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Abstract

Applications of signed digit representations of an integer include computer arith-

metic, cryptography, and digital signal processing. An integer of length n bits can have

several binary signed digit (BSD) representations and their number depends on its value

and varies with its length. In this paper, we present an algorithm that calculates the

exact number of BSD representations of an integer of a certain length. We formulate the

integer that has the maximum number of BSD representations among all integers of the

same length. We also present an algorithm to generate a random BSD representation for

an integer starting from the most significant end and its modified version which gener-

ates all possible BSD representations. We show how the number of BSD representations

of k increases as we prepend 0s to its binary representation.

1 Introduction

A binary signed digit representation of an integer k ∈ [0, 2n − 1] is a base-2 representation

denoted by (κn, κn−1, . . . , κ0)BSD where κi ∈ {−1, 0, 1}. We will call the κis signed bits, or sbits

for short, and -1 will be written as 1. An integer can have several BSD representations. For
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example, k = (9)10 can be written as (01001)BSD = (01011)BSD = (11001)BSD among other

possibilities. Among the possible BSD representations of an integer there are two unique

representations: one is conventional the binary representation where there are no 1s, and

the other is the non-adjacent form (NAF). The NAF of k is characterized by having no two

adjacent non-zero sbits, and hence, having the number of 0s about 2
3
n. This representation

was of particular importance in speeding up the scalar multiplication operation in elliptic-

curve cryptosystems [8, 12]. Especially that in those cryptosystems, the use of negative bits

does not incur any noticeable extra computations.

The NAF of an integer can be generated using different methods [8, 10, 12]. Recently,

algorithms that generate a random BSD representation of an integer have been proposed

[2, 5, 9]. Each of the latter algorithms is based on one of the former ones by inserting a

random decision in the algorithm iterations. The original purpose of the algorithms of [5, 9]

has been to provide protection against differential side-channel attacks by randomly changing

the BSD representation of the secret key of elliptic curve cryptosystems. Subsequent work

[4, 11] has however shown that randomly changing BSD representation of the secret key alone

is not sufficient.

In this paper, we first consider a number of relevant questions concerning random BSD

representations of an integer. These questions, which are not necessarily restricted to cryp-

tographic applications of BSD representations and can be fundamentally important from the

mathematical point of view, are: For an integer k ∈ [0, 2n − 1], what is the average number

of BSD representations that are of length n or n + 1 sbits and what is the exact number of

representations? For integers in this range, which one has the maximum number of represen-

tations? The answers to these questions are presented in Section 2. Then in Section 3, an

algorithm that calculates the exact number of representations of k in O(n) is presented.

In Section 4, we present an algorithm that generates a random BSD representation for an

integer k by scanning its bits starting from the most significant end in O(n). Also, we provide

modifications to this algorithm to obtain a BSD generation algorithm that can produce all
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BSD representations of an integer k in O(3⌊
n
2
⌋) in the worst case. The latter algorithm helps

us formulate the maximum number of BSD representations of an integer among all integers

of length n and prove that it grows exponentially with n. We also demonstrate the effect of

prepending 0s to k on the number of its BSD representations.

2 Number of Binary Signed Digit Representations

Considering the binary representation of k as one of its BSD representations, different BSD

representations for k can be obtained by replacing 01 with 11 and vice versa and by replacing

01 with 11 and vice versa [10, equations 8.4.4- and 8.4.5-]. For example if k = (11)10 is

represented in n = 5 bits, i.e., k = (01011)2, the different BSD representations for k are:

01011, 01111, 01101, 11011, 11111, 11101, 10111, 10101. The second representation can be

obtained from the first one by replacing the second occurrence of 01 with 11. The third

representation can then be obtained from the second one by replacing the 11 with 01, and so

forth. Those replacements are done exhaustively until all possible BSD representations for k

are obtained.

The binary representation of k, must include at least one 0 that precedes a 1, so that

starting from it we can obtain other BSD representations.

2.1 Useful Lemmas

In the following we present some lemmas related to the number of BSD representations of an

integer k. These lemmas will be used to derive the main results of this paper.

Let λ(k, n) be the number of BSD representations of k ∈ [0, 2n − 1] that are n sbits long.

Then the following lemmas hold.

Lemma 1

(i) λ(0, n) = 1,

(ii) λ(1, n) = n,
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(iii) λ(2i, n) = n− i.

Proof.

(i) This is obvious since in two’s complement representation, the value 0 is represented with

n consecutive zeros. Therefore, there exists no choices for alternative representations.

Let us assume that there is some other BSD representation for the integer k = 0 =

∑n−1

i=0 κi2
i where κ ∈ {1, 0, 1}. Then this representation must contain one or more

sbits of the value 1 or 1. For example, let us assume that there is a representation

where κj = 1 for some 0 ≤ j ≤ n − 1, then the summation of the remaining sbits

with their appropriate weights should be −2j. The largest absolute value that the sbits

(κj−1, . . . , κ0)2 can take is
∑j−1

i=0 2i = 2j − 1. The smallest absolute value that is greater

than 0 that the sbits (κn−1, . . . , κj+1)2 can take is 2j+1. The difference between these

two values is 2j+1 − 2j + 1 = 2j + 1. That is there is no possible assignment for the

remaining sbits resulting in a value of −2j.

(ii) The possible BSD representations for 1 in n sbits are 0n−11, 0n−211, 0n−3111, . . . , 11
n−1

.

Their total number is n.

This is true since, for any t ∈ [0, n]

2t −

t−1
∑

i=0

2i = 2t −
2t − 1

2− 1
= 1.

(iii) The possible BSD representations for 2 in n sbits are 0n−210, 0n−3110, 0n−41110, . . . ,

11
n−2

0. Note that these are the same representations for 1 when its binary representation

is (n− 1) bits long with an added 0 as the least significant sbit. Their total number is

n− 1.

That is,

λ(2, n) = λ(1, n− 1) = n− 1.

Hence,

λ(4, n) = λ(2, n− 1) = λ(1, n− 2) = n− 2.
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By induction,

λ(2i, n) = n− i. �

Lemma 2 For 2n−1 ≤ k ≤ 2n − 1,

λ(k, n) = λ(k − 2n−1, n− 1).

Proof. An integer k in this range would have the binary form (1, kn−2, . . . , k0)2 and its value

is 2n−1 + d, where d = (kn−2 . . . k0)2, and is (n− 1) bits long. The BSD representations for d

in n− 1 sbits are of the form (κn−2, . . . κ0)BSD with κn−2 6= 1, otherwise, d would be negative.

The BSD representations of k are then of the form (1, κn−2, . . . , κ0)BSD. The two most signif-

icant sbits are either 10 or 11. In both cases, no new BSD representations can be generated.

Thus, k will have the same BSD representations as for d with an added 1 as the most significant

sbit. �

Lemma 3 For k even,

λ(k, n) = λ(
k

2
, n− 1).

Proof. In this case, the integer k is of the form (kn−1 . . . k1 0)2 = 2d where d =

(kn−1 . . . k1)2, and is (n − 1) bits long. The BSD representations for d in n − 1 sbits

are of the form (κn−1, . . . , κ1)BSD. When d is multiplied by 2 to obtain k, it is shifted left by

one and a 0 is added to the least significant position. The same is done to each of its BSD

representations. In all of them, the least two significant sbits will be either 10, 00 or 10. In all

three cases, no new BSD representations can be generated. Thus, k will have the same BSD

representations as for d with an added 0 as the least significant sbit. �

Lemma 4 For k odd,

λ(k, n) = λ(k − 1, n) + λ(k + 1, n), (a)

or

λ(k, n) = λ

(

k − 1

2
, n− 1

)

+ λ

(

k + 1

2
, n− 1

)

. (b)
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Proof. There are two cases to consider.

Case 1: k ≡ 1 (mod 4), that is k ends with 01, k − 1 ends with 00 and k + 1 ends with 10.

From Lemma 3, the BSD representations for k + 1 in n sbits are the same as those for k+1
2

with a 0 added as the least significant sbit. If this 0 is replaced by a 1, those representations

will be possible representations for k. If we think we should start replacing the rightmost 11

with 01 to generate new representations, we will find out that all representations that end

with a 1 will be accounted for by considering those of k − 1.

Also from Lemma 3, the BSD representations for k − 1 in n sbits are the same as those for

k−1
4

in n − 2 sbits with 00 added as the least significant sbits. If the rightmost 0 is replaced

with a 1, those representations will be possible representations for k. If we think we should

start replacing the rightmost 01 with 11 to generate new representations, we will find out that

all representations that end with a 1 have been accounted for by considering those of k + 1 as

mentioned before.

Case 2: k ≡ 3 (mod 4), that is k ends with 11, k − 1 ends with 10 and k + 1 ends with 00.

The same argument holds as in case 1. The BSD representations of k − 1 can be possible

representations for k by replacing the least significant 0 with 1. Also the BSD representations

for k + 1 can be possible representations for k by replacing the least significant 0 with 1.

There are no other possible representations for k. This is obvious from the fact that

any BSD representation for k should have the rightmost sbit either 1 or 1, it can not be 0.

Otherwise, k ≡ 0 (mod 2) which is not the case since k is odd. So, if the rightmost 1 or 1 in

any representation of k is replaced with 0 then this will be one of the representations of the

even number preceding or following k respectively as shown in (a). Using Lemma 3, (b) is

obtained. �

2.2 Number of BSD Representations of Length n

Here we will investigate the total number of BSD representations for all integers in the range

[0, 2n − 1] that are n sbits long. We will denote that total number by σ(n). Table 1 gives an
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example of λ(k, n) and σ(n) for small n.

Table 1: λ(k, n) and σ(n) for small n.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 5 cont’d
k λ(k, n) k λ(k, n) k λ(k, n) k λ(k, n) k λ(k, n) k λ(k, n)
0 1 0 1 0 1 0 1 0 1 16 1
1 1 1 2 1 3 1 4 1 5 17 4

2 1 2 2 2 3 2 4 18 3
3 1 3 3 3 5 3 7 19 5

4 1 4 2 4 3 20 2
5 2 5 5 5 8 21 5
6 1 6 3 6 5 22 3
7 1 7 4 7 7 23 4

8 1 8 2 24 1
9 3 9 7 25 3
10 2 10 5 26 2
11 3 11 8 27 3
12 1 12 3 28 1
13 2 13 7 29 2
14 1 14 4 30 1
15 1 15 5 31 1

σ(n) = 2 σ(n) = 5 σ(n) = 14 σ(n) = 41 σ(n) = 122

We can intuitively find an expression for σ(n) as follows. In BSD system, the integers

k, represented in n sbits, would be in the range −2n < k < 2n. There are 3n different

combinations for k. We consider in this case non-negative integers k, i.e., 0 ≤ k < 2n. In

fact, −k has the same BSD representations as k with the 1s replaced with 1s and vice versa.

Thus, the total number of non-negative combinations is 3n+1
2

. We will now use the previous

lemmas to prove that
2n−1
∑

k=0

λ(k, n) = σ(n) =
3n + 1

2
.

Let

ε(n) =
2n−1−1
∑

k=1

λ(k, n). (1)

From Lemma 1(i) and Lemma 2, we have

σ(n) = σ(n− 1) + ε(n) + 1. (2)
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If we substitute for σ(n) recursively in this equation we obtain

σ(n) = σ(1) + ε(2) + · · ·+ ε(n) + n− 1. (3)

From Lemma 3 we have

2n−1−1
∑

k=2, k even

λ(k, n) =
2n−1−2
∑

k=2, k even

λ

(

k

2
, n− 1

)

=
2n−2−1
∑

i=1

λ(i, n− 1)

= ε(n− 1). (4)

From Lemma 4 we have

2n−1−1
∑

k=1, k odd

λ(k, n) =
2n−1−1
∑

k=1, k odd

(

λ

(

k − 1

2
, n− 1

)

+ λ

(

k + 1

2
, n− 1

))

=
2n−2−1
∑

i=0

λ(i, n− 1) +
2n−2

∑

i=1

λ(i, n− 1).

From Lemma 1(iii), λ(2n−1, n) = 1, and also from Lemma 1(i) we have

2n−1−1
∑

k=1, k odd

λ(k, n) = 2 + 2 ε(n− 1) (5)

where the last equality follows from (4). Substituting from (4) and (5) into (1), we have

ε(n) = ε(n− 1) + 2 + 2 ε(n− 1)

= 3 ε(n− 1) + 2. (6)

With recursive substitution for ε(n) and the fact that ε(1) = 0, we obtain

ε(n) = 3n−1ε(1) + 2 + 2 · 3 + 2 · 32 + · · ·+ 2 · 3n−2

= 2 ·
3n−1 − 1

3− 1

= 3n−1 − 1. (7)

Finally we use (7) and the fact that σ(1) = 2 to evaluate (3)

σ(n) = 2 + (3− 1) + · · ·+ (3n−1 − 1) + n− 1

= 2 + (n− 1)− (n− 1) + 3 ·
3n−1 − 1

3− 1

=
3n + 1

2
. (8)

8



2.3 Number of BSD Representations of Length n + 1

The NAF of an integer may be one sbit longer than its binary representation [10, 12]. As

mentioned before, the algorithms that generate a random BSD representation of an integer

are each based on a NAF-generating algorithm [2, 5]. Therefore, we are interested in knowing

the number of BSD representations of an n-bit integer k that are n + 1 sbits long. Moreover

for those integers that are in the range [2n−1, 2n−1], we will see the effect of having a 0 as the

most significant bit in their binary representation on the number of their BSD representations

and on the distribution of the number of representations among all n-bit integers as opposed

to the previous section. The effect of prepending more 0s to the binary representation of

integers on the number of their BSD representation is studied in Section 4.3.

Lemma 5 Let δ(k, n) be the number of BSD representations of k ∈ [0, 2n − 1] in n + 1 sbits.

Then, we have

δ(k, n) = λ(k, n) + λ(2n − k, n).

Proof. A part of the BSD representations of k that are n + 1-sbit long are those that have

a 0 as the most significant sbit and their number is λ(k, n), as was defined in the previous

section. If we change the most significant 0 in these representations to a 1, i.e., add 2n to the

value of k, we should add −(2n− k) in the remaining n sbits, that is the negative of the two’s

complement of k. 2n − k has λ(2n − k, n) BSD representations of length n. The negative of

these representations is obtained by replacing the 1s with 1s and vice versa. �

The same argument applies to the 2’s complement of k

δ(2n − k, n) = λ(2n − k, n) + λ(k, n)

= δ(k, n). (9)

For k = 0, δ(0, n) = λ(0, n) = 1. From (9), we conclude that, for k ∈ [0, 2n − 1] in the

defined range, the distribution of δ(k, n) is symmetric around k = 2n−1.
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Let ς(n) be the total number of BSD representations of length n + 1 for all integers

k ∈ [0, 2n − 1], we have

ς(n) =
2n−1
∑

k=0

δ(k, n) = 1 +
2n−1
∑

k=1

δ(k, n)

= 1 +
2n−1
∑

k=1

(

λ(k, n) + λ(2n − k, n)
)

= 1 + 2
2n−1
∑

k=1

λ(k, n)

= 1 + 2

(

3n + 1

2
− 1

)

= 3n. (10)

Remark 1 We conclude that, for any n-bit integer, the average number of its—(n + 1) sbits

long—BSD representations is roughly
(

3
2

)n

Table 2: δ(k, n) and ς(n) for small n.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 5 cont’d
k δ(k, n) k δ(k, n) k δ(k, n) k δ(k, n) k δ(k, n) k δ(k, n)
0 1 0 1 0 1 0 1 0 1 16 2
1 2 1 3 1 4 1 5 1 6 17 9

2 2 2 3 2 4 2 5 18 7
3 3 3 5 3 7 3 9 19 12

4 2 4 3 4 4 20 5
5 5 5 8 5 11 21 13
6 3 6 5 6 7 22 8
7 4 7 7 7 10 23 11

8 2 8 3 24 3
9 7 9 11 25 10
10 5 10 8 26 7
11 8 11 13 27 11
12 3 12 5 28 4
13 7 13 12 29 9
14 4 14 7 30 5
15 5 15 9 31 6

ς(n) = 3 ς(n) = 9 ς(n) = 27 ς(n) = 81 ς(n) = 243

Table 2 gives an example of δ(k, n) and ς(n) for small n. It is clear from Table 1 and

Table 2 and from the definitions of λ(k, n) and δ(k, n) that, for 0 ≤ k < 2n−1,

λ(k, n) = δ(k, n− 1) (11)
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since in this range, the binary representation of k has a 0 as the leftmost bit. In other words,

the algorithm that computes λ(k, n) that we present in Section 3 can be used to compute

δ(k, n) as

δ(k, n) = λ(k, n + 1), (12)

for 0 ≤ k < 2n−1.

2.4 Integer with Maximum Number of BSD Representations

It is desirable to know which integer k ∈ [0, 2n − 1] has the maximum number of BSD

representations of length n or n + 1 sbits. We note from (12) that the integer with the

largest δ(k, n) is the same one with the largest λ(k, n+1). Also from the symmetry of δ(k, n)

around 2n−1 (Eq. (9)), we note that there are two values of k for which δ(k, n) is the maximum

value. We will denote them as kmax1,n and kmax2,n. From (9) we have kmax2,n = 2n − kmax1,n.

In the following lemma we will consider only kmax1,n and drop the suffix 1.

Lemma 6

δ(kmax,n, n) = δ(kmax,n−1, n− 1) + δ(kmax,n−2, n− 2)

Proof. We will prove this lemma by induction. From Table 2, we see that the lemma is true

for n = 3. Now we assume that it is true up to an arbitrary n = i− 1. That is, using (12) we

can write

λ(kmax,i−1, i) = λ(kmax,i−2, i− 1) + λ(kmax,i−3, i− 2) (13)

Also, from Lemma 4, we know that

λ(kmax,i−1, i) = λ

(

kmax,i−1 − 1

2
, i− 1

)

+ λ

(

kmax,i−1 + 1

2
, i− 1

)

. (14)

From Lemma 3 and Lemma 4, kmax,i must be an odd integer. Let k be an i-bit odd integer,

then k =
(

k−1
2

)

+
(

k+1
2

)

. Obviously, one of these two terms is an odd integer and the other

is the preceding or following even integer. We will denote those two integers as ko and ke,

respectively. From Lemma 4, we have

λ(k, i + 1) = λ(ko, i) + λ(ke, i).
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For k to be equal kmax,i, one or both of the following conditions must be true:

• ko = kmax,i−1, and ke ≡ 2 (mod 4) (Lemma 3 and 4).

• ke has the maximum number of representations among all even integers. From Lemma 3,

this is equivalent to saying that ke = 2 · kmax,i−2.

We have four cases for the value of an odd k modulo 8. In each case, if the first condition

is verified, we will prove that the second condition is also verified, which will prove the lemma.

Case 1: k ≡ 1 (mod 8)

⇒ ke = k−1
2
≡ 0 (mod 4).

This violates the first condition.

Case 2: k ≡ 3 (mod 8)

⇒ ko = k−1
2
≡ 1 (mod 4)⇒ ke = k+1

2
≡ 2 (mod 4).

Assume ko = kmax,i−1

⇒
kmax,i−1−1

2
≡ 0 (mod 2) (even).

Hence, from (13) and (14), we have

kmax,i−2 =
kmax,i−1 + 1

2
,

2 · kmax,i−2 = kmax,i−1 + 1 = ke. (15)

That is, the second condition is verified.

Case 3: k ≡ 5 (mod 8)

⇒ ke = k−1
2
≡ 2 (mod 4)⇒ ko = k+1

2
≡ 3 (mod 4).

Assume ko = kmax,i−1

⇒
kmax,i−1−1

2
≡ 1 (mod 2) (odd).

Hence, from (13) and (14), we have

kmax,i−2 =
kmax,i−1 − 1

2
,

2 · kmax,i−2 = kmax,i−1 − 1 = ke. (16)
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That is, the second condition is verified.

Case 4: k ≡ 7 (mod 8)

⇒ k−1
2
≡ 3 (mod 4) (odd) ⇒ ke = k+1

2
≡ 0 (mod 4).

This violates the first condition. �

From the proof of Lemma 6, we can deduce the following corollary.

Corollary 1

kmax,n = kmax,n−1 + 2 · kmax,n−2.

Now, we will derive a formula for kmax1,n and kmax2,n. From the proof of Lemma 6, we see

that when kmax1,n ≡ 3 (mod 4) (Case 2), kmax1,n−1 ≡ 1 (mod 4) and

kmax1,n = 2 · kmax1,n−1 + 1, (17)

and that when kmax1,n ≡ 1 (mod 4) (Case 3), kmax1,n−1 ≡ 3 (mod 4) and

kmax1,n = 2 · kmax1,n−1 − 1. (18)

Thus, we see that with every increment of n (n > 2), cases 2 and 3 alternate. For n = 3, from

Table 2 we have kmax1,3 = 3 ≡ 3 (mod 4). Hence, Case 2 occurs when n is odd and Case 3

occurs when n is even.

For n even, we can substitute from (17) into (18) to obtain

kmax1,n = 2 kmax1,n−1 − 1

= 2 (2 kmax1,n−2 + 1)− 1

= 4 kmax1,n−2 + 1. (19)

Using recursive substitution,

kmax1,n = 4 · 4 · 4 · · · kmax1,2 + 1 + 4 + 16 + · · ·

= (22)
n−2

2 · 1 +
(22)

n−2

2 − 1

22 − 1

=
1

3
(2n − 1). (20)
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For n odd, we can follow the same derivation procedure to obtain

kmax1,n =
1

3
(2n + 1). (21)

As for kmax2,n, for n even we have

kmax2,n = 2n −
1

3
(2n − 1)

=
1

3
(2n+1 + 1) (22)

= kmax1,n+1

where the last equality follows from (21).

Similarly, for n odd, we have

kmax2,n =
1

3
(2n+1 − 1) (23)

= kmax1,n+1.

The sbit pattern of kmax1,n for even n and for odd n can be deduced from the previous

discussion. Let S be a string. The notation 〈S〉d denotes S repeated d times. For example,

(〈0 1〉3)2 is (0 1 0 1 0 1)2 . From (19) we can deduce that for n even, kmax1,n is of the form

(〈0 1〉
n
2 )2 and hence from (18) for n odd, kmax1,n is of the form (〈0 1〉

n−1

2 1)2.

Thus, after specifying the binary structure of the integer with maximum number of BSD

representations, we will use it as the worst-case input to our left-to-right generation algorithm

in Section 4.2. We will hence derive an expression for the number of BSD representations of

that integer.

3 Algorithm to Compute the Number of BSD Repre-

sentations for an Integer

In this section, we will present an algorithm that computes λ(k, n) for any integer k ∈ [0, 2n−1].

This algorithm is based on the lemmas presented in Section 2.1.
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Algorithm 1. Number of BSD representations of an integer k in n sbits

Input: k ∈ [0, 2n − 1], n

Output: C = λ(k, n)
external λ2(ke, ko, we, wo, n) /*computed by Algorithm 2 that follows*/

1. if (k = 0) then
C ← 1

2. else if (k = 1) then
C ← n

3. else if (k ≥ 2n−1) then
C ← λ(k − 2n−1, n− 1)

4. else if (k is even) then
C ← λ(k

2
, n− 1)

5. else

5.1 if (k ≡ 1 (mod 4)) then
C ← λ2(k−1

2
, k+1

2
, 1, 1, n− 1)

5.2 else
C ← λ2(k+1

2
, k−1

2
, 1, 1, n− 1)

6. return C

Algorithm 1 uses Lemma 1(i) and 1(ii) to return the value of λ(k, n) directly if the value of

k is either 0 or 1. Otherwise, it uses Lemmas 2 and 3 to trim k recursively from any leading 1’s

or trailing 0’s since they don’t add to the number of BSD representations of k as mentioned in

the proofs of these lemmas. Then, this algorithm calls Algorithm 2 to find the actual number

of BSD representations of k which is then an odd integer in the range [0, 2n′−1 − 1], for some

n′ ≤ n. Hence, Lemma 4 is applicable to this k.

Algorithm 2. Auxiliary algorithm used by Algorithm 1 to compute λ(k, n)

Input: ke, ko, we, wo, n

Output: c = λ2(ke, ko, we, wo, n)

1. if (ko = 1 AND ke = 2) then
c← n ∗ wo + (n− 1) ∗ we

2. else

2.1 if (ke ≡ 0 (mod 4)) then

2.1.1 if (ko ≡ 1 (mod 4)) then
c← λ2(ke

2
, ke

2
+ 1, wo + we, wo, n− 1)
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2.1.2 else
c← λ2(ke

2
, ke

2
− 1, wo + we, wo, n− 1)

2.2 else

2.2.1 if (ko ≡ 1 (mod 4)) then
c← λ2(ke

2
− 1, ke

2
, wo, wo + we, n− 1)

2.2.2 else
c← λ2(ke

2
+ 1, ke

2
, wo, wo + we, n− 1)

3. return c

Using Lemma 4, λ(k, n) for k odd constitutes of two other evaluations of the same function

λ; one is for an even integer, ke which is the closest even integer to k/2, and the other is for

the preceding or the following odd integer, ko. If we start using Lemmas 3 and 4 recursively

to evaluate λ for ke and ko respectively, at each iteration there will be always two terms for

the λ function multiplied by a certain weight each, we and wo.

In general, at the ith iteration

λ(k, n) = we,n−i λ(ke,n−i, n− i) + wo,n−i λ(ko,n−i, n− i).

At the beginning, we,n = wo,n = 1. From Lemma 3 we have

λ(ke,n−i, n− i) = λ

(

ke,n−i

2
, n− i− 1

)

.

From Lemma 4 we have

λ(ko,n−i, n− i) = λ

(

ko,n−i − 1

2
, n− i− 1

)

+ λ

(

ko,n−i + 1

2
, n− i− 1

)

.

There are two possible cases for ke in each iteration and two corresponding subcases for ko.

Case 1: ke,n−i ≡ 0 (mod 4) ⇒
ke,n−i

2
is even

Case 1.1: ko,n−i ≡ 1 (mod 4), i.e., ko,n−i = ke,n−i + 1 ⇒
ko,n−i−1

2
is even

Hence,

ke,n−i−1 =
ko,n−i−1

2
=

ke,n−i

2

ko,n−i−1 =
ko,n−i+1

2
=

ke,n−i

2
+ 1
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Case 1.2: ko,n−i ≡ 3 (mod 4), i.e., ko,n−i = ke,n−i − 1 ⇒
ko,n−i−1

2
is odd

Hence,

ke,n−i−1 =
ko,n−i+1

2
=

ke,n−i

2

ko,n−i−1 =
ko,n−i−1

2
=

ke,n−i

2
− 1

In case 1, the weights are updated as follows

we,n−i−1 = wo,n−i + we,n−i

wo,n−i−1 = wo,n−i

Case 2: ke,n−i ≡ 2 (mod 4) ⇒
ke,n−i

2
is odd

Case 2.1: ko,n−i ≡ 1 (mod 4), i.e., ko,n−i = ke,n−i − 1

Hence,

ke,n−i−1 =
ko,n−i−1

2
=

ke,n−i

2
− 1

ko,n−i−1 =
ko,n−i+1

2
=

ke,n−i

2

Case 2.2: ko,n−i ≡ 3 (mod 4), i.e., ko,n−i = ke,n−i + 1

Hence,

ke,n−i−1 =
ko,n−i+1

2
=

ke,n−i

2
+ 1

ko,n−i−1 =
ko,n−i−1

2
=

ke,n−i

2

In case 2, the weights are updated as follows

we,n−i−1 = wo,n−i

wo,n−i−1 = wo,n−i + we,n−i

Following are some examples that illustrate the iterations of Algorithm 2 for some chosen

values of k. In these examples we have used the notation (k) that means λ(k, n). We have also

used a tree-like representation where, for a parent node k, the number of BSD representations
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is equal to the sum of the number of BSD representations of its child nodes. The weight

update procedure is depicted by the number of links between the parent and child nodes. The

examples are chosen such that ke and ko that are passed as arguments to Algorithm 2, e.g.,

12 and 13 in Figure 1 (a), correspond to the four different cases discussed.

n = 7

= (12) + (13)

= 2 (6) + (7)

= 3 (3) + (4)

= 3 (1) + 4 (2)

n = 7

n = 6

n = 5

n = 4

n = 3

(23)

= (11) + (12)

= (5) + 2 (6)

= (2) + 3 (3)

= 4 (1) + 3 (2)

(6)

(11)

(23)

(5)

(3)(2)

(1) (2)

k = 23 = 0010111

(12)

(27)

= (13) + (14)

= (6) + 2 (7)

= 3 (3) + 2 (4)

= 3 (1) + 5 (2)

(7)

(14)(13)

(27)

k = 27 = 0011011

(6)

(3)

(1)

(4)

(2)

(29)

= (14) + (15)

= 2 (7) + (8)

= 2 (3) + 3 (4)

= 2 (1) + 5 (2)

(15)

(7)

(14)

(8)

(3)

(1) (2)

(4)

(29)

k = 29 = 0011101

(25)

n = 6

n = 5

n = 4

n = 3

(12) (13)

(25)

(7)(6)

(3) (4)

(2)(1)

k = 25 = 0011001

(a)

(d)

(b)

(c)

Figure 1: (a) λ(25, 7), corresponds to case 1.1. (b) λ(23, 7), corresponds to case 1.2. (c)

λ(27, 7), corresponds to case 2.1. (d) λ(29, 7), corresponds to case 2.2.

For the time and space complexity of Algorithm 1—including its usage of Algorithm 2—it

is clear that it runs in O(n) time and occupies O(n) bits in memory. This time complexity

results from the fact that both algorithms deal with the integer k one bit at a time. As for the

space complexity, the new values generated for k and n by Algorithm 1 and for ke, ko, we, wo
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and n by Algorithm 2 can replace the old values in memory. That is, though the algorithms

are illustrated in a recursive form, they can be transformed into an iterative form.

4 Left-to-Right BSD Randomization and Generation

Algorithms

The algorithms that generate a random BSD representation of an integer [2, 5, 9] scan its bits

from the least significant to the most significant bit, i.e., from right to left. This is because

they are based on the NAF-generating algorithms [8, 10, 12] that scan the bits of the integer

in the same direction.

In this section, we present an algorithm that generates a random BSD representation

of k while scanning it from left to right. Then we modify it in order to generate all of

the possible BSD representations of k. The modified algorithm helps us demonstrate the

exponential growth with n of the number of BSD representations of kmax1,n, as well as the

effect of prepending 0s to any integer k.

4.1 Left-to-Right Randomization Algorithm

We start with an example. Let k = 10001001 = 27 + 24 + 20. That is k is the result of adding

the following three integers:

k = 10000000

+ 00001000

+ 00000001

We will consider the different BSD representations for each integer separately and then add

those different representations together to get those of k.

The first integer has no other representation according to Lemma 1(iii). From the same

lemma, the second integer has the following additional representations 00011000, 00111000,

01111000 and 11111000. If we add this last representation to the first integer, then k would
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need more than 8 sbits in this example to represent it, so we will not take it into considera-

tion. Finally the third integer has this set of additional representations 00000011, 00000111,

00001111. . . , 01111111. We will notice that we only need to take into account the first three

representations. This is because all the representations starting from the third one when

added to the first two integers will yield a 0 in sbit position 3, 1s in the lower positions and a

sbit pattern in the upper positions that has been accounted for in the different representations

of the second integer.

Also, we can consider that this representation of k

k = 10000000

+ 00111000

+ 00001111

= 10110111

could be obtained from this one

k = 10000000

+ 00111000

+ 00000111

= 10111111

after changing the 11 at sbit positions 3 and 2 to 01.

Thus, the underlying idea of the algorithm is that the binary representation of k is subdi-

vided into groups of bits—of different lengths—such that each group is formed by a number of

consecutive 0s ending with a single 1. For each of these groups a random BSD representation

is chosen as in the proof of Lemma 1(ii). Whenever the choice yields a 1 at the end of a

group—which happens when any representation for that group other than the binary one is

chosen—and a 1 at the beginning of the next group—which happens when the representation

chosen for the next group is the one that has no 0s—another random decision is taken so as

whether to leave those two sbits (i.e., 11) as they are or to change them to 01.
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The choice of a random representation for a certain group is done by counting the number

of 0s in it, say z, and choosing a random integer t ∈ [0, z] which will be the number of 0s to

be written to the output. If t is equal to z, the last sbit to be written to the output for this

group is 1, and it is actually written before considering the next group. Otherwise, t 0s, a 1

and only z − t − 1 1s are written to the output, that is the last 1 is not written, but saved

as the value of a variable labeled as last. We then do the same for the next group. If for

the next group t = 0, we take a random decision whether to write 11 to the output or 01

at the boundary of the two groups. This leads to the following algorithm. Note that a 0 is

prepended to k so that the BSD representation k′ generated is of length n + 1 sbits.

Algorithm 3. Left-to-Right Randomization of an integer’s BSD representation

Input: k = (kn−1 . . . k0)2
Output: k′ = (k′

n . . . k′
0)BSD, a random BSD representation of k

1. Set kn ← 0; i← n + 1; last← 1

2. for j from n down to 0 do
if (kj = 1) then

2.1 t←R [0, i− j − 1]

2.2 if (t = 0 AND last = 1) then

2.2.1 c←R {0, 1}

2.2.2 if (c = 0) then
k′

i ← 1
i← i− 1; k′

i ← 1

2.2.3 else
k′

i ← 0

2.3 else

2.3.1 if (last = 1) then
k′

i ← 1

2.3.2 while (t > 0) do
i← i− 1; k′

i ← 0; t← t− 1

2.3.3 i← i− 1; k′
i ← 1

2.4 if (i = j) then
last← 1

2.5 else

2.5.1 while (i > j + 1) do
i← i− 1; k′

i ← 1

2.5.2 i← i− 1; last← 1
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3. if (last = 1) then
k′

i ← 1

4. while (i > 0) do
i← i− 1; k′

i ← 0

We note the following about the algorithm:

• The algorithm runs in O(n) time.

• The sbits of k′ are written to the output one at a time in their correct order from left

to right. This means that there is no need to store k′ in an application where the sbits

are processed from left to right as they are generated. For example, it is advantageous

to perform the elliptic curve scalar multiplication from left to right, especially when a

mixed (projective and affine) coordinate system is used for saving computational cost in

scalar multiplication [1, 7]. If the randomization of the BSD representation of the key

is needed during the scalar multiplication, then Algorithm 3 can be readily interleaved

with point doubling and point addition operations. Thus, it is more beneficial than Ha-

Moon’s algorithm [5], where the generated representation is first stored in order to use it

in the scalar multiplication. Note that a BSD representation would probably need twice

the storage required for the binary representation, if each sbit is internally represented

by two bits.

• The minimum and/or the maximum number of 0s allowed in each group of the resulting

BSD representation can be set by changing the range from which t is randomly chosen in

step 2.1, e.g., the minimum value can be some fraction of z = i−j−1. This is interesting

if it is desired to keep the Hamming weight of the representation low. Moreover, in step

2(.2).1, a bias could be given to choosing 1 more than 0 in order to make it more likely

to choose 01 at the group boundaries than 11.

• When there is a group with a long run of 0s in k, considering the possible random

representation for that group, we can see that the most significant bit of that group will
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be 0 with high probability among the resulting representations. This is also the case

for a long run of 1s. Though each of those 1s forms a group, the randomization at the

boundary of the group ensures that the most significant bit of that run is also more

likely to be 0. That is 01111 = 11111 = 10111 = 10011 = 10001. This agrees with the

observation of Fouque et al. [4] on their right-to-left attack that, after a long run of 0s

or 1s, the probability of the sbit being 0 becomes close to 1.

• The number of representations of a group is the length of that group. Assume that an n-

bit integer k has all groups of the same length l ≥ 2 (since for l = 1, k can be considered

as having one group as in the previous note). If we don’t consider the randomization

at the group boundaries, then the lower bound on the number of representations of k,

λ(k, n), is (l)
n
l . If we consider the boundary randomization as one more representation

of the group—except for the last group, then the upper bound on λ(k, n) is (l+1)
n
l
−1 l ≈

(l + 1)
n
l . The actual number is closer to the upper boundary than the lower one. The

upper boundary strictly decreases with l. We conclude that an integer with more groups

has a larger number of BSD representations than another integer of the same length with

fewer groups. As mentioned in the previous note, a run of 1s can be considered as one

group. Thus, the former conclusion is equivalent to saying that an integer with a better

random distribution of its bits has more representations than another integer with longer

runs of 0s or 1s. In Section 4.2, we will derive an expression for the number of BSD

representations when l = 2, which will be of the order of the upper boundary.

4.2 Left-to-Right Generation Algorithm

The algorithm presented here is a modified version of Algorithm 3 that recursively and ex-

haustively substitutes every group of 0s ending with a 1 with one of its possible forms. It

also takes into consideration the alternative substitutions at the group boundary when the

representation of a group ends with a 1 and that of the next group starts with 1. This algo-

rithm can be used as a straight-forward check that Algorithm 3 is capable of generating any
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possible—(n + 1) sbits long—BSD representation of an integer k in the range [1, 2n − 1], i.e.,

there is no BSD representation of k that cannot be generated by that algorithm. It was tested

on small values of n.

Algorithm 4. Left-to-Right Generation of all BSD representations of k

Input: k = (kn−1 . . . k0)2
Output: all possible strings k′ = (k′

n . . . k′
0)BSD

1. Subdivide k from left to right into groups of consecutive 0s each ending with a single 1. Store
the length of each group in a look-up table G. Let g be the index of the table.

2. Set g ← 0; i← n + 1;
last← 1; j ← i−G[g]; k′ ← 〈〉

3. for t = 0 to i− j − 1 do
ChooseForm(k, g, t, i, j, last, k′)

Algorithm 5. ChooseForm(k, g, t, i, j, last, k′), a recursive procedure employed by Algorithm 4

Input: k, g, t, i, j, last, k′

Output: returns k′, a string of sbits, as a possible BSD representation of k.

1. if (t > 0) OR (last = 1) then //this step is equivalent to step 2.3 in Algorithm 3

1.1 if (last = 1) then
k′ ← k′|1 //concatenate k′ with 1

1.2 while (t > 0) do
i← i− 1; k′ ← k′|0; t← t− 1

1.3 i← i− 1; k′ ← k′|1

2. if (i = j) then
last← 1

3. else

3.1 while (i > j + 1) do
i← i− 1; k ← k′|1

3.2 i← i− 1; last← 1

4. if (j = 0) then

4.1 if (last = 1) then
k′ ← k′|1

4.2 return k′

5. g ← g + 1; j ← j −G[g]

6. if (j = 0) AND (k is even) then

6.1 if (i > 0) then
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6.1.1 if (last = 1) then
k′ ← k′|1

6.1.2 while (i > 0) do
i← i− 1; k′ ← k′|0

6.2 return k′

7. t = 0

8. if (last = 1) then
ChooseForm(k, g, t, i− 1, j, last, k′|11)
ChooseForm(k, g, t, i, j, last, k′|0)

9. else
ChooseForm(k, g, t, i, j, last, k′)

10. for t = 1 to i− j − 1 do
ChooseForm(k, g, t, i, j, last, k′)

To better explain how this algorithm works we present in Figure 2 the tree explored by

the algorithm for k = 21 and n = 5. This tree is explored by the algorithm in a depth-first

fashion. That is, the recursive function ChooseForm is first called from Algorithm 4 at node

a in the figure. Then this function calls itself at node b and then at node c where it returns

with the first BSD representation for k = 21 which is 111111. With the flow control at node

b the function calls itself at node d where the second BSD representation is generated and so

forth.

d e

010101

1|11 0|11 01

11

11 01

01a

fb

p

0|11 01 01 11111|11

c
01

t = 0 t = 1

t = 1

t = 0

t = 0 t = 1

t = 1

u

t = 0

t = 1t = 0

1|11 0|11 01 010|111|11

Figure 2: The tree explored by Algoritm 4 for k = 21 and n = 5.
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The algorithm works as follows. The integer k is first subdivided into groups of bits where

each group consists of consecutive 0s and a single 1 at the end as for Algorithm 3. Starting

from the leftmost group, a particular BSD representation for that group is chosen starting

with the one that contains no 0s (i.e., t = 0, where t is the number of 0s to be written to the

output for that group as before). The representation is formed inside the function ChooseForm

which takes t as one of its arguments. In turn, this function goes through the possible values

of t for the following group and, for each one, calls itself to form the corresponding BSD

representation of that group. When t is equal to 0, the two possible alternatives at the group

boundary are considered as was explained in Section 4.1. For example, in Figure 2, the last

sbit in the group at node a may remain 1 or change to 0 depending on the random decision

taken at the group boundary when t = 0 for the next group. This is why this last sbit is

written at nodes b and f before the symbol ‘|’ which designates the boundary between the

groups.

The worst-case complexity analysis of Algorithm 4 is presented in the following. The worst

case occurs for the integer with the maximum number of BSD representations in the range

[1, 2n−1]. There are actually two integers with this property for any given n, which we referred

to as kmax1,n and kmax2,n in Section 2.4. We mentioned that, for n even, kmax1,n is of the form

(〈0 1〉
n
2 )2. For example, kmax1,6 = 21 = (010101)2 (see Figure 3). We also mentioned that, for

any n, kmax2,n = kmax1,n+1. For example, kmax1,5 = 11 = (01011)2 and kmax2,5 = 21 = (10101)2

(see Figure 3). Therefore, our analysis is conducted on those integers k of the binary form

(〈0 1〉
n
2 )2 for n even and (1〈0 1〉

n−1

2 )2 for n odd. In the following discussion, we will drop the

subscript n from kmax1,n and kmax2,n for simplicity, since it will be obvious from the context.

For n even, we have the following.

n = 2: kmax1
= kmax2

= 1 = (01)2,

δ(1, 2) = λ(1, 3) = 3.

The tree explored for this integer is the same as the one having as root the node b in

Figure 2. The difference is that in this case t can take the values 0, 1 and 2 with only
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one representation for t = 0.

n = 4: kmax1
= 5 = (0101)2,

δ(5, 4) = λ(5, 5) = 8 = 3 · 3− 1.

The tree explored for this integer is the same as the one having as root a in Figure 2.

n = 6: kmax1
= 21 = (010101)2,

δ(21, 6) = λ(21, 7) = 21 = 3 · 3 · 3− (3.1 + 3).

The tree explored for this integer is illustrated in Figure 3.

1|11 0|11

011

1|11 0|11 01 11 01

01

11 01

11 01

001

0010101

1|11

111

1|11 01

0|11

0|11 11 01

01

t = 1t = 0

1|11 1|11 0|11 01

t = 1

010|111|11 0|11 01

t = 1

t = 0 t = 2

t = 0 t = 0 t = 0 t = 1t = 1

t = 1 t = 0 t = 0 t = 1

Figure 3: The tree explored by Algoritm 4 for k = 21 and n = 6.

Let m = n
2
. By induction we can deduce the following

λ(kmax1
, n + 1) = 3m − (m− 1)3m−2 +

(

m−3
∑

i1=1

i1

)

3m−4

−

(

m−5
∑

i1=1

i1
∑

i2=1

i2

)

3m−6 +

(

m−7
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

i3

)

3m−8 − · · · .

(24)

For n odd, we have the following.

n = 1: kmax1
= kmax2

= 1 = (1)2,

δ(1, 1) = λ(1, 2) = 2.

The tree explored for this integer is simply the same as the one having as root the

node u in Figure 2.
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n = 3: kmax2
= 5 = (101)2,

δ(5, 3) = λ(5, 4) = 5 = 2 · 3− 1.

The tree explored for this integer is the same as the one having as root the node p in

Figure 2.

n = 5: kmax2
= 21 = (10101)2,

δ(21, 5) = λ(21, 6) = 13 = 2 · 3 · 3− (3 + 2 · 1).

The tree for this integer is the one illustrated in Figure 2.

Let m = n−1
2

. By induction we can deduce the following

λ(kmax2
, n + 1) = 2 · 3m −

[

3m−1 + 2(m− 1)3m−2
]

+

[

(m− 2)3m−3 + 2

(

m−3
∑

i1=1

i1

)

3m−4

]

−

[(

m−4
∑

i2=1

i2

)

3m−5 + 2

(

m−5
∑

i1=1

i1
∑

i2=1

i2

)

3m−6

]

+

[(

m−6
∑

i2=1

i2
∑

i3=1

i3

)

3m−7 + 2

(

m−7
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

i3

)

3m−8

]

− · · ·

(25)

From this discussion, we state the following theorem.

Theorem 1 For any n, the number of BSD representations generated by Algorithm 4 is, in

the worst case, O(3⌊
n
2
⌋).

4.3 Effect of Prepending 0s to k on the Number of its BSD Rep-

resentations

In this section, we show how the number of BSD representations of k increases if we lengthen

its binary representation by adding 0s at the most significant end.

If we compare Figure 2 with Figure 3, we see that for the same integer k = 21, increasing

n from 5 to 6 had the effect of increasing the number of branches emerging from the root
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by one. The added branch has the same tree structure as the leftmost branch a in Figure 2.

This is because the number of BSD representations of the first group—recall how the integer

is subdivided into groups—has increased by one. Since all representations of a group, except

for the original binary representation, end with a 1, the added representation would generate

two alternatives when, for the next group, t = 0 . If we increase n to 7, another subtree like

the one having as root a will be added to the tree. The same subtree is repeated with every

0 prepended to the binary representation of k. It is easy to verify that this is true for any

integer k.

As was mentioned before, the subtree having as root the node a is the tree explored for

k = 5 and n = 4. In general, the subtree that is repeated is the one formed for the integer

with the binary representation having the same groups as k except for the leftmost group,

i.e., with the most significant 1 removed. This integer can be expressed as k− 2⌊log2 k⌋ for any

k that is not a power of 2. The representation of this integer should have only 2 prepended 0

in order to have 3 branches at the root node, this means that the length of the representation

should be ⌊log2 k⌋+ 1. That is

∆(k) = λ(k, n + 1)− λ(k, n),

= λ(k, n + i + 1)− λ(k, n + i) for any i ≥ 0,

= λ(k − 2⌊log2 k⌋, ⌊log2 k⌋+ 1). (26)

where ∆(k) is the number of leaves in the repeated subtree. Based on (26), we have the

following theorem.

Theorem 2 If ∆n is the number of 0s prepended to the binary representation of an integer k,

then the number of its BSD representations increases by ∆n ·∆(k).

5 Experimental Results

In this section, we present experimental results related to the speed and usage of Algorithm 3.

We consider an application where we need to choose long integers, e.g., n = 160, having a
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large number of BSD representations, e.g., more than 240.

First, we have shown in Section 3 that Algorithm 1 runs in O(n). For instance, for n = 160,

the integer that has the maximum number of BSD representations is kmax1,160 = (〈0 1〉80)2

and the number of these representations is

δ(kmax1,160, 160) = (9E449CF5F9D5F28B6248B9097ED8)hex

. This result was computed in approximately 0.38µs on a 1.5 GHz Pentium M processor

(Centrino technology), using the BN (big numbers)library1. This is an indication of how fast

this algorithm can be executed.

In Theorem 1, we have proven that δ(kmax1,n, n) is O(3⌊
n
2
⌋). As was mentioned in the

example above, for n = 160, this number is a 111-bit integer. Using this information, one can

proceed as follows in order to choose an integer with a large number of BSD representations:

Step 1: Specify the minimum number of BSD representations that an integer should have,

that is a selection threshold T .

Step 2: Choose at random an integer k of length n.

Step 3: Use that integer as an input to Algorithm 1 to compute the number of its BSD

representations, δ(k, n).

Step 4: If δ(k, n) ≥ T , then accept the integer k. Otherwise, reject it and go to Step 2.

From the theory of runs [6, Sec. 2.7], if k is an n-bit integer with n
2

0s and n
2

1s, then

the most probable number of runs in k is between n
2

and n
2

+ 3, that is the probability that k

would have several long runs of 0s and 1s—and hence fewer runs—is small. Moreover, from

the same theory, we can calculate the probability of having h runs for such an integer for any

h. For example, for n = 160, an integer with 80 0s and 80 1s has the following probabilities

1Provided by Eric Young as part of his implementation of SSL, known as openssl. Available from

http://www.openssl.org/source/openssl-0.9.7d.tar.gz
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of having h runs.

Pr(h = 20) = 9× 10−25,

P r(h = 40) = 1.7× 10−11.

Based on this theory and the last note in Section 4.1, it is expected that the percentage of

integers that would be rejected by the above selection procedure is negligible for large n. We

can illustrate this fact experimentally as follows.

Let r = log(δ(k, n))/ log(δ(kmax1,n, n)). For n = 160, let the selection threshold be T = 240,

then we would like to know the percentage of integers in the range [0, 2n − 1] having r <

40/111 = 0.36036. For large n, it is computationally infeasible to calculate this percentage

in a deterministic way. However, for small n (n < 32), our experiments show that this

percentage is negligible and is strictly decreasing as n increases. For example, this percentage

is 0.00132%, 0.00093% and 0.00065% for n = 29, 30 and 31, respectively. If we set T = 280,

then the percentage of rejected integers, i.e., those having r < 80/111 = 0.72072 is 10.09%,

9.62% and 9.17% for n = 29, 30 and 31, respectively.

6 Conclusion

In this paper, we have presented some interesting issues related to the number of binary-

signed digit (BSD) representations of an integer k ∈ [0, 2n− 1], such as the average number of

representations among integers of the same length and the bit patterns of kmax1,n and kmax2,n,

i.e., the integers of length n bits that have the maximum number of BSD representations.

We have presented an algorithm that calculates in O(n) the exact number of BSD rep-

resentations of k that are of length n sbits, and have illustrated the algorithm’s efficiency

for n = 160, which is of interest for elliptic curve cryptographic applications. We have also

presented an algorithm that generates in O(n) a random BSD representation of k by scanning

its bits starting from the most significant end, and outputs the sbits in their correct order one

at a time. In addition, we have presented an algorithm that can generate all BSD representa-
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tions of an integer, which has helped us prove that the number of representations of kmax1,n is

O(3⌊
n
2
⌋). We have also proven that prepending 0s to the binary representation of an integer

results in only a linear increase in the number of its BSD representations.

We have also presented some experimental results that show that the percentage of integers

of a certain length having a relatively small number of representations is negligible.
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