
1

On Concurrent Detection of Errors in

Polynomial Basis Multiplication

Siavash Bayat-Sarmadi and M. Anwar Hasan

April 7, 2006

Abstract

Cryptographic systems implemented using VLSI technologies require a large number of circuits

and are prone to various types of faults. Attacks on cryptosystems that exploit erroneous results due

to deliberately injected faults in hardware have recently been reported in the literature. As a result, the

detection and the correction of errors in cryptographic operations have become an important issue. This

paper discusses the detection of multiple-bit errors due tofaults in bit-serial and bit-parallel polynomial

basis (PB) multipliers over binary extension fields. Our approach is based on multiple parity bits.

Experimental results presented here show that due to an increase in the number of parity bits, the area

overhead tends to increase linearly, but the probability oferror detection approaches unity fairly quickly,

e.g., for 8 parity bits. In bit-serial implementation of aGF (2163) PB multiplier using 8 parity bits, the

area overhead and the probability of error detection are10.29% and 0.996, respectively. This is achieved

without any increase in the computation time of the multiplier.

Index Terms

polynomial basis multiplication, concurrent error detection, finite field.

I. I NTRODUCTION

Recently a number of schemes have been developed for the detection and/or correction

of errors in hardware implementation of some cryptosystemssuch as symmetric key block

ciphers and multipliers over extension fields, which are integral components of some public key

Siavash Bayat-Sarmadi and M. Anwar Hasan are with Department of Electrical and Computer Engineering, and with Center

for Applied Cryptographic Research at University of Waterloo, Ontario, Canada



2

cryptosystems [3], [5], [6], [7], [10], [11], [12], [14]. The main reasons for increased interest in

such schemes include the following:

• Having correct functionality in the presence of faults: Forexample, the input size of

an extension field multiplier for today’s cryptographic applications is between 160 and

2048 bits. Such multipliers may require millions of gates for implementation and with the

continued shrinking of VLSI circuits, the likelihood of faults in such a multiplier can be

higher. Hence, the issue of correct functionality of the multiplier in the presence of faults

is becoming more and more important.

• Avoiding fault-based attacks: Fault attacks are based on injecting some faults into a cryp-

tosystem and observing any leak of secret information, primarily by analyzing erroneous

results produced by the cryptosystem due to the faults. For example, in [4] Boneh et al.

presented the first fault-based attacks on public key cryptosystems, namely RSA and Rabin

signature scheme. Since RSA is usually implemented using theChinese Remainder theorem

(CRT), having one correct signature and one faulty signatureof the same massage can lead

to the modulus factorization. In order to avoid such fault-based attacks, the cryptosystem

can be designed to detect errors in its computations and thenstop producing any erroneous

results as output.

One technique to detect errors in hardware implementation is on-line testing or concurrent

error detection (CED). CED is used to concurrently test a system while the system is operating

normally [9]. CED can test the circuit at full operating speedwithout stopping the system or

switching it to test mode. Accordingly, CED can detect transient faults, which may not be

detected in off-line testing, since they may not occur in test mode.

This paper focuses on the detection of errors in extension field multipliers mainly because the

complexity of multiplication is much higher than the field’stwo basic operations namely addition

and subtraction. In addition, other complex finite field arithmetic operations such as inversion

and exponentiation over binary extension fields can be preformed by repeated multiplications

[1], [13].

In [5], Fenn et al. presented a concurrent error detection scheme for finite field multipliers over

binary extension fields. They used a parity bit for detectingerrors in bit-serial multipliers, using

a number of bases for representation of fields, defined by an irreducible all-one polynomial.

Thus, the scheme is not generic in the sense that it cannot be used for other field defining



3

polynomials. In [10], [12], Reyhani-Masoleh and Hasan developed a generic parity based error

detection scheme for both bit-serial and bit-parallel polynomial basis multipliers. The scheme can

detect any odd number of erroneous bits. In this scheme, input parity is developed through the

multiplier, and predicted output parity is compared to actual output parity. In case of inequality

of the parities, an error signal is given.

This paper presents a multiple parity scheme for both bit-serial and bit-parallel polynomial

basis multipliers over binary extension fields. The error detection capability of the scheme in

the presence of multiple-bit errors is given. The time and area overhead of the scheme is also

investigated. The proposed scheme can be applied to any finite fieldGF (2m). Our experimental

results show that the area overhead tends to increase linearly as the number of parity bits

increases but the probability of undetected errors decreases quite quickly. Furthermore, the area

overhead for the bit-serial implementation is quite low, e.g., for 8 parity bits the area overhead

is 10.29% and the error detection probability is 0.996. The area overhead for a bit-parallel

implementation of the multiplier is greater than the corresponding bit-serial one but it is still

lower than the conventionaldual modular redundant systems. Whether it is bit-serial or bit-

parallel implementation, the proposed error detection scheme, however, does not increase the

computation time of the multiplier.

The organization of this paper is as follows. In Section II, some preliminaries about polynomial

basis multiplication are discussed. A concurrent error detection strategy is presented in Section

III. In Section IV, the error detection capability of the scheme is investigated. Our experimental

results for this scheme are reported in Section V. Then Section VI presents an alternative

partitioning scheme. Finally, Section VII gives a few concluding remarks.

II. PRELIMINARIES

In this section, first polynomial basis multiplication is briefly explained. Then three main

components for the construction of bit-serial and bit-parallel multipliers are introduced.

Let F (x) =
∑m

i=0 fix
i be an irreducible polynomial overGF (2) of degreem. Letα ∈ GF (2m)

be a root ofF (x), i.e., F (α) = 0. Polynomial (or canonical) basis is defined as the following

set:
{
1, α, α2, · · · , αm−1

}



4

Each elementA of GF (2m) can be represented using the polynomial basis (PB) asA =
∑m−1

i=0 aiα
i = (a0a1 · · · am−1) whereai ∈ GF (2).

The multiplication ofα and an arbitrary elementA of GF (2m) can be represented with respect

to PB as:

αA = α
m−1∑

i=0

aiα
i mod F (α)

= am−1f0 +
m−1∑

i=1

(am−1fi + ai−1) αi.

Hereafter, the module that receivesA ∈ GF (2m) as input and computesαA is called α-Mul

module.

Let C be the product of two elementsA andB of GF (2m). Then PB representation ofC is

as follows:

C = AB mod F (α) = A
m−1∑

i=0

biα
i mod F (α)

=
m−1∑

i=0

bi.A
(i) = (bm−1.A

(m−1) + bm−2.A
(m−2) + · · · + b1.A

(1) + b0.A
(0)).

(1)

whereA(0) = A and A(i) = αA(i−1). In (1), ’.’ is a scalar multiplication, sincebi ∈ GF (2)

and A(i) ∈ GF (2m), and ’+’ is a vector addition, since its two operands are the elements of

GF (2m). Modules that perform scalar multiplication and vector addition are hereafter referred

to as SM module and VA module, respectively. These two modules and theα-Mul module

discussed earlier are the main components of a PB multiplier. In accordance with 1 and using

these three main components, bit-serial and bit-parallel PB multipliers can be constructed as

shown in Fig. 1.

III. C ONCURRENTERRORDETECTION STRATEGY

In this section, an error detection scheme for PB multipliers is presented. Errors may be caused

by different types of faults such as open faults, short (bridging) faults, and/or stuck-at faults.

Furthermore, the faults can be transient or permanent. The goal of this scheme is to detect as

many errors as possible including single and multiple errors. Towards this goal, we use a parity

based method. One-bit parity is able to detect the presence of any odd number of erroneous



5

VA

SM

α-Mul

m

m

C

D

bi

m

m

m

(a) Bit-serial

VA

VA

VA

SM

SM

SM

SM

α-Mul

α-Mul

α-Mul

α-Mul

C

A b0

bm−1

b2

b1

m

m

m

m

m

m

m m

m

(b) Bit-parallel

Fig. 1. Polynomial-basis multiplication

bits [8]. Here, we use additional parity bits in order to increase error detection capability. In

particular, anm-bit input is divided intok parts and for each part one parity bit is used. Thus,

the m-bit PB representation ofA ∈ GF (2m) is divided as follows:

A = (A0, A1, A2, · · · , Ak−1).

The length ofAj, 0 ≤ j ≤ k − 1, is

lj =







⌊m
k
⌋ + 1 if j < m mod k;

⌊m
k
⌋ otherwise.

For the sake of simplicity, we assume thatk|m and the length of each part isl = m
k

, i.e.,

Aj = αjk

l−1∑

i=0

ajk+iα
i = (ajk, ajk+1, ajk+2, · · · , ajk+l−1).

Parity of Aj is denoted asP (Aj). Using parity bits ofAj ’s, a k-bit parity of A is formed as

follows:

P (A) = (P (A0), P (A1), P (A2), · · · , P (Ak−1)).

Then using the parityP (A), we construct encodedA as follows:

E(A) = (A0, A1, A2, · · · , Ak−1, P (A)).



6

Unlike A which is represented withm bits, the field defining irreducible polynomialF (x)

requiresm + 1 bits. In order to have the same length for partitioning, we exclude the leading

coefficient ofF (x) and divideF (x) − xm into k parts as follows:

F (x) − xm = (F0, F1, · · · , Fk−1).

The parity bit ofFj, 0 ≤ j ≤ k − 1, is denoted asP (Fj).

One of the important issues in detecting errors in the outputof a finite field multiplier (or an

arbitrary circuit, in general) is parity prediction. The latter refers to the task of determining the

parity of the expected outputs by using the corresponding inputs as well as the functionality of

the circuit. As mentioned in Section II, a polynomial basis multiplier consists of three modules:

1) α-Mul module 2) SM module, and 3) VA module. In the following, the parity prediction

method for each of these modules will be discussed.

A. Multiple Parity Prediction in α-Mul Module

In the following, the output parity of anα-Mul module is predicted.

Let A′ = αA, i.e.,

A′ =
l−1∑

i=0

aiα
i+1 + αl

l−1∑

i=0

al+iα
i+1 + · · · + α(k−1)l

l−1∑

i=0

a(k−1)l+iα
i+1

=

(

0 +
l−1∑

i=1

ai−1α
i

)

+ αl

(

al−1 +
l−1∑

i=1

al+i−1α
i

)

+

· · · + α(k−1)l

(

a(k−1)l−1 +
l−1∑

i=1

a(k−1)l+i−1α
i

)

+ akl−1α
kl.

A′ must be reduced byF (α) = αm +
∑k−1

j=0 Fj(α) as follows:

A′ mod F (α) =

(

0 +
l−1∑

i=1

ai−1α
i

)

+ αl

(

al−1 +
l−1∑

i=1

al+i−1α
i

)

+ · · ·

+ α(k−1)l

(

a(k−1)l−1 +
l−1∑

i=1

a(k−1)l+i−1α
i

)

+ am−1

(
k−1∑

j=0

Fj(α)

)

.



7

Now, we group the expression and obtain

A′ mod F (α) =

(

0 +
l−1∑

i=1

ai−1α
i + am−1

l−1∑

i=0

fiα
i

)

+ αl

(

al−1 +
l−1∑

i=1

al+i−1α
i + am−1

l−1∑

i=0

fl+iα
i

)

+ · · · + α(k−1)l

(

a(k−1)l−1 +
l−1∑

i=1

a(k−1)l+i−1α
i + am−1

l−1∑

i=0

f(k−1)l+iα
i

)

.

Thus, thejth part of A′ for 0 ≤ j ≤ k − 1 can be derived as:

A′

j = αjl

(

ajl−1 +
l−1∑

i=1

ajl+i−1α
i + am−1

l−1∑

i=0

fjl+iα
i

)

(2)

wherea−1 = 0. Fig. 2 shows a circuit diagram implementingA′

j. In practice, many coefficients

of F (x) are zero and hence the corresponding XOR gates in Fig. 2 are not needed. By cascading

k copies of the circuit shown in Fig. 2, anα-Mul module can be constructed as illustrated in

Fig. 3.

Fig. 2. Thejth part of theα-Mul module

ajl+i−1

ajl

a(j+1)l−1

a(j+1)l−2

am−1

fjl+1

fjl+i

f(j+1)l−1

fjl

ajl−1

a′

jl

a′

jl+1

a′

jl+i

a′

(j+1)l−1

Let ω be the Hamming weight ofF (x). The total number of two-input XOR gates required

in anα-Mul module isω− 2, since no XOR gate is needed for the first and the last coefficients

of F (x).



8

Fig. 3. α-Mul module
0

a0

al−1

a′

0

a′

l−1

al a′

l

a′

2l−1

a(k−1)l a′

(k−1)l

a′

m−1

am−1

a2l−1

am−1

Part 0

Part 1

Partk − 1

For parity prediction of thejth part of theα-Mul module, we have the following lemma where

A′ = αA andPFj
=
∑l−1

i=0 fjl+i.

Lemma 1: Let P (Aj) andP (A′

j) be the parities of the input and the expected output of the

jth part of theα-Mul module, respectively. Then,

P (A′

j) = ajl−1 + P (Aj) + a(j+1)l−1 + am−1PFj
.

Proof: Using (2) the proof is immediate.

Fig. 4 shows the parity prediction circuit of thejth part of theα-Mul module, whereP (x)

is predicted parity ofx. The parity of thejth part of F (x) is PFj
and is assumed to be known,

since it can be pre-computed. Thus, the corresponding AND gate is not really required. On the

other hand,F (x) can be a trinomial or a pentanomial and usually it can be chosen so that the

parities of all parts become zero, i.e.,PFj
= 0 for 0 ≤ j ≤ k − 1. In this case, the value of

ak−1,l−1 is not important and one XOR gate is removed. In the worst casethe circuit of Fig. 4

can be implemented with 3 two-input XOR gates. The total number of two-input XOR gates for

the whole parity prediction circuit is3k.

Hereafter, anα-Mul module together with its parity prediction circuit (PPC) is referred to

asα-Mul-P module. It should be mentioned that different partitioning of A andF can change



9

PFj

am−1

a(j+1)l−1

ajl−1

P (Aj)
P (A′

j)

Fig. 4. Parity prediction circuit of thejth part of theα-Mul module

the parity prediction circuit of theα-Mul module. Section VI presents a partitioning ofA and

F that reduces the number of XOR gates of each parity prediction circuit by two, i.e., parity

prediction circuit can be constructed by only one XOR gate.

B. Parity Prediction in Scalar Multiplication and Vector Addition Modules

In this work, scalar multiplication refers to multiplication of an element ofGF (2) by an

element ofGF (2m) and vector addition refers to addition of two elements ofGF (2m). For

bi ∈ GF (2) andA ∈ GF (2m) = (a0, a1, · · · , am−1), scalar multiplication ofbi andA is bi.A =

(bia0, bia1, · · · , biam−1). Thus,

P (bi.A) =bia0 + bia1 + · · · + biam−1 = bi(a0 + a1 + · · · + am−1) = biP (A). (3)

For A,B ∈ GF (2m), vector addition ofA andB is:

A + B =
m−1∑

i=0

aiα
i +

m−1∑

i=0

biα
i =

m−1∑

i=0

(ai + bi)α
i.

Thus,

P (A + B) =
m−1∑

i=0

(ai + bi) =
m−1∑

i=0

ai +
m−1∑

i=0

bi = P (A) + P (B). (4)

The circuit of the parity prediction, as defined in (3) and (4), are shown in Fig. 5 where they

needk two-input AND gates andk two-input XOR gates, respectively. These circuits for parity

bits are now included with the SM and the VA modules appropriately and the resulting new

modules are hereafter referred to as SM-P and VA-P.



10

C. Parity Checking Circuit

In order to detect errors in the multiple parity scheme, the predicted parity bits should be

compared with the corresponding actual parity bits. Actualparity bits are generated by parity

generating circuit. Fig. 6 shows the parity generator and the parity checker.

In Fig. 6, Z and Z̃ can be considered as the expected and the actual outputs of one of the

three modules discussed earlier.P (Z) and P (Z̃) are k-bit parities of Z and Z̃, respectively.

The result of bit by bit comparison ofP (Z) andP (Z̃) are ORed to signal any difference which

indicates an error. The parity generator is constructed by XOR trees which containl−1 two-input

XOR gates. Furthermore,k two-input XOR gates are required for comparison. Total numbers of

two-input XOR and OR gates required for a parity checker arem (= k(l − 1) + k) andk − 1,

respectively.

D. Polynomial Basis Multiplier with CED

To construct a bit-serial and a bit-parallel multiplier with concurrent error detection capability,

we will use PPC embedded modulesα-Mul-P, SM-P, and VA-P. Fig. 7 shows a bit-serial

multiplier with PPC.A andB are the inputs of the multiplier. RegisterD is initialized with A

and itsk-bit parity P (A). A parity checker can be at each of the three locations: L1, L2and

L3. In the next section, the frequency of check points will bediscussed.

Fig. 8 shows a bit-parallel multiplier with PPC. In the bit-parallel multiplier a parity checker

Fig. 5. PPC for a) SM module and b) VA module

(a) (b)

P (A + B)

k
k

k

P (A)

P (B)

1

0

kk

P (bi.A)P (A)

k − 1

bi

P (Ak−1)

P (A0)

P (A1)



11

Fig. 6. Multiple-bit parity checker

Parity Comparator

Parity Generator

1

1

1

1

1

1

error

P (Z̃)
Z̃

kP (Z)

k
m

l

l

l

Fig. 7. Bit-serial polynomial basis multipliers with parity prediction circuit

L3

L1

L2

SM−P

VA−P

m + k

bi

D

C

m + k

α-Mul-P

m + k

m + k

m + k

can be placed after each modules. Thus, there can be as many as3m − 2 error checkers for a

bit-parallel multiplier.

IV. ERRORDETECTION CAPABILITY

In this section, first the error model is explained. Then the probability of error detection at

the output of the circuit using the multiple parity method isdetermined. Finally, the frequency

of the check points is discussed.



12

Fig. 8. Bit-parallel polynomial basis multipliers with parity prediction circuit

VA−PSM−P

VA−PSM−P

VA−P

SM−P

SM−P

row 1

row i

row (m − 1)

α-Mul-P b2

α-Mul-P

C

bm−1

α-Mul-P

A, P (A) b0

b1

m + k m + km + k

m + k

m + km + k

m + k

m + km + k

A. Error Modelling

The effect of a fault, such as a transient fault, in one location of the multiplier circuit is

modelled by XORing an error vector with the expected correct ”value” of that location. The

ith bit of the error vector of a location being one implies that the ith bit of the value of the

location has changed from 0 to 1 or vise versa due to a fault. Ifthe location is one of the main

components (α-Mul-P, SM-P or VA-P), without loss of generality we can assume that the error

vector should be XORed with the output of the component. It is worth mentioning that the parity

prediction circuits, parity generators and parity checkers are assumed to be fault free or at least

self checking [9]. In this work, they are assumed to be fault free for the sake of simplicity. The

assumption appears to be reasonable, since in practice the number of parity bits,k, is much

less than the size of the input operands of the multiplier,m, and as it will be shown in Section

V that with a moderate number of parity bits the probability of error detection becomes quite

close to unity. As an example, form = 163, with 8 parity bits, the error detection probability is

approximately 0.996.

Let e = (e0, e1, · · · , em+k−1) be the representation of an error of a location in the multiplier.

The first m bits of e correspond to errors in an element, sayA ∈ GF (2m) that is part of the

value of that location. The remainingk bits of e correspond to errors in thek-bit parity vector



13

P (A). There is no error ife = (0, 0, · · · , 0). Thus, the number of possible errors is2m+k − 1.

We logically dividee into k parts each of lengthl + 1 = m
k

+ 1 bits where thejth part is

(ejl, ejl+1, · · · , ejl+l−1, em+j).

In the following, we investigate which kind of errors cannotbe detected by thek-bit parity

scheme.

B. Probability of Error Detection

Let eO be an odd parity error, i.e., the number of 1’s ineO is odd. Then the parity of at least

one of thek partitions is odd. Therefore,eO can be detected by the proposed CED method and

the probability of undetected error isPrU(eO) = 0.

Let eE be a nonzero even parity error. Sincek < m, there is at least one error,eE, such that all

of its partitions have even parity. Then the error cannot be detected. Accordingly,PrU(eE) ≥ 0.

Theorem 1: Let k be the number of parity bits of the scheme. Supposep is the probability

that ei = 1 for 0 ≤ i ≤ m + k − 1. The probability of error detection is given as follows:

PrD(e) = 1 −

[(
(1 − 2p)

m
k

+1 + 1

2

)k

− (1 − p)m+k

]

. (5)

Proof: PrD = 1−PrU wherePrU is the probability of undetected errors. As it is mentioned,

all nonzero errors with even parity in their partitions are undetectable. Thus, considering error

vectors are(m + k)-bit long and each of them hask partitions, first we need to compute the

probability of an(m
k

+ 1)-bit number with even parity.

Let Ei and Oi be the probabilities that ani-bit number has even parity and odd parity,

respectively. Thus,Ei = 1−Oi. Moreover, letq be the probability that a bit of the error vector

is zero, i.e.,q = 1 − p. We proceed in a recursive manner.

Ei+1 = qEi + pOi

= (1 − p)Ei + p(1 − Ei)

= (1 − 2p)Ei + p.



14

Let 1 − 2p = A andp = B. We determineEi for somei to find a closed formula:

E0 = 1

E1 = q

E2 = Aq + B

E3 = A2q + AB + B

E4 = A3q + A2B + AB + B

...

Ei = Ai−1q + Ai−2B + · · · + AB + B

= Ai−1q + B

(
Ai−1 − 1

A − 1

)

.

Now, we write the expression only in terms ofp:

Ei = (1 − 2p)i−1(1 − p) + p

(
(1 − 2p)i−1 − 1

(1 − 2p) − 1

)

= (1 − 2p)i−1(1 − p) −
(1 − 2p)i−1 − 1

2

= (1 − 2p)i−1(1 − p − 1/2) + 1/2

=
(1 − 2p)i + 1

2
.

The probability that an
(

m
k

+ 1
)
-bit partition of the error vector has even parity isEi=m

k
+1.

Moreover, the partitions are independent. Thus, the probability of having a vector with even

parity in each of its partitions is
(
Ei=m

k
+1

)k
or

(
(1 − 2p)

m
k

+1 + 1

2

)k

.

However, the zero vector should be excluded and hence,

PrU =

(
(1 − 2p)

m
k

+1 + 1

2

)k

− (1 − p)m+k.

As a result,

PrD = 1 −

[(
(1 − 2p)

m
k

+1 + 1

2

)k

− (1 − p)m+k

]

.



15

C. Frequency of the Check Points

Suppose that there are several multiple-bit errors in a location of the circuit of a PB multiplier.

For having an error detection capabilityPrD as given in Theorem 1, each of the above mentioned

locations in Section III-D should have a parity checker. This causes a very high area overhead

especially for bit-parallel multipliers. The following lemma helps us reduce the number of

checkers considerably.

Lemma 2: Suppose only a maximum of one multiple-bit error occurs per round of a bit-serial

multiplier or per row of a bit-parallel multiplier (see Fig.7 and Fig. 8). Then any such error

can be detected with the probabilityPrD, given in Section IV-B, using a parity checker at L3

of the bit-serial multiplier or a parity checker before the vertical input of every VA-P and one

parity checker after the final VA-P in the bit-parallel multiplier.

Proof: It should be verified if a detectable error vector can be changed to an undetectable

one after passing through a main component and before reaching one of the check points.

If a detectable error vector passes through anα-Mul-P module, it can be changed to an

undetectable one. However, the check points are located so that any error vector can reach one

of the check points without passing through anyα-Mul-P module. Therefore, one of the following

cases should be considered: 1) a detectable error vector passes through an SM-P module or 2)

a detectable error vector passes through a VA-P module or 3) both.

In the first case, ifbi = 0 then regardless of the other input value, the value of the output

vector and parity are zero. This is a correct result and thereis no error anymore. Ifbi = 1 then

the input and the output of the SM-P module are equal. Hence, the error vector passes SM-P

without any change.

In the second case, if only one of the two inputs of VA-P modulehas erroneous bits, the error

vector can pass the VA-P module without any change. Since a maximum of one multiple-bit

error is allowed in a round of a bit-serial multiplier or in a row of a bit-parallel multiplier, only

one of the inputs of VA-P can be erroneous.

In the third case, the error must occur before an SM-P module but after theα-Mul-P module

(in the corresponding row of a bit-parallel multiplier). Therefore, according to case 1 and case 2,

it passes SM-P and VA-P modules and reaches the parity checker.



16

V. RESULTS

Important performance measures for an error detection scheme include probability of error

detection, area and time overhead. In this section the results of our studies on these measures

are presented. The results can guide the choice of a proper number of parity bits for design

requirements.

A. Error Detection Probability

We simulated the error detection scheme using the C programming language for various parity

bits and for various values ofp. In our simulation, we generated a multiple-bit error with the

probability of p for each bit being 1. The error was at one of the locationsL1, L2 and L3 in

bit-serial multiplier (Fig. 7) and before or after the modules in bit-parallel one (Fig. 8). The

results of the simulation confirmed the results obtained from (5).

Fig. 9. Probability of error detection vs. parity-bit number

p = 0.001

p = 0.5

k

8 141210

0.95

6

0.8

0.9

162

0.85

1

4

0.75

Fig. 9 shows the probability of error detection for the multiple-bit parity scheme vsk. In the

figure, the small square and plus signs are the results of simulation for p = 0.5 andp = 0.001,

respectively, and the solid lines are from equation (5). Thevalue ofm is chosen to be 163 and the

corresponding field,GF (2163), is one of the finite fields included in the NIST recommendations

for elliptic curve digital signature algorithm (ECDSA).



17

As mentioned,p is the probability of an error vector bit being one. A reduction of p increases

the probability of having an all-zero error vector. This reduction means a reduction in the

probability of (nonzero) errors, which in turn means a reduction in the probability of undetectable

errors. Thus, with a reduction inp, the probability of error detection increases.

As shown in Fig. 9, as the number of parity bits increases, theprobability of error detection

quickly approaches unity so that it reaches 0.996 for 8 parity bits. The reason is that the

probability of having undetectable errors, which is equivalent to the probability of having error

vectors with even parity in all of their partitions, sharplyreaches zero.

B. Time and Area Overhead

We have described the multiple-bit parity scheme by VHDL to obtain a realistic approximation

of area overhead. In order to reduce the number of XOR gates inthe multiplier, field defining

polynomialF (x) can be chosen to be a trinomial or a pentanomial such that the parity of F (x)

in each partition is zero, i.e.,PFj
= 0. In Section VI-B, the complexity of the parity prediction

circuit for NIST recommended irreducible polynomials for ECDSA is discussed.

We used Modelsim to simulate the design for checking its correct functionality. We imple-

mented the multiple parity scheme on a Xilinx Spartan 3 (XC3S5000) FPGA using Xilinx ISE

7.1i.

1) Bit-Serial PB Multiplication: The circuit of a complete bit-serial multiplier with CED is

shown in Fig. 10. The circuit consists of two major blocks: 1)PB multiplier with PPC and 2)

checker. The parity generator of the checker is used at the initialization phase to generate the

parity of inputA. Note that no extra clock cycle is needed for the circuit shown in Fig. 10 when

compared to a bit-serial PB multiplier without CED.

From the first experiment, we obtained the area overhead percentage of the scheme for

multipliers of different field sizes. The number of parity bits for this experiment was chosen to

be 8 bits since the probability of error detection was withinacceptable range for our experiment

(≈ 0.996). Furthermore, the defining polynomial of the fields used in the experiment included

the NIST recommended irreducible polynomials for ECDSA. Fig. 11 shows the result of the

experiment.

As shown in the figure, the area overhead for a fixed number of parity bits tends to decrease

as the size of the field increases. The area overhead does not decrease in a strictly monotonic



18

Fig. 10. A complete bit-serial multiplier with CED

VA−P

SM−P

Checker

select

PB mul with CED

error

parity

generator

comparator

select

m + k

α-Mul-P

01

A

m + k

bi

m + k

m + k

D

m + k

1

m

k

k-bit
m + k

C

m + k

0

k

m m

m
k

m

way because the FPGA compiler used in the experiment optimizes the multiplier for different

field sizes differently. The worst area overhead percentageamong the fields implemented is for

GF (2201) and is still reasonably low, i.e.,< 12%.

In the second experiment, we implemented the scheme form = 163 andm = 283 using the

NIST recommended field defining polynomials for ECDSAF (x) = x163 + x7 + x6 + x3 + 1 and

F (x) = x283 + x12 + x7 + x5 + 1, respectively. Both of these polynomials are quite suitablefor

implementation because the parity prediction circuits of the scheme would be in the simplest

form since, in ak-bit parity scheme, we have:

{P (Fi) = 0 | 0 ≤ i ≤ k − 1 and2 ≤ k ≤ 20} .

The results are summarized in Fig. 12. As shown in the figure, overhead cost increases as

the number of parity bits increases. For all points in each graph depicted in the figure, a line is



19

100
 200
 300
 400
 500
 600


8.0


8.5


9.0


9.5


10.0


10.5


11.0


11.5


A
re

a
 O

v
e
rh

e
a
d
 (

%
)


Field Size


 Slice Overhead


Fig. 11. Area overhead for different size of fields

fitted as follows:

for GF (2163) : overhead= 0.50 × (# of parity bits)+ 5.94,

for GF (2283) : overhead= 0.30 × (# of parity bits)+ 6.44.
(6)

As expected according to the first experiment, the slope of the fitted line forGF (2163) is more

than that forGF (2283), i.e., the area overhead increase rate vs parity-bit numbers in GF (2283) is

lower. Furthermore, based on the experimental results, area overhead tends to increase linearly

except for very small numbers of parity bits.

Note that Equation (6) implies that even if one parity is usedfor each information bit, circuit

overhead would not be more than 100%, which is the overhead for the conventional dual modular

redundant (DMR) scheme.

2) Bit-Parallel PB Multiplication: A circuit diagram of a complete bit-parallel polynomial

basis multiplier with CED is depicted in Fig. 13. The parity checker is very similar to that

presented in Fig. 10. As shown in Fig. 13, once the inputsA and B are updated, the results

of the multiplication and error detection are ready after certain amount of delay due to the

propagation of various signals through the circuit where noclocking is used.

For bit-parallel multiplier, the first experiment was to measure the area overhead percentage



20

0
 5
 10
 15
 20


0


5


10


15


O
v
e
rh

e
a
d
 (

%
)


Number of parity bits


 Slice Overhead


 Linear Fit of Slice Overhead


(a) GF (2163)

0
 5
 10
 15
 20


0


5


10


O
v
e
rh

e
a
d
 (

%
)


Number of parity bits


 Slice Overhead


 Linear Fit of Slice Overhead


(b) GF (2283)

Fig. 12. Area overhead vs. parity-bit number

of the eight parity-bit scheme for multipliers of differentfield sizes. The results show that the

area overhead decreases as the field size increases (Fig. 14).

There is a major difference between the structure of bit-serial and bit-parallel PB multipliers

and this affects the area overhead considerably. A bit-serial PB multiplier contains registers

and shift registers, but a bit-parallel multiplier does not. Basically, registers and shift registers

are relatively area consuming components in FPGAs. Therefore, assuming that one wants to

implement a PB multiplier for a field of sizem, the area (in terms of slices) needed for a bit-

parallel PB multiplier without CED is significantly smaller thanm times the area needed for a

bit-serial multiplier. Accordingly, CED overhead on a bit-parallel PB multiplier is much higher

than that on a bit-serial one. This fact can be observed easily in the experiments reported in this

section.

The second experiment was to investigate the area overhead increase rate vs the number

of parity bits for the fieldGF (2144) (see Fig. 15). The field defining polynomial isF (x) =

x144 + x7 + x4 + x2 + 1. Since the bit-parallel implementation is very area consuming, our

simulation tools were able to correctly handle a bit-parallel multiplier for field size uptom = 144

with twenty parity bits. However, the results for higher values ofm are expected to be better



21

Fig. 13. A complete bit-parallel multiplier with CED

PB mul with CED Checker

VA−P

VA−P

VA−P

SM−P

SM−P

SM−P

SM−P

error

generator

parity

parity

checker

parity

checker

parity

checker

parity

checker

A

α-Mul-P

α-Mul-P

α-Mul-P

α-Mul-P

1

b1

b2

bm−1

b0
P (A)

C

k

m

m + k

m + k

m + k m + k

m + k

m + k

m + k

1

1

1

m + k

than the result of this experiment as one can infer from Fig. 14, where the number of parity bits

is fixed to eight.

Fig. 15 illustrates that as the number of parity bits increases, the area overhead for a bit-

parallel implementation increases at a greater rate compared to the bit-serial implementation.

However, the area overhead may be still acceptable for some applications. This is because for

obtaining a sufficiently high probability of error detection (say≈ 0.996), one needs only about

8 parity bits in the proposed scheme and it results in about50% area overhead, which is better

than100% overhead of the DMR scheme.

VI. A LTERNATIVE PARTITIONING

In this section another partitioning ofA andF is presented. The new partitioning reduces the

overhead of the parity prediction circuit of theα-Mul module.

As mentionedA =
∑m−1

i=0 aiα
i is partitioned intok parts. As before, we assume thatm is



22

60
 80
 100
 120
 140
 160


45


50


55


60


65


70


75


80


85


A
re

a
 O

v
e
rh

e
a
d
 (

%
)


Field Size


 Slice Overhead


Fig. 14. Area overhead for different size of fields

divisible by k and l = m/k. The alternative (vertical) partitioning is illustrated below:

a0 , a1 , a2 , · · · , ak−1 ,

ak , ak+1 , ak+2 , · · · , a2k−1 ,
... , ,

.. . , ,
... ,

a(l−1)k , a(l−1)k+1 , a(l−1)k+2 , · · · , alk−1

︸︷︷︸ ︸︷︷︸ ︸︷︷︸ ︸︷︷︸

A0 A1 A2 · · · Ak−1

For 0 ≤ j ≤ k − 1, the jth partition is:

Aj =
l−1∑

i=0

aik+jα
ik+j = (aj, ak+j, a2k+j, · · · , a(l−1)k+j).



23

0
 5
 10
 15
 20


0


20


40


60


80


overhead = 3.02 x (# of parity bits) + 23.92


A
re

a
 O

v
e

rh
e

a
d

 (
%

)


Number of parity bits


 Slice Overhead


 Linear Fit of Slice Overhead


Fig. 15. Area overhead vs. parity-bit number for the fieldGF (2144)

A. Structure of α-Mul Module

A′ = αA mod F (α)

=
k−1∑

j=0

l−1∑

i=0

aik+jα
ik+j+1 mod F (α)

=
k∑

j=1

l−1∑

i=0

aik+j−1α
ik+j mod F (α)

=
k−1∑

j=1

l−1∑

i=0

aik+j−1α
ik+j +

l−2∑

i=0

ak(i+1)−1α
k(i+1) + (am−1α

m mod F (α))

=
k−1∑

j=1

l−1∑

i=0

aik+j−1α
ik+j +

l−1∑

i=1

aki−1α
ki + am−1

m−1∑

i=0

fiα
i

=
k−1∑

j=1

l−1∑

i=0

(aik+j−1 + am−1fik+j) αik+j +
l−1∑

i=0

(aki−1 + am−1fki) αki

=
k−1∑

j=0

l−1∑

i=0

(aik+j−1 + am−1fik+j) αik+j

(7)

wherea−1 = 0.



24

Fig. 16 shows thejth part of theα-Mul module. The completeα-Mul module is shown in

Fig. 17. The number of gates is exactly the same as for the previous α-Mul module mentioned

in Section III-A, as only the position of the coordinates is changed.

Fig. 16. Thejth part of theα-Mul module

f(l−1)k+j

fik+j

fj

fk+j

aj−1

aik+j−1

a(l−1)k+j−1

ak+j−1

a′

j

a′

k+j

a′

ik+j

am−1

a′

(l−1)k+j

The following lemma discusses parity prediction in thejth part of theα-Mul module.

Lemma 3: Let P (Aj) andP (A′

j) be the input and the expected output parities of thejth part

of the α-Mul module, respectively andPFj
=
∑l−1

i=0 fik+j. Then,

P (A′

j) =







P (Aj−1) + am−1PFj
if 1 ≤ j ≤ k − 1,

P (Ak−1) + am−1(PF0
+ 1) if j = 0.

Proof: According to (7), we have:

A′

j =
l−1∑

i=0

(aik+j−1 + am−1fik+j) αik+j.

Therefore, for1 ≤ j ≤ k − 1, we have:

P (A′

j) = P

(
l−1∑

i=0

aik+j−1α
ik+j

)

+ P

(
l−1∑

i=0

am−1fik+jα
ik+j

)

= P (Aj−1) + am−1PFj
.



25

Fig. 17. α-Mul module

a(l−1)k

a(l−1)k−1

a′

k

a′

(l−1)k

a′

(l−1)k+1

a′

m−1

a0

ak−1

am−2

am−1

0

a′

1

a′

0

Part 1

Part 0

Partk − 1

For j = 0, we have:

P (A′

0) = P

(
l−1∑

i=0

aik−1α
ik

)

+ P

(
l−1∑

i=0

am−1fikα
ik

)

= (P (Ak−1) + am−1) + am−1PF0

= P (Ak−1) + am−1(PF0
+ 1).

PFj
’s can be pre-computed. Therefore, the maximum number of gates required for the parity

prediction circuit of each part of theα-Mul module is one XOR gate. No XOR gate is needed

for the parity prediction circuit of a part of theα-Mul module whenPF0
= 1 or PFj

= 0 for

0 < j < k. Furthermore, the probability of error detection can be computed by Theorem 1, since

the conditions are the same.

B. Comparison of α-Mul Modules

According to Section V-A, the scheme with eight partitions results in a fairly high probability

of error detection for values ofm that are of interest for elliptic curve cryptosystems. Therefore,

we have divided each of corresponding NIST recommended irreducible polynomials into eight

partitions using our horizontal and vertical partitioningmethods. Table I gives the number of



26

partitions with nonzero parity and the number of required two-input XOR gates for PPC of the

α-Mul module along with the NIST recommended irreducible polynomials.

TABLE I

XOR COUNTS FORPPCOF AN α-MUL MODULE FOR NIST RECOMMENDED IRREDUCIBLE POLYNOMIALS FORECDSA

APPLICATION

Irreducible polynomials No. of nonzero-parity partitions No. of 2-input XOR gates for PPC ofα-Mul

Horizontal partitioning Vertical partitioning Horizontal partitioning Vertical partitioning

F (x) = x163 + x7 + x6 + x3 + 1 0 4 15 4

F (x) = x233 + x74 + 1 2 2 17 2

F (x) = x283 + x12 + x7 + x5 + 1 0 4 15 4

F (x) = x409 + x87 + 1 2 2 17 2

F (x) = x571 + x10 + x5 + x2 + 1 0 2 15 2

As it can be seen in Table I, theα-Mul-P module is relatively area efficient in the vertical

paritioning than the horizontal partitioning. However, the α-Mul-P module is much less resource

consuming than any of the SM-P and VA-P modules. Therefore, the overheads resulting from

the vertical partitioning are expected to be very similar tothose presented in Section V for

horizontal partitioning.

VII. C ONCLUSIONS

In this paper, a multiple parity error detection scheme is introduced. The corresponding parity

prediction circuit is presented. In this scheme, the probability of error detection for random errors

is more than 75% and it quickly approaches unity for approximately 8 parity bits. The overhead

of our implementation tends to increase linearly as the number of parity bits increases. Results

show that the area overhead cost of the bit-serial implementation is lower than that for the bit-

parallel one. Both implementations have lower overhead thandual modular redundant scheme

for a sufficient number of parity bits. Additionally, no timeoverhead has been observed due to

the use of the scheme. Using the results provided in this paper, one can choose an appropriate

number of parity bits for specific applications.



27

ACKNOWLEDGMENTS

A preliminary version of this paper was presented at the 20thIEEE International Symposium

on Defect and fault Tolerance in VLSI Systems [2]. The work was supported in part by an

NSERC Strategic Project-grant awarded to Dr. Hasan.

REFERENCES

[1] G. B. Agnew, T. Beth, R. Mullin, and S. Vanstone. Arithmetic operations in GF (2m). Journal of Cryptography, 6(1):3–13,

1993.

[2] S. Bayat-Sarmadi and M. A. Hasan. Concurrent error detectionof polynomial basis multiplication over extension fields

using a multiple-bit parity scheme. InProceedings of the 20th IEEE International Symposium on Defect and fault Tolerance

in VLSI Systems (DFT), pages 102–110, Monterey, CA, 2005.

[3] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri. Erroranalysis and detection procedures for a hardware

implementation of the advanced encryption standard.IEEE Transactions on Computers, 52(4):1–14, April 2003.

[4] D. Boneh, R. Demillo, and R. Lipton. On the improtance of checking cryptographic protocols for faults. InProceedings

of the International Conference on the Theory and Applications of Cryptographic Techniques (Eurocrypt), pages 37–51.

Springer-Verlag, 1997.

[5] S. Fenn, M. Gossel, M. Benaissa, and D. Taylor. Online error detection for bit-serial multipliers inGF (2m). Journal of

Electronics Testing: Theory and Applications, 13:29–40, 1998.

[6] N. Joshi, K. Wu, and R. Karri. Concurrent error detection schemes for involution ciphers. InProceedings of the 6th

International Workshop on Cryptographic Hardware and Embedded Systems (CHES), pages 400–412. Springer-Verlag,

2004.

[7] R. Karri, K. Wu, P. Mishra, and Y. Kim. Concurrent error detection schemes for fault-based side-channel cryptanalysis of

symmetric block ciphers.IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 21(12):1509–

1517, December 2002.

[8] S. Lin and D. J. Costello, Jr.Error Control Coding: Fundamentals and Applications. Prentice Hall, Inc., 1983.

[9] T. Rao and E. Fujiwara.Error-Control Coding for Computer Systems. Prentice Hall, Inc., 1989.

[10] A. Reyhani-Masoleh and M. A. Hasan. Error detection in polynomial basis multipliers over binary extension fields.

In Proceedings of the 4th International Workshop on Cryptographic Hardware and Embedded Systems (CHES), pages

515–528. Springer-Verlag, 2002.

[11] A. Reyhani-Masoleh and M. A. Hasan. Towards fault-tolerant cryptographic computations over finite fields.ACM

Transactions on Embedded Computing Systems, 3(3):593–613, August 2004.

[12] A. Reyhani-Masoleh and M. A. Hasan. Fault detection architectures for field multiplication using polynomial bases.IEEE

Transactions on Computers, Special Issue on Fault Diagnosis and Tolerance in Cryptography, to appear in June 2006.

[13] H. Wu and M. A. Hasan. Efficient exponentiation of a primitive rootin GF (2m). IEEE Transactions on Computers,

46(2):162–172, February 1997.

[14] K. Wu, R. Karri, G. Kuznetsov, and M. Goessel. Parity based concurrent error detection for the advanced encryption

standard. InProceedings of the IEEE International Test Conference (ITC), October 2004.


