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Abstract

Based on Toeplitz matrix-vector products and coordinaediormation techniques, we present
a new scheme for subquadratic space complexity paralleliptichtion in GF(2") using the shifted
polynomial basis. Both the space complexity and the asytepgate delay of the proposed multiplier
are better than those of the best existing subquadratiesmanplexity parallel multipliers. For example,
with n being a power of 2, the space complexity is about 8% betteilevihe asymptotic gate delay
is about 33% better, respectively. Another advantage ofptioposed matrix-vector product approach
is that it can also be used to design subquadratic space erityppolynomial, dual, weakly dual
and triangular basis parallel multipliers. To the best of kmowledge, this is the first time that sub-
quadratic space complexity parallel multipliers are psgibfor dual, weakly dual and triangular bases.
A recursive design algorithm is also proposed for efficiemnstruction of the proposed subquadratic
space complexity multipliers. This design algorithm camimified for the construction of most of the

subquadratic space complexity multipliers previouslyorégd in the literature.
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. INTRODUCTION

When the extended binary fieldF'(2") is viewed as a vector space ov&rf'(2), the elements
of the field are often represented with respect to a basis.tli@rpurpose of efficient field
arithmetic, a number of bases have been proposed in thatiite; for example, polynomial,
normal, dual, weakly dual, triangular and shifted polynaihbases. Between the two basic
field arithmetic operations, namely, addition and mulggtion, it is easier to implement the
former using these representations. Multiplication isemgmtly complex and the existing bit
parallel multipliers may be classified into the followingdwategories on the basis of the space
complexity, which is often measured in terms of the numbeR-@iput AND and XOR gates:
guadratic and subquadratic space complexity multipligtgltipliers of [5]-[20] belong to the
former category and those of [21]-[32] the latter categditye subquadratic space complexity
multiplier provides a practical solution for large valuesrodue to its low space complexity.
To this end, the polynomial version of the integer Karatsohndtiplication algorithm [1] has
been widely used, e.g., [21]-[30]. These multipliers firetfprm a multiplication of two binary
polynomials, each of degree — 1 or less, and then a modulo reduction operation using the
field generating irreducible polynomial. For practical iggtions,n may not be an even integer.
In such cases, in order to apply the Karatsuba algorithm sslight modifications are often
made to the inputs, e.g., padding zeroes. The asymptocdghy of the Karatsuba algorithm
is (3logyn — 1)Tx + T4 for n = 2¢ (i > 1), whereT, and Tx are the delay of one 2-input
AND and XOR gates.

The Karatsuba algorithm based multiplier has a low asyngpsmace complexity, but its gate
delay is three times more than that of the existing fast fenalultipliers [31]. In order to reduce
this delay, a hybrid structure has been developed in [25h®igh this method does not improve
the asymptotic gate delay, it is effective for some finitedfiele.g.,G'F'(223%). The Winograd
short convolution algorithm may be viewed as a generabpatif the original Karatsuba-based
algorithm [2], [31] and [33]. Fom = 3’ (i > 0), the algorithm improves the asymptotic gate
delay of the Karatsuba algorithm in [21], and results in aymgsotic gate delay of4 log; n —
D)Tx 4+ T4 =~ (2.52logyn — 1)Tx + Ta. But the asymptotic space complexity of this method is
slightly worse than that of the Karatsuba-based multipliére parallel multiplier presented in

[32] is based on the Chinese Remainder Theorem (CRT) andddorery’s algorithm. It allows



the use of the extension field for which an irreducible trimaror special pentanomial does not
exist.

In summary, all the above subquadratic space compleXity(2") parallel multipliers are
based on the improved polynomial multiplication algorigjnand will be referred to as the
polynomial-based multipliers in the following.

In this article, we follow a different approach using To&plinatrix-vector products and pro-
pose a new scheme for the subquadratic space compl@kit") parallel multiplier. Our scheme
takes advantage of a shifted polynomial basis (SPB) andeapitie coordinate transformation
technique of [3] and [4]. The end result is that not only thacgpcomplexity of the new multiplier
is lower than that of the existingplynomial-based multipliers, e.g., [21] and [31], its asymptotic
gate delay is also better, in fact considerably better, thanof theseolynomial-based designs.
Another advantage of the proposed matrix-vector produgtageh is that it can also be used to
design subquadratic space complexity parallel multipliesing polynomial, dual, weakly dual
or triangular basis.

Because of lack of apparent regularity, hardware impleatents of subquadratic space com-
plexity parallel multipliers requires considerable efforFor largen, efficient design of sub-
guadratic space complexity multipliers is often based aunsgve application of the divide-
and-conquer technique, and is not straightforward. Tleeefa systematic design approach is
desirable. In this article, a recursive design algorithias$® proposed for an efficient construction
of the proposed subquadratic space complexity multipldfs have implemented the algorithm
using ANSI C. The program generates a set of explicit bools@tements involving only
assignment, AND and XOR operations. Therefore, it essentially proside lower level of
abstraction, e.g., the gate level description as in VHDL &fdilog. The proposed design
algorithm may also be modified for the construction the Karaa-based subquadratic space
complexity multipliers.

The remainder of this article is organized as follows: Int®ecll, we consider asymptotic
complexities for computing Toeplitz matrix-vector protiludased on two and three-way splits.
The proposed multipliers are presented in Section Ill. Téaursive algorithm for the efficient
construction of the proposed subquadratic space complexittiplier is introduced in Section

IV. Finally, concluding remarks are made in Section V.



[1. ASYMPTOTIC COMPLEXITIES OF TOEPLITZ MATRIX-VECTOR PRODUCT

In this section, some basic noncommutative matrix-vectattiplication schemes and their
asymptotic space and gate delay complexities are presdtimdents of the matrix are iIRF'(2).
These schemes will be used to design the proposed parallgpien in the next section.

Definition 1: An n x n Toeplitz matrix is a matrixmy;), where0 < i,k < n — 1, with the
property thatmy, ; = my_1,-1, wherel <i k <n—1.

Remark 1. An n x n Toeplitz matrix is determined by th#n — 1 elements of the first row

and the first column, and adding twox n Toeplitz matrices requirex: — 1 addition operations.

A. Two-way Split om = 2¢ (i > 0)
Assume thatl" is ann x n Toeplitz matrix and” an n x 1 column vector. MatrixI" and

vector V' can be split as follows:

whereTy, Ty andT; are (n/2) x (n/2) matrices and are individually in Toeplitz form, ang
andV; are(n/2) x 1 column vectors.
Now the following noncommutative formula can be used to cotaphe Toeplitz matrix-vector

productTV [2]:

T, T \% Py + P,
TV — 1 1o o) _ 0 2 7 (1)
T, Ty Vi P+ P

where Py = (To + 1)W1, P = (T1 + T,)Vy and P, = T1(Vy + V4). Please note that the addition
and subtraction are the same in fields of characteristic @ important implication of (1) is
that the product of am x n Toeplitz matrix and am x 1 vector is primarily reduced tohree
products of matrix and vector of sizés/2) x (n/2) and (n/2) x 1.

Remark 2: A straightforward matrix addition to obtaify + 77 andT} + 15 requires a total of
2(n — 1) XOR gates. Owing to the special structure of the Toeplitzrinasome terms may be
reused in computind;, + 77 and7; +75. Suppose that we have obtained the summatipAT;.
Then we only need to compute the first columnigf+ 75 since the last:/2 — 1 elements in
the first row of 7 + 75 also appear in the first column @f + 7;. Therefore, a total 08n/2 — 1
XOR gates are required to computg+ 77 and T} + Ts.



Let symbolsS and D stand for “Space” and “Delay”, respectively. We will us¥’(n),
S7(n), D¢ (n) and Dy (n) to denote the number of multiplication and addition operaj the
time delays introduced by multiplication and addition @ggems for the case of = * (i > 0),
respectively. The following recurrence relations, whi@sctibe the algorithm complexities, can

be established when this formula is used recursively to ecaelpV in the case of = 2'.

S§(2> =3, D?(z) =1,

S5’ (n) = 385 (n/2); Dy (n) = Dy (n/2);
SSB(2> =9, and DSB(Q) =2,

SSB(H) = 3859(71/2) + 3n — 1; D?(n) = D?(n/Q) + 2.

In order to obtain the explicit complexities of the aboveureence relations, we need the
following lemmas. Proofs of these lemmas are simple and ivenghere.
Lemma 1:Let a,b and: be positive integers. Let = %, a # b, anda # 1. The solution to

the recurrence relations
Rl = e,

R, =aR,;, +cn +d,

be (a® — b') N d(a’—1)
a—2>b Ca—1
Lemma 2:Let b and: be positive integers, and = b*. The solution to the recurrence relations

R, =ad'e +

Ry =0,
R, = R, +d,
iS R,, = di = dlog, n.
Now it is easy to obtain the following complexity results foomputing7'V' in the case of
n=2" (i1>0):

85 n) = ns?,
S5 (n) = 5.5n'°%23 — 6n + 0.5,
D(n) =1,

| DY (n) =2logyn



B. Three-way Split on = 3" (i > 0)

As stated earlier, assume thHatis ann x n Toeplitz matrix andl” ann x 1 column vector.
Similar to the case:r = 2° ( > 0), we may have a three-way split of matrix and vectorV/,
and obtain the following nhoncommutative formula which cargs the Toeplitz matrix-vector
productTV [2]:

TV=\|T3 Ty Th Vi =| A+P+F |,
Ty 15 T Vo P+ Py + Ps

whereT; (0 <i < 4) are(n/3) x (n/3) Toeplitz matrices,

Py=(To + T1 + Ty) Vs,
Py = (Ty + Ty + Ty) V1, (2)
Py = (Ty + T3 + Ty) Vo,
and
Py =Ty (Vi + Va),
Py=Ty(Vo + Vo),
P =T;(Vo + V1).

Based on Remark 1, additions of matrices in (2) may requiraasy as6(%" —1) XOR gates.
However, by reusing repeated terms, the number of XOR gated®e considerably reduced. To
this effect, we state the following lemma.

Lemma 3:Matrix additions(7y + 77 + T3), (11 + T> + T3) and (T + T3 + T}) in (2) can be
performed using a total dfn — 1 two-input XOR gates.

Proof: Let n = 3m and the first row and the first column of Toeplitz matfix be
(t3m—1,t3m—2, "+ , o) and (tzm_1,t3m, - ,tem_2)", respectively. There is a one-to-one corre-
spondence between Toeplitz matfixand polynomiaIZ?;’”LO‘2 t;z'. Adding twon x n Toeplitz
matrices requires the same number of XOR gates as addingotinesponding polynomials
of degree2n — 2. Therefore, we have the following polynomials correspagdio Toeplitz

matricesTy, Ty, To, Ts and Ty g = Yo * tia®, o = 2000 2 b, g0 = 2oy tivom’,



@3 =3 P tiamat and gy = S0 ¢ umat, respectively. Now we can write
m—2

Go+q1+q = Z (ts + [tmai + tomed)) T + (o1 + [tom—1 + tzm_1]) 2™

+ Z ([ti + tmi] + tomei)’; (3)

i=m

m—2

G+ q+q = Z{tm—i-i + tomei + tamai 0 + ([tam—1 + tam_1] + tam_1) 2™
i=0
2m—2

+ Z (tmti + [tom+i + t3m+i])$i; (4)

=m

m—2

@+q+qg = Z{t2m+i + t3mii + tamei 1T+ (B3me1 + tamo1 + tsm1)T™
=0
2m—2

+ Z ([tomeri + tamsi] + tamsi) 2. (5)

In (3), (4) and (5), reuses of terms occur in the following fozeses:

1) term [to,, 1 + t3m—1] IN qo + ¢1 + g2 @lso appears ig; + ¢z + gs;

2) in go+q1+¢q2, summationst,,,; + tomii) (0 <7 <m—2) and[t; + t,4] (m <i < 2m—2)
are the same;

3) summations{t,,+; + tamsi + tamei} (0 < i < m —2)in ¢ + ¢2 + g3 are the same as
summationst; + typi + tome:) (m <i <2m —2)in g+ q¢1 + ¢o;

4) summations{ta,, i + tamyi + tamri} (0 < @ < m —2)in ¢ + g3 + g4 are the same as
summationst,,+; + tomri + tamei) (m <i<2m —2)in ¢ + ¢ + gs;

5) summationsta,, i + tam+i] (m <i < 2m—2) appear in bothy; + ¢ + ¢35 andgs + g3 + ¢a.

Thus,qo + ¢1 + ¢2, 1 + ¢2 + g3 and g» + g3 + ¢4 can be computed usirigp — 1 XOR gates. [

This lemma is useful in determining the space complexityhef natrix-vector product’V'.
In order to determine the gate delay, we can consider anyeotitee summation terms on the
right hand side of (2), i.e.,

Py+ P+ Py = [(Th + T5 + Ty)Vo| + [To(Vo + Vo) + T5(Vo + V1) .

Forn = 3, it is easy to see that computing the terms in the square éisckquires a gate

delay of Ty + 2Tx. Therefore,P, + P, + Ps may be obtained with a gate delay 6f + 37.



When this result and Lemma 3 are used recursively to compilitethe following recurrence

relations, which describe the algorithm complexities, banestablished:

S?(?(S) =6, D?(B) =1,

S5 (n) = 685 (n/3); D5 (n) = D5 (n/3);
52(3) = 14, g ] PEG =3,

S5 (n) =685 (n/3) + 5n — 1; DS (n) = DS (n/3) + 3.

After solving these recurrence relations, we obtain thieowahg complexities for computing
TV in the case ofv = 3" (i > 0):

4

5 n) = s
S?(n) = %nlogﬂ’ 5n + é,
DY (n) =1,

| DY (n) = 3loggn

C. Dealing with Arbitraryn

In the previous two subsections, complexity results for plite matrix-vector product are
given forb = 2 and 3. Let us denote these two primespas= 2 andp, = 3. It is possible
to find corresponding complexities for other small primesy 85 = 5,p4 = 7, , pw, DY
transposing [2, Th6, p.17] the polynomial multiplicatioly@ithms in [35] or [26]. Since we
have complexity results for more than one prime, the foltaywo questions arise while dealing
with an arbitraryn:

(1) If pipj|n, wherel < i < j < w, and complexity results for both, andp; are available,
how to choose a sequence of these to obtain a lower complksctitgme?

(2) If none of thep;’s (1 < i < w) are factors ofn, how can these complexity results be
applied?

We first discuss question (1). Let primgsandp; divide n andQ2(n, p,, p;) denote the Toeplitz
matrix-vector product algorithm of size that first applies the formula correspondingptoand
then that corresponding to,. As for the XOR gate complexity, we assume that the following

recurrence relations have been establishegfoandp;-way splits:



3;%(") = hz‘SfE- (n/p:i) + kin + 1,
Sy (n) = h;S, (n/pj) + kin + 1.
Let n = p;p;t (¢t > 0). Then the XOR gate complexities of algorithrti¥n, p,,p;) and

Q(n, p;, p;) are described as follows:

) = hi [h]S@(t) + k‘jpjt + l]] + km + li,
) = hj [h28®(t) + /{Zipit —+ ll] + k:jn + lj,

(6)
7,PisDj
whereS®(t) denotes the number of XOR gates required to compute the iToephtrix-vector
product of sizef.

Similar to the above discussion on the XOR gate complexitgamn be easily shown that time
and AND gate complexities of algorithn§®(n, p;, p;) and2(n, p;, p;) are the same.

Since XOR gate complexities presented in (6) involves patarap; andp,;, one can make
a comparison of XOR gate complexities to select one20t, p;, p;) and Q(n, p;, p;). As an
example, we now consider the special case ef 6t. The XOR gate complexities of algorithms
0(t,3,2) andQ(¢,2,3) are 63t — 4 + 18 - S¥(¢) and 66t — 7 + 18 - S¥(¢), respectively. Since
both algorithmg2(n, 2, 3) and{2(n, 3, 2) have the same AND gate complexities and gate delays,
algorithm(2(n, 3, 2) is preferable.

With regard to question (2), where none of thés (1 < i < w) divide n, one may choose
one of the following two solutions. The first one is to pad oreozat the end of the vector, and
to extend the Toeplitz matrix from x n to (n + 1) x (n + 1) by inserting zeroes at positions
(0,n) and (n,0). Then apply the complexity results fgf = 2, p, = 3, etc. The second one
is to delete the first row and the last column of the Toeplitzrimand the last element of the
vector, and then apply the complexity results for= 2, p, = 3, etc. The deleted elements are

processed separately.

[11. NEW SUBQUADRATIC MULTIPLIERS

In this section, we will use the above scheme of Toeplitz iatector product to design
subquadratic space complexity multipliers. For repréagnélements of the field7F'(2"), we

first consider a shifted polynomial basis, which can be viba® a generalization of the standard



10

polynomial basis. Let: be a root off (u) andGF(2") = GF(2)[u]/(f(u)). A shifted polynomial
basis (SPB) of7F'(2") over GF(2) is defined as follows [20]:

Definition 2: Letv be an integer and the ordered 8ét= {z'|0 < i < n—1} be a polynomial
basis of GF'(2") over GF(2). The ordered set "M := {2'*|0 <i < n—1} is called a shifted

polynomial basis with respect to/.

A. Formulation Using SPB

Let X = (z7v,z7* ... 2" *~1)T be the column vector of SPB basis elemems,=
(ap, a1, ,a,_1)" be the coordinate column vector of the field element z= 2?2—01 a; T,
and B, C and D are defined similarly. For hardware implementation @i &(2") SPB parallel
multiplier, one method is to form a binary x n matrix Z, which depends oh and f(u), and

then perform a matrix-vector product. Namely, the produetab may be computed as follows
n—1
cC = Z aixi—vb — (.I—Ub, e ’x_lb’ b) ‘,l:.b7 . 7xn—v—1b)A
=0

= X" (Zo,+  Zn) A
= XTZA, (7)

whereZ; is the coordinate column vector of b with respect to the SPB)(< i < n — 1), and
Z is ann x n matrix.

From (7), we have the matrix-vector product= Z A. However,Z is not generally a Toeplitz
matrix. Therefore the subquadratic scheme presented irprévaous section cannot be used
directly. In [3] and [4] coordinate transformation techuég were proposed. Using this technique,
one may first transforn¥ into a Toeplitz matrix7, i.e., T = UZ, whereU is the transform

matrix. Then use the subquadratic scheme to compute thdifEoeyatrix-vector product
D =TA. (8)

Finally, the result”' is obtained by
C=U"'D. (9)

In the following, we will apply this idea to an arbitrary ideacible trinomialf (u) = u"+u*+1
(1 < k < n—1) and a special type of pentanomiaf$u) = u® + u 1 + uf + v + 1

(1 < kK <n—1), and present exact expressions(offor GF'(2") generated by these special
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types of irreducible polynomials. Please note that for edcfical purposes, one may only need to
consider irreducible trinomials and pentanomials, sirideast one of the two types of irreducible
polynomials is known to exist for every values ofin the rangel < n < 10001. In fact,
there is no known value of. for which an irreducible polynomial of weighty < 6 does
not exist [34]. Also note that NIST has recommended five fifikdds of characteristic two
for the ECDSA (Elliptic Curve Digital Signature Algorithng@pplications:G F'(2163), GF(2233),
GF(2%3%), GF(2'") and GF(2°™), but no irreducible trinomials exist for three degrees,,viz
163, 283 and 571. For these three fields, we have found a jpdifn, k) for which f(u) =
u™ + uFt + u* + uF~1 + 1 is irreducible [36]: (163, 67), (163, 69), (163, 71), (162)9(163,
94), (163, 96), (283, 24), (283, 133), (283, 150), (283, 28971, 104), (571, 230), (571, 341)
and (571, 467).

We assume that the value ofis equal tok in the definition of SPB for irreducible trinomials
f(u) = u"+uF+1 (1 < k < n—1) and irreducible pentanomiaf§u) = u™+u* ! +ub 4uF 141
I<k<n-=1).

B. New SPB Multipliers for General Irreducible Trinomials

For irreducible trinomials, we have formed a simple transfation matrix to be used with
SPB. This matrix is much simpler than what can be obtainedgud] and [4] and is given as

follows

0 In—v n—uv

Ly 0
where 1, is thev x v identity matrix.
Lemma 4:Let f(u) =u"+u"+ 1 (1 <v <n—1) be an irreducible trinomial, and and
U be matrices defined in (7) and (10). Thén= UZ is a Toeplitz matrix.
Proof: Letg = 2/7"b = Y7 giz"™¥ (0 < j < n — 2). Thus thej-th column of Z in (7),
i.e., Z;, is the column vector consisting of the SPB coordinates @hehtg. Then columnZ,.,

is the coordinate column vector of element

n—1 n—2
rg = Zgixi—v+1 _ Zgixi—v+1 +gn_1($_” + 1)
=0 =0

n—1

v—1
= o1z "+ > gia@ 4 (goo1 + o)+ Y iz’
=1 i=v+1
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Let g andzg be the two elements aff F'(2") whose SPB coordinates form columpsand
j + 1 of matrix T', respectively. Because of premultiplication @fto 7, the lowern — v rows
(respectively, the upper rows) of Z become the uppen — v rows (respectively, the lower

rows) of the resultant matriX’ = U~Z. Thus we can write

v—1 n—1
’g\ _ (Z gi:L'i_U> 4 (Z gixi—v> 27
1=0 =v
n—v—1 n—2v—1

= Z G2o-ntit' + Z Gootit,

i=n—2v i=—v

and

v—1
@ _ [gn_lx—v_'_ Zgi_lxi—v] VU4
=1

n—ov—1 n—2v—1

= goiz" P+ Z G20-n_1-iT'+ Z g2v—1+ixi+(gv—1 + gn-1)x”"’
i=n—2v+1 i=—v+1

n—1
(Go-1 + Gn1)+ D gi_lxi_”] x™"

i=v+1

n—v—1 n—2v

= Z G2v—n—1-iT'+ Z Gov—144T" + (Go1 + Gn_1)2 ™"

i=n—2v+1 i=—v+1
Careful comparison shows that elementsiaf) and (i + 1, j + 1) of matrix 7" are the same
for the caseé) < i,j7 < n — 2. ThereforeT is a Toeplitz matrix. O]
Now we present an example to illustrate the above transfiomalet {z'~*|0 < i < 6} be

the SPB for the irreducible trinomial” + «* + 1. MatricesZ and T are as follows:

by + bo b3 bo by bo bg bs
bs + b1 by + b b3 by by bo be
bg + by bs 4+ by by + by bs by by bo
Z=| by+by bg+by bs+b by+by by by b, ,
b1 bo be bs by bs + bg by + b5
bo by bo bg bs by bs + bg

bs by by bo be bs by
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and

by bo Do bs by by+bg bs+bs

by by Do be bs by bs+ b
by by by bo b bs by
T=| byj+by b by by bo be bs
bs+b; bi+by b by by bo be
bs+bs bs+bi bi+by b by by bo
bo+bs bg+by bs+by bi+by by by by

It is clear that the transformation frot to 7" requires no logic gates, and the complexity to

form Z was presented in [20] as follows.
Gate delay = 17;

n—1 2k#n,
n/2 2k =n.

XOR gates =

For U as given in (10), it is clear that' is obtained fromD = T'A with no additional logic
gates.

Table | compares the asymptotic complexity of proposed tcoaons with those of the
existing polynomial-based multipliers for the trinomialf(u) = v +u* +1 (1 < k < [n/2]),
wheren = 2° or 3'. Since no irreducible binary trinomial exists for the ca&ge we will assume
that the multiplication operation is performed in the ri6g(2)[u]/(f(u)), where f(u) is a
trinomial andn = 2° (i > 2), so that the discussion of the asymptotic complexity is rimegal.
The parallel multiplier presented in [32] is based on thenébe Remainder Theorem (CRT) and
Montgomery’s algorithm. It allows the use of extension feefdr which an irreducible trinomial
or special pentanomial does not exist. Please note thatdtedglay value given in [21] and
[31] is (3log, n)Tx + T4 for the casen = 2'. But oneTx gate delay may be saved for the case

n = 2, since the gate delay for computing expressions in the sdouackets of
(CLl.T + ao)(bll’ + bo) = a1b1x2+([(a1 + ao)(b1 -+ bo)] -+ [Clel + CLQbo])JJ + CL(]bO

is Ty + Tx. However, this does not improve the asymptotic gate delagesthe overlapping
occurs whem > 2. Similarly, oneT’x gate delay may also be saved for the case ef 3. We

also note that for the cader/2| < k£ < n, multipliers presented in [21] and [31] requires more
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XOR gates and delays than values listed in the table since than two reduction operations
are performed [6].

TABLE |

COMPARISONS OF SOME SELECTED SUBQUADRATIC MULTIPLIERS FOR = b

b Multipliers #AND #XOR Gate delay
CRT [32] %nl'ﬁ +4n'* + 0(n*?) %nm + 7t +0m?) | O(n)Tx +4n°*Ty

2 | Karastuba [21]| n'°#2® ~ n!-5® 6n'°%23 —6n+k—1 (Blogom+ 1)T'x +Ta
Proposed n'osz 3 5.5n'82% — 5n — 0.5 (2logyn + 1)Tx + Ta
CRT [32] %nl'ﬁ +4n'* + 0(n*?) %nlﬁ + 7t +0m?) | O(n)Tx +4n°*Tx

3 | Winograd [31] | n!°83 6 & n!63 f—gnlo% 6_ 17671 +k—-1 (4logsn+ 1)Tx +Ta
Proposed nloss 6 Z—gnlogﬁ 6 4n — % (3logom+ 1)T'x +Ta

C. New SPB Multipliers for Special Pentanomigls:) = u"+u* 1 +u’+u’"1+1 (1 < v < n—1)

For this special type of pentanomials, we transfafrmto Toeplitz matrixI via the following
lemma.
Lemma 5:Let f(u) = u"+u* " +u’+u’"1+1 (1 < v < n—1) be an irreducible pentanomial,

and Z be the matrix defined in (7). Let matrix

0 I(n—v)x(n—v) + J(n—v)x(n—v)
Ly + J7, 0

VXU

U=

where J,«, is av x v matrix with the single entry0,v — 1) = 1 and all remaining entries being
0. ThenT = UZ is a Toeplitz matrix.

Proof: Letg = 2/~"b = Y7 giz"™" (0 < j < n — 2). Thus thej-th column of Z in (7),
i.e., Z;, is the column vector consisting of the SPB coordinates @hehtg. Then columnZ,.,

is the coordinate column vector of element

n—1 n—2
rg =Y g = g g (a2 + 1+ x).
=0 =0
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Let g andzg be the two elements aff F'(2") whose SPB coordinates form columpsand

j -+ 1 of matrix 7', respectively. Because of premultiplication @fto 27, we can write

g

n—1

(9o + gn-1) + Z gﬂi_U] z"
1

i=v+

v—2
Zgixi_” + (Go1 + go)x_1] " 4
i=0

v—2

n—1
= (o +gn1)r "+ Z x4 Z Gr T 4 (g + go_1)z" U,
i=v+1 i=0

v—3
Gnr2™" Y g™ 4 (gua + gnor + gn_l):c‘ll "
1=0

n—2
+ (gv—l + Gn-1 + gn_g) + (gv + gn—l)l’ + Z gixi—v—i-l] 77

i=v+1

n—1 v—2
(gv_l + Gns +gn_1)x_v + (QU +gn_1)$—v+1+ Z gixi—2v+1 + ZngCH"_%H-
i=v+1 i=0

Careful comparison shows that elementsiaf) and (i + 1, j + 1) of matrix 7" are the same

for the caseé) < i,j7 < n — 2. ThereforeT is a Toeplitz matrix. O

Row operations described in the above lemma are as follows:

(1) XOR row 0 to rowwv — 1;

(2) XOR rown — 1 to row v;

(3) place the lowern — v rows on the top of upper rows.

Therefore, instead of computig = (co,c1,- -+ ,cn_1)? = Z(ag, a1, ,a,_1)*, we compute

D= (d(], dy, - ,dn_l)T = T(CL(), ay, - ,an_l)T first, where

p

Cy + Cp1 7':07
Citv lgign—v—l,
di:
Citv—n n—vﬁzﬁn—?,
[ Co—1t+Co 1=n—1.

Then we obtain coordinates 6f from D as follows and it requires only 2 XOR gates.

4

dn_v+7; OSZSU—Q,
dp—1+ dp—y 7::1)_17

C; =
dn—v—l + dO 1= v,

di_y vil1<i<n-—1.
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For the case3 < v < (n — 3)/2, we summarize explicit expressions of the first row and the
first column of matrixXI” below. They are obtained by applying the above transfoonaton the

coordinate expressions ¢f in [36].

4

boy—i 0<i<v—1,
by, + b1 1=,
- byt +byo + by s i=v 1,
boy—i + brtv—1-iTbnyv—i + bntori— v+2 <1< 2,
brtv—1—i + bpgv—i + bpgog1—i + bngou—i 2v+1<i<n-—2,
[ v+ Opy1 + buga + b2pg1 + bna t=n-—1,

(Do 0<i<n-20-1,
boy—nti n—2v<i1<n—v-—2,
bo + by_1 i=n—v-—1,

Tio =14 by+ b + b, i=n—"u,
bov—nti + by—1—n+i + by—nti + bup1—n+i n—v+1<1<n-—3,
bo + by—3 + by + by_1 + bay_2 t=n—2,
by + by—2 + by—1 + by + b3y 1=n-—1.

\

Remark 3: Since some signals may be reused, a tota@76f delays and no more tha{rgnj

2-input XOR gates are required to compute all elements sf Theplitz matrix.

D. Use of Equally Spaced Pentanomials

By carefully choosing other types of irreducible pentarasit is possible to reduce the space
and time complexities for generating the Toeplitz maffixand for obtaining the final product
vector C'. For example, consider a very special class of pentanorofathe form f(u) =
u®® + u® + u® + v + 1 of degreen = 4s with s > 0 andv = 2s. Such ans-equally-spaced
pentanomial is irreducible if = 5 (i > 0) [12]. These equally-spaced irreducible pentanomials
are not that abundant, however they can reduce the spacamnddmplexities for obtaining’
and C. For example, applying the following transformation mgtthe use of such an equally-

spaced irreducible pentanomial of degreesquires).75n XOR gates andT'x delay for7 and
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0.5n XOR gates and7Tx delay forC

0 Taxg + Kaxz
. T
Inxs +K%X

n
2

where Ky is @ § x § matrix with its entry at(i,i + ) = 1 for 0 < i < 4 —1 and all

~

remaining entries being 0.
Slightly different complexity results, namely75n XOR gates andTx delay for7 and0.5n

XOR gates an®7'y delay forC, are obtained using the following transformation matrix.

Iy 00 Iy 0

E. Considerations for Other Bases

While there appears to be no scheme known to directly use¢ld&mown Karatsuba algorithm
to design the subquadratic space complexity dual, weakbl dand triangular basis parallel
multipliers [3], [4], [18] and [19], the proposed matrixater product approach can be used for
these bases. Namely, far b € GF(2") let a be represented with respect to a polynomial basis
andb be by the dual, weakly dual or triangular basis of the polymbinasis. Then the product
c = ab can be written as a matrix-vector produ¢t= H(ag,a,--- ,a,_1)", where H depends
on b and the field generating irreducible polynomial. Explicipeessions of entries off and
the complexity to computéd can be found in the above corresponding references. In these
cases/H is not a Toeplitz matrix, but a Hankel matrix, i.e., entriégiaj) and (i — 1,5+ 1) are
equal. We may first exchange columAs and H,,_;_; for 0 < i < n/2, and reverse the column
vector (ag, a1, - -+ ,a,_1). Then perform the Toeplitz matrix-vector product. An aitive is to
obtain the Hankel matrix-vector product formulae, whick ammilar to those in Section Il and
have the same asymptotic complexities. It is noted that modioate transformation is required
for these parallel multipliers, which use the polynomiasisao represent input and use the
corresponding dual, weakly dual, or triangular basis toeegnt the other inputand the product

C.
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IV. ALGORITHM FOR DESIGNING SUBQUADRATIC SPACE COMPLEXITY PARALLEL GF(2")

MULTIPLIERS

In order to design application-specific circuits, differéevels of abstraction may be used to
describe the hardware. Normally, a higher abstraction |enaides more flexibility, and a lower
one provides a better performance.

Based on previous sections, we now present a recursiverdaigjgrithm for efficient construc-
tion of the proposed subquadratic space complexity migtipl Toeplitz matrix/” are constructed
first in the main program, then the recursive proceduresnaaked, which output a set of explicit
boolean statements. These expressions involveostyynment, AND and XOR operations. For
example,

T14][0][0][0] = T[3][2][0}[0] @ T'[3][2][0][1] & T'[3][2][0][2]; and

C9] = C9] & T4][1][0][0] @ V[4][1][0].

Therefore a lower level abstraction, e.g., the gate levéfarilog HDL, is provided for the
design of the multiplier. We note that the proposed desigorghm may also be modified for

the construction of the Karatsuba-based subquadratiespamplexity multipliers.
Algorithm A1l: Design algorithm for the subquadratic space complexitytipligrs.
Input: Field generating irreducible polynomiglu).

Output: Program for computing = ab in GF(2").

{
Clear the output vectof’;
Construct Toeplitz matrix’ from B;
Construct vectoV from A;
Toeplitzmvp(n, 0, 0, 0);
Perform the coordinate transformation.
¥
Subprogram:Toeplitzmvp(INT: fsize, flvl, fblk, pos)
{

fsize: The size of the input vector.
flvl: The calling level.

fblk: The block number of the submatrix.



pos: The final position that this mvp will XOR to. */
INT: cblk =0, clvl = flvl + 1,
IF (fsize = 1) THEN {

Print the sentenceC'[pos] = C[pos]|®
(M{fIl][fOlK][0][0] © V[ fLol][fOLE][0]);7;

return;}

IF (0 = fsize mod 2) THEN

/I Print sentences for computing,

Print the sentence for computing each entry of the
Istze o Isz¢ submatrixT} + Ty, which looks like
“Tlclvl)[colk][i][j] = TLf i) folk][d][5]®
T[fIl[folk] [ + fsize/2],
where( < i,j < fsize/2;

Print the sentence for computing each entry of the
Isze 1 subvectorV;, which looks like
“Vielvl][cblk][i] = V[fIvl][fblk][i + fsize/2];",
where0 < i < fsize/2;

Toeplitzmvp(fsize/2, clvl, cblk, pos);

cblk++;

/I End of computingP,

/I Print sentences for computing

Print the sentence for computing each entry of the
stze o Isz submatrixT’ + T;

Print the sentence for computing each entry of the
Istz¢ » 1 subvectorVy;

Toeplitzmvp(fsize/2, clvl, cblk, pos + fsize/2);

cblk++,;

/l End of computingP;

/I Print sentences for computing,

Print the sentence for computing each entry of the

19
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Istze  Isize submatrix7y;
Print the sentence for computing each entry of the
Isze 1 subvectorVj + Vi;
Print sentences for operations
“PUSH vector P, on the stack”;
Print sentences for operations “Set veci@rto 07;
Toeplitzmvp(fsize/2, clvl, cblk, pos);
cblk++;
Print sentences for operations “XOR to P, and F,”;
/I Please note that vectdt, is on the stack,
/I and vectorP is in the position ofF.;
Print sentences for operations
“POP modified vector, from the stack”;
/I End of computingP,
} ELSE IF 0 = fsize mod 3) THEN
Il Sentences foB|n are similar to those fo2|n. Omitted.
} ELSE {// Padding
Print sentences for padding zeroes after the last elements
of matrix T"s first row and first column, respectively;
Print the sentence for padding a zero after the last element
of vectorV/;
Print the sentence “PUSH(pos + fsizel);”;
Toeplitzmvp(fsize + 1, flvl, fblk, pos);
Print the sentence “PO®(pos + fsize));”;

}
}

V. CONCLUSIONS

A new scheme for the subquadratic space complexity panalléfiplier has been presented.
Both the space complexity and the asymptotic gate delay efptioposed multiplier are lower

than those of the best existing subquadratic space conleaiallel multipliers. For practical
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applications, the hybrid structure developed in [25] magoadbe modified to reduce the gate
delay of the proposed multipliers at the cost of a slighteéase in the space complexity.

A recursive design algorithm has also been proposed foriggificonstruction of the pro-
posed subquadratic space complexity multipliers. It maynloglified for the construction of the
Karatsuba-based subquadratic space complexity mulsplie

We note that although the proposed matrix-vector produgtagch may be used to design the
subquadratic space complexity polynomial, shifted poigiad, dual, weakly dual and triangular
basis parallel multipliers, the gate delay of the SPB mlidtipis always equal to or lower
than those of other multipliers. For example, if we consither irreducible trinomialf (u) =
u™ + u""! + 1, then generating matrif’ requires27y gate delays for the SPB, but at least
(log, n)Tx for another bases.

Finally, although the work presented here are primarily Hardware implementations, our
Toeplitz matrix-vector product based approach can alsoppdiesl to software implementation

using general purpose processors [37].
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