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Abstract

Based on Toeplitz matrix-vector products and coordinate transformation techniques, we present

a new scheme for subquadratic space complexity parallel multiplication in GF (2n) using the shifted

polynomial basis. Both the space complexity and the asymptotic gate delay of the proposed multiplier

are better than those of the best existing subquadratic space complexity parallel multipliers. For example,

with n being a power of 2, the space complexity is about 8% better, while the asymptotic gate delay

is about 33% better, respectively. Another advantage of theproposed matrix-vector product approach

is that it can also be used to design subquadratic space complexity polynomial, dual, weakly dual

and triangular basis parallel multipliers. To the best of our knowledge, this is the first time that sub-

quadratic space complexity parallel multipliers are proposed for dual, weakly dual and triangular bases.

A recursive design algorithm is also proposed for efficient construction of the proposed subquadratic

space complexity multipliers. This design algorithm can bemodified for the construction of most of the

subquadratic space complexity multipliers previously reported in the literature.
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I. INTRODUCTION

When the extended binary fieldGF (2n) is viewed as a vector space overGF (2), the elements

of the field are often represented with respect to a basis. Forthe purpose of efficient field

arithmetic, a number of bases have been proposed in the literature, for example, polynomial,

normal, dual, weakly dual, triangular and shifted polynomial bases. Between the two basic

field arithmetic operations, namely, addition and multiplication, it is easier to implement the

former using these representations. Multiplication is inherently complex and the existing bit

parallel multipliers may be classified into the following two categories on the basis of the space

complexity, which is often measured in terms of the number of2-input AND and XOR gates:

quadratic and subquadratic space complexity multipliers.Multipliers of [5]-[20] belong to the

former category and those of [21]-[32] the latter category.The subquadratic space complexity

multiplier provides a practical solution for large values of n due to its low space complexity.

To this end, the polynomial version of the integer Karatsubamultiplication algorithm [1] has

been widely used, e.g., [21]-[30]. These multipliers first perform a multiplication of two binary

polynomials, each of degreen − 1 or less, and then a modulo reduction operation using the

field generating irreducible polynomial. For practical applications,n may not be an even integer.

In such cases, in order to apply the Karatsuba algorithm someslight modifications are often

made to the inputs, e.g., padding zeroes. The asymptotic gate delay of the Karatsuba algorithm

is (3 log2 n − 1)TX + TA for n = 2i (i > 1), whereTA and TX are the delay of one 2-input

AND and XOR gates.

The Karatsuba algorithm based multiplier has a low asymptotic space complexity, but its gate

delay is three times more than that of the existing fast parallel multipliers [31]. In order to reduce

this delay, a hybrid structure has been developed in [25]. Although this method does not improve

the asymptotic gate delay, it is effective for some finite fields, e.g.,GF (2233). The Winograd

short convolution algorithm may be viewed as a generalization of the original Karatsuba-based

algorithm [2], [31] and [33]. Forn = 3i (i > 0), the algorithm improves the asymptotic gate

delay of the Karatsuba algorithm in [21], and results in an asymptotic gate delay of(4 log3 n−

1)TX + TA ≈ (2.52 log2 n − 1)TX + TA. But the asymptotic space complexity of this method is

slightly worse than that of the Karatsuba-based multiplier. The parallel multiplier presented in

[32] is based on the Chinese Remainder Theorem (CRT) and Montgomery’s algorithm. It allows
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the use of the extension field for which an irreducible trinomial or special pentanomial does not

exist.

In summary, all the above subquadratic space complexityGF (2n) parallel multipliers are

based on the improved polynomial multiplication algorithms, and will be referred to as the

polynomial-based multipliers in the following.

In this article, we follow a different approach using Toeplitz matrix-vector products and pro-

pose a new scheme for the subquadratic space complexityGF (2n) parallel multiplier. Our scheme

takes advantage of a shifted polynomial basis (SPB) and applies the coordinate transformation

technique of [3] and [4]. The end result is that not only the space complexity of the new multiplier

is lower than that of the existingpolynomial-based multipliers, e.g., [21] and [31], its asymptotic

gate delay is also better, in fact considerably better, thanthat of thesepolynomial-based designs.

Another advantage of the proposed matrix-vector product approach is that it can also be used to

design subquadratic space complexity parallel multipliers using polynomial, dual, weakly dual

or triangular basis.

Because of lack of apparent regularity, hardware implementations of subquadratic space com-

plexity parallel multipliers requires considerable efforts. For largen, efficient design of sub-

quadratic space complexity multipliers is often based on recursive application of the divide-

and-conquer technique, and is not straightforward. Therefore, a systematic design approach is

desirable. In this article, a recursive design algorithm isalso proposed for an efficient construction

of the proposed subquadratic space complexity multipliers. We have implemented the algorithm

using ANSI C. The program generates a set of explicit booleanstatements involving only

assignment, AND and XOR operations. Therefore, it essentially provides a lower level of

abstraction, e.g., the gate level description as in VHDL andVerilog. The proposed design

algorithm may also be modified for the construction the Karatsuba-based subquadratic space

complexity multipliers.

The remainder of this article is organized as follows: In Section II, we consider asymptotic

complexities for computing Toeplitz matrix-vector products based on two and three-way splits.

The proposed multipliers are presented in Section III. The recursive algorithm for the efficient

construction of the proposed subquadratic space complexity multiplier is introduced in Section

IV. Finally, concluding remarks are made in Section V.



4

II. A SYMPTOTIC COMPLEXITIES OFTOEPLITZ MATRIX -VECTOR PRODUCT

In this section, some basic noncommutative matrix-vector multiplication schemes and their

asymptotic space and gate delay complexities are presented. Elements of the matrix are inGF (2).

These schemes will be used to design the proposed parallel multiplier in the next section.

Definition 1: An n × n Toeplitz matrix is a matrix(mk,i), where0 ≤ i, k ≤ n − 1, with the

property thatmk,i = mk−1,i−1, where1 ≤ i, k ≤ n − 1.

Remark 1: An n × n Toeplitz matrix is determined by the2n − 1 elements of the first row

and the first column, and adding twon×n Toeplitz matrices requires2n−1 addition operations.

A. Two-way Split orn = 2i (i > 0)

Assume thatT is an n × n Toeplitz matrix andV an n × 1 column vector. MatrixT and

vectorV can be split as follows:

T =



 T1 T0

T2 T1



 andV =



 V0

V1



 ,

whereT0, T1 andT2 are (n/2) × (n/2) matrices and are individually in Toeplitz form, andV0

andV1 are (n/2) × 1 column vectors.

Now the following noncommutative formula can be used to compute the Toeplitz matrix-vector

productTV [2]:

TV =



 T1 T0

T2 T1







 V0

V1



 =



 P0 + P2

P1 + P2



 , (1)

whereP0 = (T0 + T1)V1, P1 = (T1 + T2)V0 andP2 = T1(V0 + V1). Please note that the addition

and subtraction are the same in fields of characteristic two.One important implication of (1) is

that the product of ann × n Toeplitz matrix and ann × 1 vector is primarily reduced tothree

products of matrix and vector of sizes(n/2) × (n/2) and (n/2) × 1.

Remark 2: A straightforward matrix addition to obtainT0 +T1 andT1 +T2 requires a total of

2(n− 1) XOR gates. Owing to the special structure of the Toeplitz matrix, some terms may be

reused in computingT0 +T1 andT1 +T2. Suppose that we have obtained the summationT0 +T1.

Then we only need to compute the first column ofT1 + T2 since the lastn/2 − 1 elements in

the first row ofT1 +T2 also appear in the first column ofT0 +T1. Therefore, a total of3n/2−1

XOR gates are required to computeT0 + T1 andT1 + T2.
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Let symbolsS and D stand for “Space” and “Delay”, respectively. We will useS⊗

b (n),

S⊕

b (n),D⊗

b (n) andD⊕

b (n) to denote the number of multiplication and addition operations, the

time delays introduced by multiplication and addition operations for the case ofn = bi (i > 0),

respectively. The following recurrence relations, which describe the algorithm complexities, can

be established when this formula is used recursively to compute TV in the case ofn = 2i.




S⊗

2 (2) = 3,

S⊗

2 (n) = 3S⊗

2 (n/2);





D⊗

2 (2) = 1,

D⊗

2 (n) = D⊗

2 (n/2);





S⊕

2 (2) = 5,

S⊕

2 (n) = 3S⊕

2 (n/2) + 3n − 1;
and





D⊕

2 (2) = 2,

D⊕

2 (n) = D⊕

2 (n/2) + 2.

In order to obtain the explicit complexities of the above recurrence relations, we need the

following lemmas. Proofs of these lemmas are simple and not given here.

Lemma 1:Let a, b and i be positive integers. Letn = bi, a 6= b, anda 6= 1. The solution to

the recurrence relations 



R1 = e,

Rn = aRn/b + cn + d,

is

Rn = aie +
bc (ai − bi)

a − b
+

d (ai − 1)

a − 1
.

Lemma 2:Let b andi be positive integers, andn = bi. The solution to the recurrence relations




R1 = 0,

Rn = Rn/b + d,

is Rn = di = dlogb n.

Now it is easy to obtain the following complexity results forcomputingTV in the case of

n = 2i (i > 0): 




S⊗

2 (n) = nlog2 3,

S⊕

2 (n) = 5.5nlog2 3 − 6n + 0.5,

D⊗

2 (n) = 1,

D⊕

2 (n) = 2 log2 n.
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B. Three-way Split orn = 3i (i > 0)

As stated earlier, assume thatT is ann × n Toeplitz matrix andV an n × 1 column vector.

Similar to the casen = 2i (i > 0), we may have a three-way split of matrixT and vectorV ,

and obtain the following noncommutative formula which computes the Toeplitz matrix-vector

productTV [2]:

TV =




T2 T1 T0

T3 T2 T1

T4 T3 T2







V0

V1

V2


 =




P0 + P3 + P4

P1 + P3 + P5

P2 + P4 + P5


 ,

whereTi (0 ≤ i ≤ 4) are (n/3) × (n/3) Toeplitz matrices,





P0 = (T0 + T1 + T2)V2,

P1 = (T1 + T2 + T3)V1,

P2 = (T2 + T3 + T4)V0,

(2)

and 




P3 = T1(V1 + V2),

P4 = T2(V0 + V2),

P5 = T3(V0 + V1).

Based on Remark 1, additions of matrices in (2) may require asmany as6(2n
3
−1) XOR gates.

However, by reusing repeated terms, the number of XOR gates can be considerably reduced. To

this effect, we state the following lemma.

Lemma 3:Matrix additions(T0 + T1 + T2), (T1 + T2 + T3) and (T2 + T3 + T4) in (2) can be

performed using a total of2n − 1 two-input XOR gates.

Proof: Let n = 3m and the first row and the first column of Toeplitz matrixT be

(t3m−1, t3m−2, · · · , t0) and (t3m−1, t3m, · · · , t6m−2)
T , respectively. There is a one-to-one corre-

spondence between Toeplitz matrixT and polynomial
∑6m−2

i=0 tix
i. Adding two n × n Toeplitz

matrices requires the same number of XOR gates as adding the corresponding polynomials

of degree2n − 2. Therefore, we have the following polynomials corresponding to Toeplitz

matricesT0, T1, T2, T3 and T4: q0 =
∑2m−2

i=0 tix
i, q1 =

∑2m−2
i=0 ti+mxi, q2 =

∑2m−2
i=0 ti+2mxi,
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q3 =
∑2m−2

i=0 ti+3mxi andq4 =
∑2m−2

i=0 ti+4mxi, respectively. Now we can write

q0 + q1 + q2 =

m−2∑

i=0

(ti + [tm+i + t2m+i])x
i + (tm−1 + [t2m−1 + t3m−1])x

m−1

+

2m−2∑

i=m

([ti + tm+i] + t2m+i)x
i; (3)

q1 + q2 + q3 =

m−2∑

i=0

{tm+i + t2m+i + t3m+i}x
i + ([t2m−1 + t3m−1] + t4m−1)x

m−1

+

2m−2∑

i=m

(tm+i + [t2m+i + t3m+i])x
i; (4)

q2 + q3 + q4 =

m−2∑

i=0

{t2m+i + t3m+i + t4m+i}x
i + (t3m−1 + t4m−1 + t5m−1)x

m−1

+

2m−2∑

i=m

([t2m+i + t3m+i] + t4m+i)x
i. (5)

In (3), (4) and (5), reuses of terms occur in the following fivecases:

1) term [t2m−1 + t3m−1] in q0 + q1 + q2 also appears inq1 + q2 + q3;

2) in q0+q1+q2, summations[tm+i + t2m+i] (0 ≤ i ≤ m−2) and[ti + tm+i] (m ≤ i ≤ 2m−2)

are the same;

3) summations{tm+i + t2m+i + t3m+i} (0 ≤ i ≤ m − 2) in q1 + q2 + q3 are the same as

summations(ti + tm+i + t2m+i) (m ≤ i ≤ 2m − 2) in q0 + q1 + q2;

4) summations{t2m+i + t3m+i + t4m+i} (0 ≤ i ≤ m − 2) in q2 + q3 + q4 are the same as

summations(tm+i + t2m+i + t3m+i) (m ≤ i ≤ 2m − 2) in q1 + q2 + q3;

5) summations[t2m+i + t3m+i] (m ≤ i ≤ 2m−2) appear in bothq1 + q2 + q3 andq2 + q3 + q4.

Thus,q0 + q1 + q2, q1 + q2 + q3 andq2 + q3 + q4 can be computed using2n− 1 XOR gates.

This lemma is useful in determining the space complexity of the matrix-vector productTV .

In order to determine the gate delay, we can consider any of the three summation terms on the

right hand side of (2), i.e.,

P2 + P4 + P5 = [(T2 + T3 + T4)V0] + [T2(V0 + V2) + T3(V0 + V1)] .

For n = 3, it is easy to see that computing the terms in the square brackets requires a gate

delay ofTA + 2TX . Therefore,P2 + P4 + P5 may be obtained with a gate delay ofTA + 3TX .



8

When this result and Lemma 3 are used recursively to computeTV , the following recurrence

relations, which describe the algorithm complexities, canbe established:




S⊗

3 (3) = 6,

S⊗

3 (n) = 6S⊗

3 (n/3);





D⊗

3 (3) = 1,

D⊗

3 (n) = D⊗

3 (n/3);





S⊕

3 (3) = 14,

S⊕

3 (n) = 6S⊕

3 (n/3) + 5n − 1;
and





D⊕

3 (3) = 3,

D⊕

3 (n) = D⊕

3 (n/3) + 3.

After solving these recurrence relations, we obtain the following complexities for computing

TV in the case ofn = 3i (i > 0):





S⊗

3 (n) = nlog3 6,

S⊕

3 (n) = 24
5
nlog3 6 − 5n + 1

5
,

D⊗

3 (n) = 1,

D⊕

3 (n) = 3 log3 n.

C. Dealing with Arbitraryn

In the previous two subsections, complexity results for Toeplitz matrix-vector product are

given for b = 2 and 3. Let us denote these two primes asp1 = 2 and p2 = 3. It is possible

to find corresponding complexities for other small primes, say p3 = 5, p4 = 7, · · · , pw, by

transposing [2, Th6, p.17] the polynomial multiplication algorithms in [35] or [26]. Since we

have complexity results for more than one prime, the following two questions arise while dealing

with an arbitraryn:

(1) If pipj|n, where1 ≤ i < j ≤ w, and complexity results for bothpi andpj are available,

how to choose a sequence of these to obtain a lower complexityscheme?

(2) If none of thepi’s (1 ≤ i ≤ w) are factors ofn, how can these complexity results be

applied?

We first discuss question (1). Let primespj andpi dividen andΩ(n, pj, pi) denote the Toeplitz

matrix-vector product algorithm of sizen that first applies the formula corresponding topi and

then that corresponding topj . As for the XOR gate complexity, we assume that the following

recurrence relations have been established forpi- andpj-way splits:
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S⊕

pi
(n) = hiS

⊕

pi
(n/pi) + kin + li,

S⊕

pj
(n) = hjS

⊕

pj
(n/pj) + kjn + lj.

Let n = pipjt (t > 0). Then the XOR gate complexities of algorithmsΩ(n, pj , pi) and

Ω(n, pi, pj) are described as follows:





S⊕

Ω(n,pj ,pi)
= hi[hjS

⊕(t) + kjpjt + lj ] + kin + li,

S⊕

Ω(n,pi,pj)
= hj[hiS

⊕(t) + kipit + li] + kjn + lj ,
(6)

whereS⊕(t) denotes the number of XOR gates required to compute the Toeplitz matrix-vector

product of sizet.

Similar to the above discussion on the XOR gate complexity, it can be easily shown that time

and AND gate complexities of algorithmsΩ(n, pj , pi) andΩ(n, pi, pj) are the same.

Since XOR gate complexities presented in (6) involves parameterspi and pj , one can make

a comparison of XOR gate complexities to select one ofΩ(n, pj , pi) and Ω(n, pi, pj). As an

example, we now consider the special case ofn = 6t. The XOR gate complexities of algorithms

Ω(t, 3, 2) and Ω(t, 2, 3) are 63t − 4 + 18 · S⊕(t) and 66t − 7 + 18 · S⊕(t), respectively. Since

both algorithmsΩ(n, 2, 3) andΩ(n, 3, 2) have the same AND gate complexities and gate delays,

algorithmΩ(n, 3, 2) is preferable.

With regard to question (2), where none of thepi’s (1 ≤ i ≤ w) divide n, one may choose

one of the following two solutions. The first one is to pad one zero at the end of the vector, and

to extend the Toeplitz matrix fromn × n to (n + 1) × (n + 1) by inserting zeroes at positions

(0, n) and (n, 0). Then apply the complexity results forp1 = 2, p2 = 3, etc. The second one

is to delete the first row and the last column of the Toeplitz matrix and the last element of the

vector, and then apply the complexity results forp1 = 2, p2 = 3, etc. The deleted elements are

processed separately.

III. N EW SUBQUADRATIC MULTIPLIERS

In this section, we will use the above scheme of Toeplitz matrix-vector product to design

subquadratic space complexity multipliers. For representing elements of the fieldGF (2n), we

first consider a shifted polynomial basis, which can be viewed as a generalization of the standard
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polynomial basis. Letx be a root off(u) andGF (2n) = GF (2)[u]/(f(u)). A shifted polynomial

basis (SPB) ofGF (2n) over GF (2) is defined as follows [20]:

Definition 2: Let v be an integer and the ordered setM = {xi|0 ≤ i ≤ n−1} be a polynomial

basis ofGF (2n) overGF (2). The ordered setx−vM := {xi−v|0 ≤ i ≤ n−1} is called a shifted

polynomial basis with respect toM .

A. Formulation Using SPB

Let X = (x−v, x−v+1, · · · , xn−v−1)T be the column vector of SPB basis elements,A =

(a0, a1, · · · , an−1)
T be the coordinate column vector of the field elementa = x−v

∑n−1
i=0 aix

i,

andB, C andD are defined similarly. For hardware implementation of aGF (2n) SPB parallel

multiplier, one method is to form a binaryn × n matrix Z, which depends onb andf(u), and

then perform a matrix-vector product. Namely, the productc = ab may be computed as follows

c =
n−1∑

i=0

aix
i−vb = (x−vb, · · · , x−1b, b, xb, · · · , xn−v−1b)A

= XT (Z0, · · · , Zn−1) A

= XT ZA, (7)

whereZi is the coordinate column vector ofxi−vb with respect to the SPB (0 ≤ i ≤ n− 1), and

Z is ann × n matrix.

From (7), we have the matrix-vector productC = ZA. However,Z is not generally a Toeplitz

matrix. Therefore the subquadratic scheme presented in theprevious section cannot be used

directly. In [3] and [4] coordinate transformation techniques were proposed. Using this technique,

one may first transformZ into a Toeplitz matrixT , i.e., T = UZ, whereU is the transform

matrix. Then use the subquadratic scheme to compute the Toeplitz matrix-vector product

D = TA. (8)

Finally, the resultC is obtained by

C = U−1D. (9)

In the following, we will apply this idea to an arbitrary irreducible trinomialf(u) = un+uk+1

(1 ≤ k ≤ n − 1) and a special type of pentanomialsf(u) = un + uk+1 + uk + uk−1 + 1

(1 < k < n − 1), and present exact expressions ofC for GF (2n) generated by these special
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types of irreducible polynomials. Please note that for all practical purposes, one may only need to

consider irreducible trinomials and pentanomials, since at least one of the two types of irreducible

polynomials is known to exist for every values ofn in the range1 < n < 10001. In fact,

there is no known value ofn for which an irreducible polynomial of weightw < 6 does

not exist [34]. Also note that NIST has recommended five finitefields of characteristic two

for the ECDSA (Elliptic Curve Digital Signature Algorithm)applications:GF (2163), GF (2233),

GF (2283), GF (2409) and GF (2571), but no irreducible trinomials exist for three degrees, viz.,

163, 283 and 571. For these three fields, we have found all pairs of (n, k) for which f(u) =

un + uk+1 + uk + uk−1 + 1 is irreducible [36]: (163, 67), (163, 69), (163, 71), (163, 92), (163,

94), (163, 96), (283, 24), (283, 133), (283, 150), (283, 259), (571, 104), (571, 230), (571, 341)

and (571, 467).

We assume that the value ofv is equal tok in the definition of SPB for irreducible trinomials

f(u) = un+uk+1 (1 ≤ k ≤ n−1) and irreducible pentanomialsf(u) = un+uk+1+uk+uk−1+1

(1 < k < n − 1).

B. New SPB Multipliers for General Irreducible Trinomials

For irreducible trinomials, we have formed a simple transformation matrix to be used with

SPB. This matrix is much simpler than what can be obtained using [3] and [4] and is given as

follows

U =



 0 I(n−v)×(n−v)

Iv×v 0



 , (10)

whereIv×v is thev × v identity matrix.

Lemma 4:Let f(u) = un + uv + 1 (1 ≤ v ≤ n − 1) be an irreducible trinomial, andZ and

U be matrices defined in (7) and (10). ThenT = UZ is a Toeplitz matrix.

Proof: Let g = xj−vb =
∑n−1

i=0 gix
i−v (0 ≤ j ≤ n − 2). Thus thej-th column ofZ in (7),

i.e.,Zj , is the column vector consisting of the SPB coordinates of elementg. Then columnZj+1

is the coordinate column vector of element

xg =

n−1∑

i=0

gix
i−v+1 =

n−2∑

i=0

gix
i−v+1 + gn−1(x

−v + 1)

= gn−1x
−v+

v−1∑

i=1

gi−1x
i−v + (gv−1 + gn−1)+

n−1∑

i=v+1

gi−1x
i−v.
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Let ĝ and x̂g be the two elements ofGF (2n) whose SPB coordinates form columnsj and

j + 1 of matrix T , respectively. Because of premultiplication ofU to Z, the lowern − v rows

(respectively, the upperv rows) of Z become the uppern − v rows (respectively, the lowerv

rows) of the resultant matrixT = UZ. Thus we can write

ĝ =

(
v−1∑

i=0

gix
i−v

)
xn−v+

(
n−1∑

i=v

gix
i−v

)
x−v

=

n−v−1∑

i=n−2v

g2v−n+ix
i+

n−2v−1∑

i=−v

g2v+ix
i,

and

x̂g =

[
gn−1x

−v+

v−1∑

i=1

gi−1x
i−v

]
xn−v+

[
(gv−1 + gn−1)+

n−1∑

i=v+1

gi−1x
i−v

]
x−v

= gn−1x
n−2v+

n−v−1∑

i=n−2v+1

g2v−n−1−ix
i+

n−2v−1∑

i=−v+1

g2v−1+ix
i + (gv−1 + gn−1)x

−v

=
n−v−1∑

i=n−2v+1

g2v−n−1−ix
i+

n−2v∑

i=−v+1

g2v−1+ix
i + (gv−1 + gn−1)x

−v.

Careful comparison shows that elements at(i, j) and (i + 1, j + 1) of matrix T are the same

for the case0 ≤ i, j ≤ n − 2. ThereforeT is a Toeplitz matrix.

Now we present an example to illustrate the above transformation. Let {xi−4|0 ≤ i ≤ 6} be

the SPB for the irreducible trinomialu7 + u4 + 1. MatricesZ andT are as follows:

Z =




b4 + b0 b3 b2 b1 b0 b6 b5

b5 + b1 b4 + b0 b3 b2 b1 b0 b6

b6 + b2 b5 + b1 b4 + b0 b3 b2 b1 b0

b0 + b3 b6 + b2 b5 + b1 b4 + b0 b3 b2 b1

b1 b0 b6 b5 b4 b3 + b6 b2 + b5

b2 b1 b0 b6 b5 b4 b3 + b6

b3 b2 b1 b0 b6 b5 b4




,
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and

T =




b1 b0 b6 b5 b4 b3 + b6 b2 + b5

b2 b1 b0 b6 b5 b4 b3 + b6

b3 b2 b1 b0 b6 b5 b4

b4 + b0 b3 b2 b1 b0 b6 b5

b5 + b1 b4 + b0 b3 b2 b1 b0 b6

b6 + b2 b5 + b1 b4 + b0 b3 b2 b1 b0

b0 + b3 b6 + b2 b5 + b1 b4 + b0 b3 b2 b1




.

It is clear that the transformation fromZ to T requires no logic gates, and the complexity to

form Z was presented in [20] as follows.

Gate delay = 1TX ;

XOR gates =





n − 1 2k 6= n,

n/2 2k = n.

For U as given in (10), it is clear thatC is obtained fromD = TA with no additional logic

gates.

Table I compares the asymptotic complexity of proposed constructions with those of the

existingpolynomial-based multipliers for the trinomialf(u) = un + uk + 1 (1 ≤ k < dn/2e),

wheren = 2t or 3t. Since no irreducible binary trinomial exists for the case8|n, we will assume

that the multiplication operation is performed in the ringGF (2)[u]/(f(u)), wheref(u) is a

trinomial andn = 2i (i > 2), so that the discussion of the asymptotic complexity is meaningful.

The parallel multiplier presented in [32] is based on the Chinese Remainder Theorem (CRT) and

Montgomery’s algorithm. It allows the use of extension fields for which an irreducible trinomial

or special pentanomial does not exist. Please note that the gate delay value given in [21] and

[31] is (3 log2 n)TX + TA for the casen = 2t. But oneTX gate delay may be saved for the case

n = 2, since the gate delay for computing expressions in the square brackets of

(a1x + a0)(b1x + b0) = a1b1x
2+([(a1 + a0)(b1 + b0)] + [a1b1 + a0b0])x + a0b0

is TA + TX . However, this does not improve the asymptotic gate delay since the overlapping

occurs whenn > 2. Similarly, oneTX gate delay may also be saved for the case ofn = 3. We

also note that for the casedn/2e < k < n, multipliers presented in [21] and [31] requires more
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XOR gates and delays than values listed in the table since more than two reduction operations

are performed [6].

TABLE I

COMPARISONS OF SOME SELECTED SUBQUADRATIC MULTIPLIERS FORn = bt

b Multipliers #AND #XOR Gate delay

CRT [32] 31

6
n1.6 + 4n1.4 + O(n1.2) 31

6
n1.6 + 7n1.4 + O(n1.2) O(n)TX + 4n0.4TA

2 Karastuba [21] nlog2 3
≈ n1.58 6nlog2 3

− 6n + k − 1 (3 log2 n + 1)TX + TA

Proposed nlog2 3 5.5nlog2 3
− 5n − 0.5 (2 log2 n + 1)TX + TA

CRT [32] 31

6
n1.6 + 4n1.4 + O(n1.2) 31

6
n1.6 + 7n1.4 + O(n1.2) O(n)TX + 4n0.4TA

3 Winograd [31] nlog3 6
≈ n1.63 80

15
nlog3 6

−
16

3
n + k − 1 (4 log3 n + 1)TX + TA

Proposed nlog3 6 72

15
nlog3 6

− 4n −
4

5
(3 log2 n + 1)TX + TA

C. New SPB Multipliers for Special Pentanomialsf(u) = un+uv+1+uv+uv−1+1 (1 < v < n−1)

For this special type of pentanomials, we transformZ into Toeplitz matrixT via the following

lemma.

Lemma 5:Let f(u) = un+uv+1+uv+uv−1+1 (1 < v < n−1) be an irreducible pentanomial,

andZ be the matrix defined in (7). Let matrix

U =



 0 I(n−v)×(n−v) + J(n−v)×(n−v)

Iv×v + JT
v×v 0



 ,

whereJv×v is av×v matrix with the single entry(0, v−1) = 1 and all remaining entries being

0. ThenT = UZ is a Toeplitz matrix.

Proof: Let g = xj−vb =
∑n−1

i=0 gix
i−v (0 ≤ j ≤ n − 2). Thus thej-th column ofZ in (7),

i.e.,Zj , is the column vector consisting of the SPB coordinates of elementg. Then columnZj+1

is the coordinate column vector of element

xg =

n−1∑

i=0

gix
i−v+1 =

n−2∑

i=0

gix
i−v+1 + gn−1(x

−v + x−1 + 1 + x).
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Let ĝ and x̂g be the two elements ofGF (2n) whose SPB coordinates form columnsj and

j + 1 of matrix T , respectively. Because of premultiplication ofU to Z, we can write

ĝ =

[
v−2∑

i=0

gix
i−v + (gv−1 + g0)x

−1

]
xn−v +

[
(gv + gn−1) +

n−1∑

i=v+1

gix
i−v

]
x−v

= (gv + gn−1)x
−v +

n−1∑

i=v+1

gix
i−2v +

v−2∑

i=0

gix
i+n−2v + (g0 + gv−1)x

n−v−1,

and

x̂g =

[
gn−1x

−v +

v−3∑

i=0

gix
i−v+1 + (gv−2 + gn−1 + gn−1)x

−1

]
xn−v

+

[
(gv−1 + gn−1 + gn−2) + (gv + gn−1)x +

n−2∑

i=v+1

gix
i−v+1

]
x−v

= (gv−1 + gn−2 + gn−1)x
−v + (gv + gn−1)x

−v+1+
n−1∑

i=v+1

gix
i−2v+1 +

v−2∑

i=0

gix
i+n−2v+1.

Careful comparison shows that elements at(i, j) and (i + 1, j + 1) of matrix T are the same

for the case0 ≤ i, j ≤ n − 2. ThereforeT is a Toeplitz matrix.

Row operations described in the above lemma are as follows:

(1) XOR row 0 to rowv − 1;

(2) XOR row n − 1 to row v;

(3) place the lowern − v rows on the top of upperv rows.

Therefore, instead of computingC = (c0, c1, · · · , cn−1)
T = Z(a0, a1, · · · , an−1)

T , we compute

D = (d0, d1, · · · , dn−1)
T = T (a0, a1, · · · , an−1)

T first, where

di =






cv + cn−1 i = 0,

ci+v 1 ≤ i ≤ n − v − 1,

ci+v−n n − v ≤ i ≤ n − 2,

cv−1 + c0 i = n − 1.

Then we obtain coordinates ofC from D as follows and it requires only 2 XOR gates.

ci =






dn−v+i 0 ≤ i ≤ v − 2,

dn−1 + dn−v i = v − 1,

dn−v−1 + d0 i = v,

di−v v + 1 ≤ i ≤ n − 1.
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For the case3 < v < (n − 3)/2, we summarize explicit expressions of the first row and the

first column of matrixT below. They are obtained by applying the above transformations on the

coordinate expressions ofZ in [36].

T0,i =






b2v−i 0 ≤ i ≤ v − 1,

bv + bn−1 i = v,

bv−1 + bn−2 + bn−1 i = v + 1,

b2v−i + bn+v−1−i+bn+v−i + bn+v+1−i v + 2 ≤ i ≤ 2v,

bn+v−1−i + bn+v−i + bn+v+1−i + bn+2v−i 2v + 1 ≤ i ≤ n − 2,

bv + bv+1 + bv+2 + b2v+1 + bn−1 i = n − 1,

Ti,0 =






b2v+i 0 ≤ i ≤ n − 2v − 1,

b2v−n+i n − 2v ≤ i ≤ n − v − 2,

b0 + bv−1 i = n − v − 1,

b0 + b1 + bv i = n − v,

b2v−n+i + bv−1−n+i + bv−n+i + bv+1−n+i n − v + 1 ≤ i ≤ n − 3,

b0 + bv−3 + bv−2 + bv−1 + b2v−2 i = n − 2,

b1 + bv−2 + bv−1 + bv + b2v−1 i = n − 1.

Remark 3: Since some signals may be reused, a total of3TX delays and no more than
⌊

5
2
n
⌋

2-input XOR gates are required to compute all elements of this Toeplitz matrix.

D. Use of Equally Spaced Pentanomials

By carefully choosing other types of irreducible pentanomials it is possible to reduce the space

and time complexities for generating the Toeplitz matrixT and for obtaining the final product

vector C. For example, consider a very special class of pentanomialsof the form f(u) =

u4s + u3s + u2s + us + 1 of degreen = 4s with s > 0 and v = 2s. Such ans-equally-spaced

pentanomial is irreducible ifs = 5i (i ≥ 0) [12]. These equally-spaced irreducible pentanomials

are not that abundant, however they can reduce the space and time complexities for obtainingT

andC. For example, applying the following transformation matrix, the use of such an equally-

spaced irreducible pentanomial of degreen requires0.75n XOR gates and1TX delay forT and
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0.5n XOR gates and1TX delay forC


 0 In
2
×

n
2

+ Kn
2
×

n
2

In
2
×

n
2

+ KT
n
2
×

n
2

0



 ,

where Kn
2
×

n
2

is a n
2
× n

2
matrix with its entry at(i, i + n

4
) = 1 for 0 ≤ i ≤ n

4
− 1 and all

remaining entries being 0.

Slightly different complexity results, namely0.75n XOR gates and1TX delay forT and0.5n

XOR gates and2TX delay forC, are obtained using the following transformation matrix.



0 0 In
4
×

n
4

0

In
4
×

n
4

0 0 In
4
×

n
4

0 In
4
×

n
4

0 0

In
4
×

n
4

0 In
4
×

n
4

0




.

E. Considerations for Other Bases

While there appears to be no scheme known to directly use the well known Karatsuba algorithm

to design the subquadratic space complexity dual, weakly dual and triangular basis parallel

multipliers [3], [4], [18] and [19], the proposed matrix-vector product approach can be used for

these bases. Namely, fora, b ∈ GF (2n) let a be represented with respect to a polynomial basis

andb be by the dual, weakly dual or triangular basis of the polynomial basis. Then the product

c = ab can be written as a matrix-vector productC = H(a0, a1, · · · , an−1)
T , whereH depends

on b and the field generating irreducible polynomial. Explicit expressions of entries ofH and

the complexity to computeH can be found in the above corresponding references. In these

cases,H is not a Toeplitz matrix, but a Hankel matrix, i.e., entries at (i, j) and(i−1, j +1) are

equal. We may first exchange columnsHi andHn−1−i for 0 ≤ i < n/2, and reverse the column

vector(a0, a1, · · · , an−1)
T . Then perform the Toeplitz matrix-vector product. An alternative is to

obtain the Hankel matrix-vector product formulae, which are similar to those in Section II and

have the same asymptotic complexities. It is noted that no coordinate transformation is required

for these parallel multipliers, which use the polynomial basis to represent inputa and use the

corresponding dual, weakly dual, or triangular basis to represent the other inputb and the product

c.
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IV. A LGORITHM FOR DESIGNING SUBQUADRATIC SPACE COMPLEXITY PARALLEL GF (2n)

MULTIPLIERS

In order to design application-specific circuits, different levels of abstraction may be used to

describe the hardware. Normally, a higher abstraction level provides more flexibility, and a lower

one provides a better performance.

Based on previous sections, we now present a recursive design algorithm for efficient construc-

tion of the proposed subquadratic space complexity multipliers. Toeplitz matrixT are constructed

first in the main program, then the recursive procedures are invoked, which output a set of explicit

boolean statements. These expressions involve onlyassignment, AND and XOR operations. For

example,

T [4][0][0][0] = T [3][2][0][0] ⊕ T [3][2][0][1] ⊕ T [3][2][0][2]; and

C[9] = C[9] ⊕ T [4][1][0][0] ⊗ V [4][1][0].

Therefore a lower level abstraction, e.g., the gate level inVerilog HDL, is provided for the

design of the multiplier. We note that the proposed design algorithm may also be modified for

the construction of the Karatsuba-based subquadratic space complexity multipliers.

Algorithm A1: Design algorithm for the subquadratic space complexity multipliers.

Input: Field generating irreducible polynomialf(u).

Output: Program for computingc = ab in GF (2n).

{

Clear the output vectorC;

Construct Toeplitz matrixT from B;

Construct vectorV from A;

Toeplitz mvp(n, 0, 0, 0);

Perform the coordinate transformation.

}

Subprogram:Toeplitz mvp(INT: fsize, flvl, fblk, pos)

{/*

fsize: The size of the input vector.

flvl: The calling level.

fblk: The block number of the submatrix.
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pos: The final position that this mvp will XOR to. */

INT: cblk = 0, clvl = flvl + 1;

IF (fsize = 1) THEN {

Print the sentence “C[pos] = C[pos]⊕

(M [flvl][fblk][0][0] ⊗ V [flvl][fblk][0]);”;

return;}

IF (0 = fsize mod 2) THEN{

// Print sentences for computingP0

Print the sentence for computing each entry of the
fsize

2
× fsize

2
submatrixT1 + T0, which looks like

“T [clvl][cblk][i][j] = T [flvl][fblk][i][j]⊕

T [flvl][fblk][i][j + fsize/2];”,

where0 ≤ i, j ≤ fsize/2;

Print the sentence for computing each entry of the
fsize

2
× 1 subvectorV1, which looks like

“V [clvl][cblk][i] = V [flvl][fblk][i + fsize/2];”,

where0 ≤ i ≤ fsize/2;

Toeplitz mvp(fsize/2, clvl, cblk, pos);

cblk++;

// End of computingP0

// Print sentences for computingP1

Print the sentence for computing each entry of the
fsize

2
× fsize

2
submatrixT1 + T2;

Print the sentence for computing each entry of the
fsize

2
× 1 subvectorV0;

Toeplitz mvp(fsize/2, clvl, cblk, pos + fsize/2);

cblk++;

// End of computingP1

// Print sentences for computingP2

Print the sentence for computing each entry of the
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fsize
2

× fsize
2

submatrixT1;

Print the sentence for computing each entry of the
fsize

2
× 1 subvectorV0 + V1;

Print sentences for operations

“PUSH vectorP0 on the stack”;

Print sentences for operations “Set vectorP0 to 0”;

Toeplitz mvp(fsize/2, clvl, cblk, pos);

cblk++;

Print sentences for operations “XORP2 to P1 andP0”;

// Please note that vectorP0 is on the stack,

// and vectorP2 is in the position ofP0.;

Print sentences for operations

“POP modified vectorP0 from the stack”;

// End of computingP2

} ELSE IF (0 = fsize mod 3) THEN{

// Sentences for3|n are similar to those for2|n. Omitted.

} ELSE {// Padding

Print sentences for padding zeroes after the last elements

of matrix T ’s first row and first column, respectively;

Print the sentence for padding a zero after the last element

of vectorV ;

Print the sentence “PUSH(C[pos + fsize]);”;

Toeplitz mvp(fsize + 1, f lvl, fblk, pos);

Print the sentence “POP(C[pos + fsize]);”;

}

}

V. CONCLUSIONS

A new scheme for the subquadratic space complexity parallelmultiplier has been presented.

Both the space complexity and the asymptotic gate delay of the proposed multiplier are lower

than those of the best existing subquadratic space complexity parallel multipliers. For practical
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applications, the hybrid structure developed in [25] may also be modified to reduce the gate

delay of the proposed multipliers at the cost of a slight increase in the space complexity.

A recursive design algorithm has also been proposed for efficient construction of the pro-

posed subquadratic space complexity multipliers. It may bemodified for the construction of the

Karatsuba-based subquadratic space complexity multipliers.

We note that although the proposed matrix-vector product approach may be used to design the

subquadratic space complexity polynomial, shifted polynomial, dual, weakly dual and triangular

basis parallel multipliers, the gate delay of the SPB multiplier is always equal to or lower

than those of other multipliers. For example, if we considerthe irreducible trinomialf(u) =

un + un−1 + 1, then generating matrixT requires2TX gate delays for the SPB, but at least

(log2 n)TX for another bases.

Finally, although the work presented here are primarily forhardware implementations, our

Toeplitz matrix-vector product based approach can also be applied to software implementation

using general purpose processors [37].
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