��� � � � 	 6 such that

� �
�
is contained in

� ���%��
.

3 MULTIPLICATION USING REDUNDANT REPRESEN-
TATION

From now on we only consider fields of characteristic two.

3.1 Multiplication Operation

Consider the basis of our redundant representation for
���
�

over
� �

: ��� 9 � & � & �
� & +3+�+ & � �%$

� : +

Let any two field elements
� &��) �	�
�

be represented with respect to (w.r.t.)
 �

, i.e.,
� �� �.$ �'�� � � ' � ' and � � � �%$ �'�� ��� ' � ' , where

� ' & � ') � �
are the coordinates of

�
w.r.t.

 �
. Note that

��� � � �
and the lists of coefficients

� �(' �
and

� � ' � are not unique.

Since � � � �
, the product of field elements

�
and � can be given by

� � � �%$ ��
'�� � ��' - � ' ! � / � �.$ ��

'�� � ��' - �%$ �� � � � � � � ' �
�
/ � �%$ ��

'�� � �(' - �.$ �� � � � � � � $ ' � �
�
/ � �%$ �� � � ��� �%$ ��

'�� � �(' � � � $ ' ��� �
�
&

where -�� 	�� /
in the subscript denotes that � 	��

is to be reduced modulo � .

5

� � � � � � � � � � � � � � � � � � � �
151 907 6.0 176 1409 8.0 201 1609 8.0 226 227 1.0
152 1217 8.0 177 709 4.0 202 809 4.0 227 5449 24.0
153 613 4.0 178 179 1.0 203 841 4.1 228 1603 7.0
154 617 4.0 179 359 2.0 204 409 2.0 229 2749 12.0
155 311 2.0 180 181 1.0 205 821 4.0 230 461 2.0
156 169 1.1 181 1087 6.0 206 619 3.0 231 463 2.0
157 1571 10.0 182 547 3.0 207 829 4.0 232 929 4.0
158 317 2.0 183 367 2.0 208 2081 10.0 233 467 2.0
159 749 4.7 184 799 4.3 209 419 2.0 234 1007 4.3
160 2123 13.3 185 1481 8.0 210 211 1.0 235 941 4.0
161 967 6.0 186 373 2.0 211 2111 10.0 236 709 3.0
162 163 1.0 187 1123 6.0 212 535 2.5 237 1423 6.0
163 653 4.0 188 941 5.0 213 853 4.0 238 717 3.0
164 415 2.5 189 379 2.0 214 643 3.0 239 479 2.0
165 661 4.0 190 573 3.0 215 1291 6.0 240 1067 4.4
166 499 3.0 191 383 2.0 216 1297 6.0 241 1447 6.0
167 2339 14.0 192 769 4.0 217 1303 6.0 242 1331 5.5
168 833 5.0 193 773 4.0 218 1091 5.0 243 487 2.0
169 677 4.0 194 389 2.0 219 877 4.0 244 733 3.0
170 1021 6.0 195 869 4.5 220 575 2.6 245 491 2.0
171 361 2.1 196 197 1.0 221 443 2.0 246 581 2.4
172 173 1.0 197 3547 18.0 222 1043 4.7 247 1483 6.0
173 347 2.0 198 437 2.2 223 2677 12.0 248 1489 6.0
174 349 2.0 199 797 4.0 224 449 2.0 249 1169 4.7
175 701 4.0 200 401 2.0 225 1919 8.5 250 625 2.5

Table 1: Smallest cyclotomic field
� ������

that contains
� � �

as a subfield.

If we define
� � ������ �%$ �� � � ��� � �

�
, we have

�

�
� �.$ ��

'�� � �(' � � � $ ' � & � � 6 & � & +3+�+ & � 	 � +
(3)

Then a multiplication operation using the redundant representation is decided by expression (3).

On the other hand, the squaring of an element
�

using basis
 �

can simply be performed as

follows: � � � � � � � � �
� �"!�!�!���� �.$ � �

� �2�%$ � � +

6

Since � � � �
, we have �

�
�
� �

�
�
$��

if ��� � � 	��
. Note that � is odd because of the minimum

of the redundant basis, thus
� �

can be written as

� � � ��� ��� � �
� �"!�!�!#� �������� � �.$

� � ���	�
�� � � ���	���� � ��!�!3!#��� �.$ � � �%$
�

� � � ���������� � � � � �
� � ���	���� � � � ��!3!�!#���������� � ������ � �%$

� ���������� � �%$
� +

Clearly, a squaring operation using redundant representation is equivalent to a permutation of the

element coordinates.

3.2 Gauß Periods, Normal Bases and Redundant Bases

Some redundant bases can be easily introduced by the normal bases generated with the Gauß

period, and by doing so one can find the relation/conversion between the redundant basis and the

normal basis. This is discussed below.

The Gauß periods, which were discovered by Gauß, are defined as follows: Let � &�� � �
be

integers such that � � � � � �
is a prime, and let � be a prime power with � ��� - � & � / � �

. Let�
be the unique subgroup of order � of the multiplicative group ���� of � � � � � ��� , then for any

primitive � th root � of unity in
� � ���

, the element

� � �
����� �

�
(4)

is called a Gauß period of type -�� &�� / over
���

, where is a � th root of unity in � �! ! � � . It can

be checked that �) ��� �
. For example, when � � � , is a square root of unity in � �� ! � � . So,

 �#" �
, and � � � � � $

�
. This is the case which will be discussed in Section 5.

Gauß periods have been used to construct normal bases with low complexity [17, 3]. (For a

definition of the complexity of a normal basis the reader is referred to [3].) A Gauß period of type

-�� &�� / over
� �

naturally introduces a normal basis
 � � 9 � & �

� & +�+�+ & � � � ��� : in
� � �

over
� �

if and

only if � ��� - � & � / � �
, where � is the order of � modulo � . Furthermore, such a normal basis has

complexity at most � �%$ 	��
with �%$ � � if � even and � � �

otherwise [3, 21, 6]. Gauß periods

of type -�� & � / and - � & � / generate optimal normal bases (ONBs) with complexity � � 	��
, which

are usually called type-I and type-II ONBs, respectively [17].

7

For a normal basis generated with Gauß period of type - � &�� / , from (4) we have

 � � 9 � & �
� & +�+�+ & � �

� ��� : � 9
! $ ��
'���� � � � & ! $ ��

'���� � � � � & +�+�+ & ! $ ��
'���� � � � ��� � � : &

where is a primitive � th root of unity in � �! ! � � . Note that each element in
 �

is a sum of

� elements. Let the set of these � � elements be denoted as
� �,� � � � � ��� & � � 6 & � & +�+�+ & � 	

��� � � 6 & � & +3+�+ &�� 	�� �
. Consider another set of � � elements:

� � � � � & � � & +�+3+ & � ! ! � . It can be

seen that elements in
� �

can serve as a “representation basis” for
� �
�

. Indeed for any element

�
� � � �)�� �

, we have �
� � � � � �

� � � ���
	�� � ! ! � � �)� �
, and thus,

� ��� � �
. Let � � � �! ! �5� then

� ��� � & �� . For any integer �) � � & � & +3+�+ &�� � �
, there exist integers

�) � 6 & � & +�+�+ & � 	 � �
and�) � 6 & � & +�+�+ & � 	 � �

, such that � � � '
�
��� �,- � � � � /

. Therefore,
� � � � ��� � � ��� �

.

Obviously, besides element “1”, the basis of our redundant representation contains exactly the

same � � elements as
� �

or
� �

.

3.3 Conversions of Bases

Among the three steps of redundant representation arithmetic, the first and the final steps deal

with the change of representations. In this subsection we discuss the conversions between the

normal basis and the redundant basis derived from the Gauß period. We show that such conver-

sions can be done in hardware with almost no cost.

Before giving the conversions between normal basis
 �

and redundant basi
 �

, we first intro-

duce two intermediate “bases”. Following the discussion in the previous subsection, we separate

each sum of � terms of
 �

and put the � � elements in an ordered set and let it be denoted by
 : � 9 � & � � & +�+�+ & � �

� ���
& �
� & �

� � & +�+3+ & �
� � � ��� & +�+3+ & �

� � ��� & �
� � ��� � & +�+�+ & �

� � ��� � � ��� : +

Clearly,
 can serve as a “basis” of

� � �
. The second intermediate “basis” is given by�� � 9 � & �

� & � & +�+�+ & � ! ! : +
From the discussion in the previous subsection, we know that

��
has exactly the same � � ele-

ments as
 but with a different order. Moreover, the permutation can be carried out as follows.

Let
�) � � �

and
� � - � �

�
�� & � �

�
�� & +�+�+ & � �

�
�! ! / w.r.t.

 �
for � ��� &� . For any

� & �"! � ! � � , write

8

� � � � � � , where
� ! � ! � and

6 ! � ! � 	��
. Then

� � �' �"� � �
� ! ��� � � � � �� ��� � � ��� � & (5)

where - � � � $ � / denotes � � � $ � to be reduced modulo � . In this way, we create a one-to-one

correspondence between the
 and

��
based coordinates.

Obviously, conversions between the normal basis and the redundant basis can be divided into

three steps:

(a) Conversions between the normal basis and the intermediate basis
 ;

(b) Conversions between two intermediate bases
 and

��
;

(c) Conversions between
 �

and the redundant basis

Step (b) has been solved in (5). It can be implemented as a rewiring of lines and has almost no

cost in hardware. Step (c) is even simpler. Note that the redundant basis can be obtained by

including the element “
�
” before the first element of

 �
. If we let

� � - ��� & � � & +�+�+ & � ! ! / w.r.t. the

redundant representation, then

�(' � � � � �'
for

� � � & � & +�+�+ & � � and
��� �"6 +

(6)

Conversely, if
�('

’s are given, then

� � � �' � � ��'
if
���
� 6 &� 	 �('

otherwise
+ (7)

In Step (a), the conversion from the normal basis
 �

to the intermediate basis
 can be given

as follows. If
� � - � $� & � $ � & +�+�+ & � $!�$ � / w.r.t. the normal basis

 �
, then w.r.t

 one has

- � $� & � $ � & +�+�+ & � $! $ � / �� - � $� & +�+3+ & � $�� ��� 	!
& � $ � & +3+�+ & � $ �� �
� 	!

& +�+�+ & � $!�$ � & +�+3+ & � $!�$ �
� ��� 	!

/ +
(8)

The reverse conversion, however, is much more complicated. Note that it is not possible to

convert every redundant representation, since some of them may not represent an element in the

field
� �
�

. Two tasks have to be performed in this step: One is to identify the representation of a

9

field element w.r.t.
 , and the second is to convert the identified field element’s representation

back to the normal basis.

For the interest of this paper which deals with finite field multiplication, it is sufficient to

consider identifying the product of two field elements in
 and then convert it back to the normal

basis. Suppose that the coordinates �
� �' & � ! � ! � 	��

of the product
�

w.r.t.
 are given. Then,

we have the following lemma.

Lemma 1 Assume that
� &��) � � �

are respectively given in
 by

� � !�$ �� � � � !�
'��5� � � �� ! � ' � � � � � and � � !�$ �� � � � !�

'�� � � � �� ! � ' � � � � � &
where � � �� ! � � � � � �� ! � � � !3!�! � � � �� ! � ! and � � �� ! � � � � � �� ! � � � !�!�! � � � �� ! � ! (9)

for � ��6 & � & +�+�+ & � 	 �
. Then the product

� � � � in
 obtained using (3) also has the property:

�
� �� ! � � � � � �� ! � � � !�!�! �

�
� �� ! � ! for � � 6 & � & +�+�+ & � 	 �

.

The assertion of the lemma is immediately clear from the following fact. The representations of�
and � w.r.t.

 are images of a homomorphism � , namely the embedding of
� � �

into
� ������

.

Clearly,
� �

� - � / and � �
� - � / for some

� & �) � �
�
. Note that the image of the embedding � is

characterized by the property expressed in (9). Consequently,
� � � ! � �

� - �8! � / is also in the

image of � and thus of the claimed form.

The lemma allows us to identify the
 basis representation of the product of two field ele-

ments also represented by
 . Once the product is obtained in this

 basis, it can be converted to

the corresponding normal basis as

- � $� & +�+3+ & � $�� ��� 	!
& � $ � & +�+�+ & � $ �� ��� 	!

& +�+�+ & � $! $ � & +�+�+ & � $!�$ �� �
� 	!
/ �� - � $� & � $ � & +�+�+ & � $!�$ � / + (10)

Thus, Step (a) of basis conversion can be realized with (8) and (10).

3.4 Further Results on Redundant Basis

Lemma 2 Let
�) � �
�

and consider its
 �

basis representation - � �
� �� & � �

� �� & +�+�+ & � �
� ��.$ � / obtained

from its normal basis representation by using (8) and (5). Then the last
! !� coordinates

� � � ������� & � �
� ��	���� & +�+�+ & � �

� ��%$ �

10

are a mirror reflection of the first
! !� coordinates if � � � is an even integer.

Proof: Let be a primitive � th root of unity. Then � � ! $ ��
'�� � � � � generates a normal basis � � 9 � & �

� & +�+�+ & � � � ��� : in
� �
�

. Since � � � is an even number and
� � � 	 �

, thus

� � � � �
� � � �

� � � � �
� � � � �"!�!�!#� �

� � � � ���
� �

� � � �
� � � �"!�!�!#� �

� � � �� ��� � �
� � � �� � �

� � � �� �
� �"!�!�!�� �
� � � � ���

� - �
� � � �

� � � ��!�!3!#� �
� � � �� ��� / � - � $

� � � � $
� � � �"!�!�!#� � $

� � � �� ��� / +
(11)

The two intermediate bases are respectively given by
 � 9 � & +�+�+ & � �

�� ��� & � $
� & +�+�+ & � $ �

�� ��� &+�+�+ & �
� � ��� & +�+�+ & �

� � ��� � �� ��� & � $
� � ��� & +3+�+ & � $

� � ��� � �� ��� :
and

�� � 9 � & �
� & +3+�+ & � ! ! : . It can be seen

from (11) that the � coordinates of
�

w.r.t
 �

have the same values. If a line is drawn at the

middle of the
 �

basis element sequence between �
� �� and �

� �� � � , then for any
��

coordinate� � � �� � � � � � its mirror reflection coordinate
� � � ��.$ � � � � � � � � � � ��B$ � � � � � must have the same value. �

For example, let � � and � ���
. Let � denote a primitive ��� th root of unity in

� � ��� .
Since

� � has order in � ��	� , then � � � � �
� � � � $

� � � $
� �

is a Gauß period of type - � &� /
over

� �
and � generates a normal basis in

� �	

:

 � � 9 � & �
� & � � & +�+�+ & ��� � : . Subsequently,

and

��
are respectively given by

 � 9 � & �
� � & �

�	 & �
��� & �

� & �
� � & �

� � & ��� & +�+�+ & � � & �
� � & �

� & �
�
�
:

and�� � 9 � & �
� & � & +�+�+ & �

�	 :
. Finally, the redundant representation basis can be obtained by including

the element “1” before the element � in
 �

. Let the normal basis representation of a field element�
be - � $� & � $ � & � $ � & � $ & � $� & � $ � &

� $� / . We can obtain its
 �

representation as follows:

� � - � $� & � $ � & � $ � &
� $ � & � $ � & � $� & � $ � &

� $ & � $ & � $ � & � $� & � $� & � $� & � $� &� ��� 	
consecutive coordinates

� $� & � $� & � $� & � $� & � $ � & � $ & � $ & � $ � &
� $� & � $ � & � $ � & � $ � &

� $ � & � $� / +

It can be seen that in the
 �

basis representation the first
� coordinates are a mirror reflection

of the last
� coordinates. The corresponding redundant basis representation of

�
is obtained

simply by including a “
6
” before the first coordinate in the

��
representation.

Also note that only eight consecutive coordinates - � � & � � &
+�+�+ & � �;� / of the redundant repre-

sentation, which include all the seven coordinates w.r.t. the normal basis, are necessary for

determining the element
�

. This fact can be exploited when a multiplication operation using

11

� � � � � � � � � � � � � � � � � �
153 613 281 0.46 177 709 326 0.46 207 829 375 0.45
163 653 299 0.46 193 773 357 0.46 213 853 393 0.46
169 677 313 0.46 199 797 368 0.46 219 877 396 0.45
175 701 323 0.46 205 821 374 0.46 235 941 428 0.45

Table 2: Ratios of
�

to � for some useful values of � with k=4.

redundant representations is implemented. If we denote
�

as the minimal number of consecutive

coordinates of the redundant representation needed to determine the element, then Table 2 shows

some values of
�

for the fields given in Table 1 which can be generated with the Gauß period of

type -�� &� / .

Lemma 3 For
� &��) � � �

, let
� � - � � & � � & +�+3+ & � �.$ �0/ and � � - � � & � � & +�+�+ & � �.$ �0/ w.r.t.

 �
,

where � � � � � �
. Assume that

� � � ! � � - � � & � � & +�+�+ & � �%$ � / is obtained using (3). If
���
� � �

and � is even, then �
� �����
� � � .

Proof: It follows from Lemma 2, � � � � �.$ � & � � � � �%$ � & +�+�+ & � ������ � � ������ . Then from (3) we

have �
� � �.$ ��

'���� � ' � �.$ ' � �%$ ��
'�� � � ' � ' �4� � � � � �%$ ��

'�� � � ' � ' . Note that - � � & � � & +3+�+ & � �.$ �0/ have exactly �
copies of the normal basis coordinates, and the same property also applies to - � � & � � & +3+�+ & � �.$ � /
(refer to (9)). Then

�.$ ��
'�� � �(' � '
� ! !�

'�� � ��' � ' can be written as a sum of � partial sums, where each

partial sum is a sum of � same values which is clearly zero since � is even. Then

�%$ ��
'�� � ��' � ' � 6

and �
� � �(� � � . �

This property will be used later to obtain efficient architecture for finite field multiplier.

4 ARCHITECTURES FOR REDUNDANT BASIS MULTI-
PLICATION

In this section we present architectures for hardware implementation of the multiplication:
��!� � �

based on (3), where
� & � and

�
are represented with respect to the redundant basis

 �
.

12

Conversion between
 �

and the normal basis
 �

, as discussed in Subsection 3.3, can be performed

without any logic gates.

4.1 Bit-Serial Multipliers

Parallel-in serial-out version An architecture for a parallel-in-serial-out (PISO) multiplier is

shown in Fig. 1. The � -bit register, which is initially loaded with � , is cyclically shifted with

a clock. The contents of this register are bit-wise multiplied with the coordinates of
�

and the

resulting � bits are added using � 	 �
XOR gates (arranged in a binary tree form for minimum

delay). For a straightforward implementation, this PISO multiplier requires � flip-flops,2 � AND

gates and � 	��
XOR gates, and the multiplication is completed in � clock cycles.

The PISO multiplier architecture shown in Fig. 1 can be optimized and its time and space

complexities can be greatly reduced if certain properties of the redundant representation basis are

taken into consideration. Since the redundant basis coordinates - � ' / �.$
�'�� �

contain � copies of the

normal basis coordinates
� $
�

for all � & - � � 6 & � & +�+3+ & � 	 � /
, suppose

�(' � � �(' � � !�!3! � ��' � . If

these � coordinates are bit-wise multiplied with � � � & � � � & +�+3+ & � � � , respectively, then part of the PISO

multiplier (refer to Fig. 1) computes
��' � � � � � �(' � � � � � !3!�!@� �(' � � � � , which requires � AND and � 	 �

XOR gates. Since
�(' � � �(' � � !�!�! � ��' � , one can equivalently compute

��' � - � � � � � � � � !�!�!%� � � � / ,
which requires only

�
AND and � 	��

XOR gates. This reduces the total number of AND gates3

in the PISO multiplier from � to � � �
, while the number of XOR gates remains the same.

It is also possible to reduce the number of clock cycles needed by the PISO multiplier. To-

wards this end, if we can change the order of the input bits to the PISO multiplier such that in

the first � (� ! � ! �) clock cycles the multiplier generates those � consecutive coordinates of
�

that have at least one copy of �

�
, for all � & -�� � 6 & � & +�+�+ & � 	��

), then the computation time

would reduce from � - � � � � � /
to � clock cycles. The value of � can be considerably lower

than � . Table 2 lists minimum values of � (denoted as
�

) for � � and
�
	 6 ! � ! � 	 6 that

are of interest to elliptic curve cryptosystems. It can be seen from the table that for � � , the

computation time is reduced by more than
	 6

%. In fact for any even value of � , the computation
2Note that input � can directly come from a register that is not necessarily part of the multiplier. As a result, in

determining the circuit complexity of the multiplier, no register is considered for � .
3One more AND gate may be saved if one can ensure that � always has ������� .

13

� �� �
��
�
��
�

�� �� ���� �� �� �� � 		
	

�� �� �
� �� �

� ��
�

�� �� ���� �� ���
� ��� �� �� �� � � �� �

� �� � ��� �� � !!
!
""
"

#$ $$ $%&''
'
((
(

)*+ ++ +,,- -- -../00
0

12 3 33 34 44 4

: Binary Tree

57698;:5<6=8;>5<698@?A5<6=8CB 5
�

5D?

EGFIHKJ �MLONQP H LRNTS HDUVUDUGH P H �

�
>

�
B

�
?

� � �
6=8W?

�
698KB

Figure 1: Bit serial multiplier using the redundant representation.

time is always less than � � � . Let the � consecutive coordinates that the PISO multiplier needs to

generate be �
�YX & � �YX � � & +3+�+ & � �ZX �W[$ � . Then if we change the connection to the AND gates in Fig. 1

such that - � � & � � & +�+�+ & � �%$ �0/ is replaced by - � � X �@[& � � X �@[� � & +�+�+ & � � X �W[$ � / , then the PISO multiplier

will generate the required � coordinates of
�

in the first � clock cycles.

Serial-in parallel-out version A serial-in parallel-out (SIPO) multiplier which is capable of

running at a very high clock rate is shown in Fig. 2, where the element � is stored in a cyclic

shift register and the element
�

is shifted in a bit-serial fashion. Each of the � accumulator units

consists of a mod � adder and a flip-flop. These flip-flops are initialized to zero and contain the

product
�

after � clock cycles.

5 � 5 ? 5 698@?5 698KB

E � E ?
E 698@?E 698KB

�
6=8W? HDUDUVU<H � ? H � �

Figure 2: High speed architecture for bit-serial redundant representation multiplier.

Compared to the parallel-in serial-out multiplier of Fig. 1, the SIPO multiplier costs � extra

14

flipflops and one more XOR gate. However, it can support a very high clock rate since the

critical path consists of one XOR and one AND gate only. Another clear advantage of this SIPO

architecture over the PISO one is that the former can be efficiently implemented in software

using the full width of the datapath of the processor on which the software is executed. The

optimization for this architecture includes reducing the number of accumulation units to � , such

that the results in the � flipflops have exactly one copy of the coordinates w.r.t. to the normal

basis.

Table 3 shows a comparison of the two multipliers presented here and the parallel-in serial-out

polynomial ring multiplier proposed in [4]. In Table 3, since � $ denotes the size of the maximum

subfields in cyclotomic rings, for the same field
���
�

one always has � $ ��� . For example, when� � , we have � � � $ � 	
; when � � 	

, we have � $ � � � and � � � �
; when � � � , we have

� $ � � �
and � � � � .

of # of # Flip # clk
Multipliers AND XOR flops cycles Critical path basis
Drolet [4] � $ � $ 	�� � $ � $ ��� ����� � � � � $�� ��	 poly. ring

Fig 1(optimized) � � 	 � � � � � � - ��� � � � � � ����� � � � � � / � 	 redundant
Fig 2(optimized) � � � � � � �
� � ��	

redundant

Table 3: Comparison of bit-serial multipliers using polynomial ring basis and redundant repre-
sentation.

Constant multiplier For an implementation of multiplication operation, if one of the inputs

(i.e., either
�

or �) is known or fixed, the multiplier is called a constant multiplier. In the

past, efficient architectures for such constant multipliers were proposed using polynomial and its

dual basis. When normal bases are used, the constant multiplier are however not that efficient.

This is mainly because most normal basis multipliers require that both
�

and � be shifted in

cyclic fashion in each step of the multiplication operation. To alleviate this problem, the PISO

multiplier shown in Fig. 1 can be used with its input
�

being a fixed element. Although the

PISO multiplier’s inputs and outputs are represented with respect to the redundant basis, one can

change the representation from a normal basis to the redundant basis and vice versa without any

logic gates.

15

When the redundant representation is used, one has another advantage in constructing a con-

stant multiplier. Since a field element can have more than one redundant representation, we may

find the representation with the least Hamming weight to reduce implementation complexity. For

the representations of an element w.r.t. to a redundant basis, the representation with the fewest

nonzero coordinates is referred to as the minimal representation of the element, and one has the

following:

Theorem 2 Let 9 � & � & +�+3+ & � �.$
� :

be a redundant representation basis for
� ���

over
� �

and
�)

� �
�
. Then the minimal representation of

�
with redundant basis has a Hamming weight equal to

or less than � 	 �� if � � �
or � is even, and � 	 � � �� if � � �

and � is odd.

Proof: The theorem follows by noting that
�

can be written as

� � ��� � � � � ��!3!�!#��� �.$ � � �%$
�

� - � � �(� / � - � ��� � / � �"!�!�!�� - � ��� �.$ � / � �%$
� + �

4.2 Parallel Architectures

Full parallel version Since the architecture shown in Fig. 1 operates in parallel-in and serial-

out fashion, it can be easily parallelized. Fig. 3 shows the circuit (module
�

) that generates

one coefficient �
'

of the product
�

. The inputs to module
�

are
�

and
�
-fold cyclically shifted

version of � . Clearly, a full bit-parallel multiplier can be obtained by using � such modules
�

.

The circuits for module
�

can be optimized to save AND gates in the same way as we

discussed for the PISO multiplier. Also the number of modules can be reduced to � . Since it is

sufficient to generate only those � coordinates that correspond to the normal basis, each module
�

requires � AND and � 	 �
XOR gates, and there are � such modules

�
.4 Hence the total

number of gates for the bit parallel multiplier is

� �
AND gates &�1- � 	 � /
XOR gates

+

16

: Binary Tree M� �

��� � ���������� ������ �� ���� � ��	� � ����� �	� � � � �

Figure 3: Parallelization of the bit-serial redundant representation multiplier.

The time delay due to gates is
�
� � - ��� � � � � � � ��� � � � � � / ��	 .

Hybrid version The above bit parallel architecture has a clear advantage over some similar

existing architectures. It can be implemented in partial parallel (hybrid) fashion to provide con-

siderable amount of space and time trade-offs. In a space constrained environment, if only

copies of modules

�
are available to implement the multiplier (

� !
 ! �), then the multiplica-

tion operation can be arranged such that in one clock cycle
 �
�
’s are computed, and the operation

can be completed in
� �
� clock cycles. This feature could be very useful in VLSI implementation

since it might be difficult to implement a full-scale bit-parallel multiplier when the field is very

large.

Fig. 4 shows the architecture of a hybrid multiplier using only two modules
�

. There are

two shift registers � � and � � . Register � � is of length � � �� bits and initially loaded with� � & � & +�+�+ & � �.$ � & � � . Register � � is � 	 �� bits long and initially loaded with � � & � � & +�+�+ & � �%$ � . The

interlacing module combines the outputs from the two registers into one such that its first bit is the

first bit from � � , the second bit is the first bit from � � , the
�
rd bit is the second bit from � � , the th

bit is the second bit from � � , +�+�+ , and so on. During the first clock cycle, the interlacing module

has outputs in the order: � � & � � & +�+3+ & � �%$ � & � � . Then module
�

on the left-hand side generates �
�

and module
�

on the right-hand side produces �
�
. During the second clock cycle, the outputs

of the interlacing module is � & � � & +�+�+ & � �%$ � & � � & � � & � � and �
�

and �
 are generated by the modules

�
. This process is repeated and after a total of

� � � � clock cycles, all the coordinates of
�

are

generated.
4Here we assume that � is even and the first coordinates of � and � , ��� � 5 � � � . Then we have E � � � by

Lemma 3. If the above condition is not satisfied, there should be ���QP modules.

17

inter-
lacing

M M

L� B
6��@?B

�
����� 698@?�	� � L

698@?B

� ?
shift
cyclic

EGF �@?EGF

Figure 4: Hybrid redundant representation multiplier architecture (
 � �).

5 ARCHITECTURE FOR TYPE-II ONB MULTIPLIER

In this section we deal with type-II ONB. Extending the work of Gao and Vanstone [6], we

present several bit-serial and bit-parallel multiplier architectures.

5.1 Algorithm

Below we consider in more detail Remark 2 given in Section 2.

Theorem 3 [6] Let � be a primitive - � � � � / st root of unity in
� �
�

and � � � � �
� generates

a type II optimal normal basis. Then
� � ' & � � � & � & +3+�+ & � �

with � '�� �
' � �

�
' � �

' � �
� ! � � $ '

,� � � & � & +3+�+ & � , is also a basis in
� �
�

.

From the discussion in the previous section, the complexities of a redundant basis multiplier can

be greatly reduced by applying certain properties of the redundant representations. However, we

can do better. For �) � ���
and � ' as defined in Theorem 3, define

 - � / �
��� � ��� ��� � � � & if

6 � � � � ��� � � � � � &
� � � �
	 � ��� ��� � � � & otherwise.

(12)

Obviously,
 - 6 / �"6 &
 - � / �
 - � � � � 	 � /
and � '*� ��� � ' � for any integer

�
. As � ' �

�
� � '�� � � � ' $

�
,

we have � '�! �
�
� � � � '�� � � � � � � ' $ � � . Let � � - � � & +�+3+ & � ! /) � �
�

with respect to the basis

18

9 � � & � � & +�+3+ & � ! : and � �
� 6
, then

� '5! � � !� � � � � � � '5! � � � !� � � � � � - � � � '�� � � � � � � ' $ � � / � !� � � � - � � � � � ' � � � � � � $ ' � / � � +
The final step in the above equation comes from proper substitutions of the subscript variables.

The above constant multiplication � '@! � was proposed by Gao and Vanstone [6]. In order to obtain

a general multiplier, let
� � - �5� & +�+�+ & � ! / be an element in

� ���
, w.r.t. the basis 9 � � & � � & +�+�+ & � ! : ,

then multiplication of
�

and � can proceed as follows:

��! � � !�
'��5� � ' - � ' ! � / � !�

'�� � � ' !� � � � - � � � � � ' � � � � � � $ ' � / � � � !� � � � � !�
'�� � � ' - � � � � ��' � � � � � � $ ' � / � � � +

If the product is written as
� � !� � � � � � � � , then

�

�
� !�

'�� � �(' - � � � � ��' � � � � � � $ ' � / & � � � & � & +�+�+ & � +
(13)

Note that � also generates a normal basis 9 � & �
� & +�+�+ & � � �

��� : � 9 � � & � � & +�+�+ & � � � ���
:
. From � ' � � � � ' �

and the expression (12), it can be seen that the basis 9 � � & � � & +�+�+ & � ! : is a permutation of the above

normal basis. Thus in hardware a squaring operation using the basis 9 � � & � � & +3+�+ & � ! : costs nothing

but rearrangement of wires.

5.2 Architectures

Parallel-in serial-out multiplier An architecture to implement this multiplication is shown in

Figure 5. A - � � � � /
-bit register, which is divided into two parts (left and right) and is shifted

cyclically, stores � � � ' � & � �46 & � & +3+�+ & � � . A total of � AND gates and � XOR gates are used to

generate � terms of
�(' � � ’s. Finally, another � 	 �

XOR gates, formed as a binary tree, take �
terms of

�(' � � ’s as inputs and produce the coordinate �

�
of
�

. In one clock cycle, the register is

shifted once and one �

�
is generated at the output port. A multiplication is completed in � clock

cycles.

The size complexity of the multiplier in Fig. 5 is � AND gates and � � 	 �
XOR gates, along

with a - � � � � /
-bit shift register. The delay in the critical path is

� � � - � � ��� � � � � � / ��	 . A

19

comparison of the proposed multiplier with some other similar bit-serial normal basis multipliers

is shown in Table 4. As it can be seen except for the multiplier of Geiselmann and Gollmann [9],

the proposed multiplier has an overall space and time complexities that is better than those of

any other multiplier listed in the table. The multiplier of [9] requires about � � fewer XOR gates,

however, the proposed multiplier has a highly regular structure which makes it attractive for

hardware implementation for very large fields.

���� �����	
�

: Binary Tree

� � � � � � ���� �� �� � � �

� �� �� �

� �� � ���
� � � �� � ���

� �� �� �

� �� � ���
� � � �

� ���������������������������

Figure 5: New bit-serial multiplier using basis 9 � '
:
.

Multipliers #AND #XOR #flipflops # clk cycles basis

Massey-Omura [16] � � 	�� � � 	 � � � � normal
Feng [5] � � 	�� � � 	 � � � 	 � � normal

Agnew et al [2] � � � 	�� � � � normal

Geiselmann-Gollmann[9] � � � 	��� � � � normal
presented here � � � 	�� � � � � � normal 5

5In fact, it is a permutation of the normal basis.

Table 4: Comparison of bit-serial multipliers when there is a type II ONB.

Serial-in parallel-out multiplier Similar to the redundant basis multiplier architecture dis-

cussed in Section 4, a high speed architecture for the modified redundant basis multiplier is also

20

available, which is shown in Fig. 6. The coefficients � � & � � & +�+�+ & � ! of the element � , w.r.t. the

basis 9 � '
:
, are initially stored in a register of length � � � �

which can be shifted cyclically. The

coefficients
� ! & � !�$ � & +3+�+ & � � of the element

�
, w.r.t the basis 9 � '

:
, are fed into the system from

the left in a bit-serial fashion. There are � accumulation units and they are the same as those

in Fig. 2. During the first clock cycle, the data � � � � � & � � � � � & +�+�+ & � ! $ ��� � ! are respectively

multiplied with
� ! at the � bit-multipliers. Note that � � � 6

. The � bit-products, which are� ! - � � � � � / & � ! - � ��� � � / & +�+3+ & � ! - � ! $ � � � ! $ � / & � ! - � !�$ ��� � ! / , are then stored in the � accumu-

lation units. After the second clock cycle, � values of
� ! - � �5� � � / �,� !�$ � - � ��� � � / , � ! - � ��� � � / �

� ! $ � - � ��� � / & +�+�+ , � ! - � ! $ � � � !�$ � / � � !�$ � - � !�$ � � ! / , � ! - � !�$ � � � ! / � � !�$ � - � !�$ � � � ! /
are respectively stored in � flipflops. After � clock cycles, the contents of the � flipflops at the

top are the coordinates of the product
�

.

5
�

5D?5 �

5
�

5 B5 ?

5
�

8@?5
�

8KB 5
�

8W?

� ? H � B UDUVU<H � �

E ? E B E
�

E
�

8@?

Figure 6: High speed multiplier architecture for a type II ONB.

Compared to the multiplier shown in Fig. 5, the high-speed version multiplier has a higher

complexity. Besides � AND gates, � � XOR gates, and a cyclic shift register of length � � � �
,

the high-speed version multiplier also needs � flipflops. The critical path has a delay of
� � � � � 	 ,

which is however much shorter than that of the multiplier shown in Fig. 5.

Hybrid multiplier architecture The bit-serial multiplier shown in Fig. 5 can be easily made

parallel or partial parallel. Fig. 7 shows an architecture of a hybrid multiplier using the basis

9 � '
:
, which yields two out of � coordinates of the product per clock cycle, and completes a

21

Multipliers #AND #XOR # clk cycles � cycle period

Massey-Omura [12] - � � 	�� /
 - � � 	 � /
 � �
 � � 9 � � ��� � � � � - � � 	�� / � � 	 :

Proposed here �
 - � � 	�� /
 � �
 � � 9 ��� � - � � ��� � � � � � / � 	 :
Table 5: Comparison of hybrid multipliers when there is a type II ONB (

� �
 � � � �
).

multiplication operation in
� � � � clock cycles. Note that bit-serial and full parallel multipliers

can be viewed as special cases of the hybrid architecture.

It can be seen from Fig. 7 that module
� $ is all combinatorial circuits and similar to module

�
in Fig. 3. In Fig. 7, two copies of module

� $ are used and each of them generates one prod-

uct coordinate at a time. The cyclic shift module enables a cyclic shift of � � � �
coefficients� � � � � & � � � � � & +�+3+ & � � � � ! � , and costs no gates and registers. When � is even, the � � � �

-bit reg-

ister is initially loaded with � � & � � & +�+�+ & � ! , � ! $ � & � !�$ & +3+�+ & � � , � � & � & +3+�+ & � !�$ � & � ! , � !�$ � & +�+�+ & � � .
When � is an odd number, the order of the � � � �

bits initially loaded into the register is� � & � � & +�+�+ & � ! $ � & � ! , � !�$ � & +�+�+ & � � , � � & � & +�+�+ & � ! , � !�$ � & � ! $ & +�+�+ & � � . The permutation module takes

the � � � �
bits from the shift register and during the first clock cycle its output is in the order of� � � � � & � � � � � & +�+3+ & � � � � ! � . Values of
 - � / can be calculated using (12) and always lie between

6
and� , inclusive, for

� �"6 & � & +�+�+ & � � . Note that the module
� $, which generates �

�
, takes � � out of� � � �

bits from � � � � � & +3+�+ & � � � � ! � and leaves the bit � � � � � out.

Obviously, the multiplier’s space complexity depends on how many modules
� $ are used

in the partially parallel architecture. Each module
� $ consists of � � 	 �

XOR gates and �
AND gates, which is shown in the right-hand side in Fig. 7. The total complexity of the hybrid

multiplier with two modules
� $ is � 	 � XOR gates and � � AND gates. Comparison between

this work and the bit-parallel Massey-Omura multiplier proposed by Wang et al. [20] is made and

shown in Table 5. It can be seen that with the same number of XOR gates used and approximately

same time delay, the multiplier presented here uses about only half the number of AND gates used

in the Massey-Omura multiplier.

22

��

� �� �� �� ���	

��
��

� �

����
�� � ��� �� �� �� �

����
��

��
�
��
�

�� !"#

$%

& &' '

: Binary Tree

(�*)��
shifttation
cyclic (�

�
� � � �	� ��	� ?

+ �-, + � ,/.0.1./, + � , + � , + � ��� ,/./.0.1, + �shift register contents:

� �

Permu-
(�

� � � � ���2 X 2 X

3 X

4 �

5 �
5 �

+76 � � ����� +76 � � � � � +76 � � � � �+76 � � � � �+76 � � � � �+76 � � �����5 �

Figure 7: Bit-parallel multiplier using basis 9 � '
:
.

6 CONCLUDING REMARKS

In this paper, we have considered multiplication in
� ���

using a redundant representation. The

basic idea behind the multiplication is to embed the field
� � �

into the smallest cyclotomic field
� �2�3��

and do the arithmetic in
� �2�3��

. We have presented the smallest � for various values of � that

are of practical interest for elliptic curve cryptosystem.

We have also shown that the redundant representation can be used to obtain efficient bit-serial,

bit-parallel, and hybrid multiplier structures. Additionally. we have discussed how to reduce the

time and space complexities of these multipliers using properties of the redundant representation.

The conversions from the redundant representation to the corresponding normal basis and vice

versa have been given. We have shown that these conversions can be implemented in hardware

without any logic gates.

When there is a type I ONB in
� � �

, it follows from our discussion in Section 4 that the

minimal representation of a constant field element always has a Hamming weight not greater

than � � . Consequently, the proposed constant multiplier has very low complexity. When there

exists a type II ONB, very simple and highly regular multiplier architecture can be obtained using

the redundant representation (refer to Section 5). It has been shown that such multipliers have

lower or equivalent complexity compared to most of the previously proposed similar multipliers.

Hybrid or partial parallel architectures have also been presented for this type of ONBs.

One question arising from the work presented here remains: Can this modified redundant

23

representation multiplier described in Section 5 be generalized to any field
�	�
�

?

Acknowledgment

Part of this manuscript was presented at the Workshop on Cryptographic Hardware and Em-

bedded Systems’99, August, 1999, Worcester, MA [23]. We thank the anonymous reviewers for

their useful and valuable comments. Dr. Wu also thanks Ellen Liu for her helpful discussions

during the preparation of the manuscript.

References

[1] G. B. Agnew, R. Beth, R. C. Mullin, and S. A. Vanstone. Arithmetic operations in GF - � ! / .
J. Cryptology, 6:3–13, 1993.

[2] G. B. Agnew, R. C. Mullin, I. Onyszchuk, and S. A. Vanstone. An implementation for a

fast public key cryptosystem. J. Cryptology, 3:63–79, 1991.

[3] D. W. Ash, I. F. Blake, and S. A. Vanstone. Low complexity normal bases. Disc. Appl.

Math., 25:191–210, 1989.

[4] G. Drolet. A new representation of elements of finite fields GF(� !) yielding small com-

plexity arithmetic circuits. IEEE Trans. Comput., 47(9):938–946, 1998.

[5] M. Feng. A VLSI architecture for fast inversion in GF(� !). IEEE Trans. Comput., 38:1383–

1386, 1989.

[6] S. Gao and S. Vanstone. On orders of optimal normal basis generators. Math. Comp.,

64(2):1227–1233, 1995.

[7] S. Gao, J. von zur Gathen, and D. Panario. Gauss periods and fast exponentiation in finite

fields. In Lecture Notes in Computer Science, volume 911, pages 311–322. Springer-Verlag,

1995.

24

[8] S. Gao, J. von zur Gathen, D. Panario, and V. Shoup. Algorithms for exponentiation in finite

fields. J. of Symbolic Computation, 29:879–889, 2000.

[9] W. Geiselmann and D. Gollmann. VLSI design for exponentiation in GF - � ! / . In

AUSCRYPT’90, pages 398–405. Springer-Verlag, 1990.

[10] W. Geiselmann and H. Lukhaub. Redundant representation of finite fields. In Proceedings

of Public Key Cryptography, pages 339–352. Springer-Verlag, 2001.

[11] M. A. Hasan, M. Wang, and V. K. Bhargava. Modular construction of low complexity

parallel multipliers for a class of finite fields GF(� !). IEEE Trans. Comput., 41(8):962–

971, 1992.

[12] M. A. Hasan, M. Wang, and V. K. Bhargava. A modified Massey-Omura parallel multiplier

for a class of finite fields. IEEE Trans. Comput., 42(8):1278–1280, 1993.

[13] T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverse in GF(� !) using

normal bases. Inform. and Comput., 78:171–177, 1988.

[14] T. Itoh and S. Tsujii. Structure of parallel multipliers for a class of fields GF(� !). Inform.

and Comput., 83:21–40, 1989.

[15] R. Lidl and H. Niederreiter. Finite Fields. Addison-Wesley Publishing Company, Reading,

MA, 1983.

[16] J. L. Massey and J. K. Omura. Computational method and apparatus for finite field arith-

metic. U.S. Patent No.4587627, 1984.

[17] R. Mullin, I. Onyszchuk, S. A. Vanstone, and R. Wilson. Optimal normal bases in GF - � � / .
Disc. Appl. Math., 22:149–161, 1988.

[18] I.M. Onyszchuk, R.C. Mullin, and S.A. Vanstone. Computational method and apparatus for

finite field multiplication. U.S. Patent No.4,745,568, 1988.

[19] J. H. Silverman. Fast multiplication in finite field GF - � � /
. In Ç. K. Koç and C. Paar, editors,

CHES’99, LNCS 1717, pages 122–134. Springer-Verlag, 1999.

25

[20] C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura, and I. S. Reed. VLSI

architectures for computing multiplications and inverses in GF - � ! / . IEEE Trans. Comput.,

34(8):709–717, 1985.

[21] A. Wassermann. Konstruktion von Normalbasen. Bayreuther Mathematische Schriften,

pages 155–164, 1990.

[22] J. K. Wolf. Low complexity finite field multiplication. Disc. Math., 106/107:497–502,

1992.

[23] H. Wu, M. A. Hasan, and I. F. Blake. Highly regular architectures for finite field computa-

tion using redundant basis. In Ç. K. Koç and C. Paar, editors, CHES’99, LNCS 1717, pages

269–279. Springer-Verlag, 1999.

26

