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Abstract

Cryptographic systems implemented using VLSI technokgexjuire a large number of circuits
and are prone to various types of faults. Attacks on crymiesgs that exploit erroneous results due
to deliberately injected faults in hardware have recendlgrbreported in the literature. As a result, the
detection and the correction of errors in cryptographicragiens have become an important issue. This
paper discusses the detection of multiple-bit errors duauitts in bit-serial and bit-parallel polynomial
basis (PB) multipliers over binary extension fields. Our rapph is based on multiple parity bits.
Experimental results presented here show that due to aeaserin the number of parity bits, the area
overhead tends to increase linearly, but the probabilitgrodr detection approaches unity fairly quickly,
e.g., for 8 parity bits. In bit-serial implementation ofca'(215%) PB multiplier using 8 parity bits, the
area overhead and the probability of error detectionl&rg9% and 0.996, respectively. This is achieved

without any increase in the computation time of the muldpli

Index Terms

polynomial basis multiplication, concurrent error deiat finite field.

. INTRODUCTION

Recently a number of schemes have been developed for thetidet@nd/or correction
of errors in hardware implementation of some cryptosystemsh as symmetric key block

ciphers and multipliers over extension fields, which aregrél components of some public key
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cryptosystems [3], [5], [6], [7], [10], [11], [12], [14]. Tén main reasons for increased interest in
such schemes include the following:

« Having correct functionality in the presence of faults: Ferample, the input size of
an extension field multiplier for today’s cryptographic &pgtions is between 160 and
2048 bits. Such multipliers may require millions of gates ifaplementation and with the
continued shrinking of VLSI circuits, the likelihood of fiisi in such a multiplier can be
higher. Hence, the issue of correct functionality of the tiplier in the presence of faults
is becoming more and more important.

« Avoiding fault-based attacks: Fault attacks are based mtting some faults into a cryp-
tosystem and observing any leak of secret information, gniign by analyzing erroneous
results produced by the cryptosystem due to the faults. Kample, in [4] Boneh et al.
presented the first fault-based attacks on public key ceystems, namely RSA and Rabin
signature scheme. Since RSA is usually implemented usinGhireese Remainder theorem
(CRT), having one correct signature and one faulty signatfithke same massage can lead
to the modulus factorization. In order to avoid such faalséd attacks, the cryptosystem
can be designed to detect errors in its computations andstiognproducing any erroneous
results as output.

One technique to detect errors in hardware implementasoontline testing or concurrent
error detection (CED). CED is used to concurrently test a aystile the system is operating
normally [9]. CED can test the circuit at full operating speaeithout stopping the system or
switching it to test mode. Accordingly, CED can detect transifaults, which may not be
detected in off-line testing, since they may not occur irt tesde.

This paper focuses on the detection of errors in extensidoh frailtipliers mainly because the
complexity of multiplication is much higher than the fieltgo basic operations namely addition
and subtraction. In addition, other complex finite field fametic operations such as inversion
and exponentiation over binary extension fields can be prefd by repeated multiplications
[1], [13].

In [5], Fenn et al. presented a concurrent error detectiberse for finite field multipliers over
binary extension fields. They used a parity bit for detecéngrs in bit-serial multipliers, using
a number of bases for representation of fields, defined by raducible all-one polynomial.

Thus, the scheme is not generic in the sense that it cannosée for other field defining



polynomials. In [10], [12], Reyhani-Masoleh and Hasan depedl a generic parity based error
detection scheme for both bit-serial and bit-parallel polyial basis multipliers. The scheme can
detect any odd number of erroneous bits. In this schemet jpgmity is developed through the
multiplier, and predicted output parity is compared to attutput parity. In case of inequality
of the parities, an error signal is given.

This paper presents a multiple parity scheme for both bigksand bit-parallel polynomial
basis multipliers over binary extension fields. The errotedigon capability of the scheme in
the presence of multiple-bit errors is given. The time arehasverhead of the scheme is also
investigated. The proposed scheme can be applied to ary fielid G F'(2™). Our experimental
results show that the area overhead tends to increase lyinesrthe number of parity bits
increases but the probability of undetected errors deeseqsite quickly. Furthermore, the area
overhead for the bit-serial implementation is quite lovg. efor 8 parity bits the area overhead
is 10.29% and the error detection probability is 0.996. The area meahfor a bit-parallel
implementation of the multiplier is greater than the cqomesling bit-serial one but it is still
lower than the conventionalual modular redundant systems. Whether it is bit-serial or bit-
parallel implementation, the proposed error detectioresw®) however, does not increase the
computation time of the multiplier.

The organization of this paper is as follows. In Sectiondimg preliminaries about polynomial
basis multiplication are discussed. A concurrent erroectein strategy is presented in Section
lll. In Section 1V, the error detection capability of the gche is investigated. Our experimental
results for this scheme are reported in Section V. Then @ecl presents an alternative

partitioning scheme. Finally, Section VIl gives a few camthg remarks.

[I. PRELIMINARIES

In this section, first polynomial basis multiplication isidity explained. Then three main
components for the construction of bit-serial and bit-paranultipliers are introduced.

Let F(z) = Y i, fiz" be anirreducible polynomial ové¥F'(2) of degreen. Leta € GF(2™)
be a root of F(z), i.e., F(«) = 0. Polynomial (or canonical) basis is defined as the following
set:

2 m—1
{170570[7“'705 }



Each elementd of GF(2™) can be represented using the polynomial basis (PB} as
St aial = (agay - am_ 1) Wherea; € GF(2).

The multiplication ofc and an arbitrary element of GF'(2™) can be represented with respect
to PB as:

m—1

aA =« Z a;a’ mod F(a)
i=0

m—1
= am-1fo + Z (@1 fi + ai—1) o
i=1

Hereafter, the module that receivelse GF(2™) as input and computesA is called a-Mul
module.
Let C' be the product of two element$ and B of GF'(2™). Then PB representation 6f is

as follows:

m—1
C = AB mod F(a) = A) b’ mod F(a)

=0

(1)

3

bi. AD = (b A 1 5 A2 o AW by A,

Il
o

where A® = A and AW = oA, In (1), ' is a scalar multiplication, sincé; € GF(2)
and A® ¢ GF(2™), and +' is a vector addition, since its two operands are the elesenht
GF(2™). Modules that perform scalar multiplication and vector iadd are hereafter referred
to as SM module and VA module, respectively. These two madaled thea-Mul module
discussed earlier are the main components of a PB multipheaccordance with 1 and using
these three main components, bit-serial and bit-paralBInRiltipliers can be constructed as

shown in Fig. 1.

I1l. CONCURRENTERRORDETECTION STRATEGY

In this section, an error detection scheme for PB multiplisipresented. Errors may be caused
by different types of faults such as open faults, short ¢(prig) faults, and/or stuck-at faults.
Furthermore, the faults can be transient or permanent. Daé @ this scheme is to detect as
many errors as possible including single and multiple strdowards this goal, we use a parity

based method. One-bit parity is able to detect the presehemyoodd number of erroneous



(a) Bit-serial (b) Bit-parallel

Fig. 1. Polynomial-basis multiplication

bits [8]. Here, we use additional parity bits in order to e&se error detection capability. In

particular, anm-bit input is divided intok parts and for each part one parity bit is used. Thus,

the m-bit PB representation ol € GF(2™) is divided as follows:
A= (A07 Ala A27 T 7Ak:—l)-
The length of4;, 0 <j <k -1, s

[ %] +1 if j <m modE;
lj = .
|7 otherwise.

For the sake of simplicity, we assume thdt: and the length of each partis= 7, i.e.,

-1

ik i
Aj =ao E A+ = (ajk> Ajk+1, Ajk+2, " " 7ajk+l—1)-
i=0

Parity of A, is denoted as”(A;). Using parity bits ofA;’s, a k-bit parity of A is formed as

follows:
P<A> = (P(AO)ap(A1>7P(A2)7 JP(Ak—l))'

Then using the parity?(A), we construct encoded as follows:

E(A) = (A07A17A27 e ;Ak_l,P(A)).



Unlike A which is represented withn bits, the field defining irreducible polynomid(x)
requiresm + 1 bits. In order to have the same length for partitioning, welwke the leading

coefficient of F'(x) and divideF'(x) — 2™ into k parts as follows:
F(x) — .fL'm = (FO7F17 s 7Fk71)-

The parity bit of /3, 0 < j < k — 1, is denoted as’(F}).

One of the important issues in detecting errors in the outpuwat finite field multiplier (or an
arbitrary circuit, in general) is parity prediction. Thdt& refers to the task of determining the
parity of the expected outputs by using the correspondipgtsias well as the functionality of
the circuit. As mentioned in Section I, a polynomial basisltiplier consists of three modules:
1) a-Mul module 2) SM module, and 3) VA module. In the followindnet parity prediction

method for each of these modules will be discussed.

A. Multiple Parity Prediction in a-Mul Module

In the following, the output parity of an-Mul module is predicted.
Let A" = A, i.e.,

-1 -1

-1

/ +1 l i+1 k—1)l +1

A = E aia” + o E CLlJriOélJr + -+ Oé( ) E a(k_l)lHa”
1=0 1=0 =0

-1 -1
= (0 + Z a,-_lai) + o <al_1 + Z al+i_1o/> +
i=1 i=1

-1
- (a(k—l)l—l + Z a(k—1)z+i—10/> + ag_1a™.
i=1

A’ must be reduced by'(a) = o™ 4 327 F;(«) as follows:

J]=

-1 -1
A" mod F(a) = (0 + Z ai_lai> + o (al_l + Z alﬂ»_lai) +e-
i=1 i=1
-1 k—1
+ k=D (a(k—l)l—l + Z a(k—l)z+z’—10/> + A1 (Z F; (a)) )

i=1 j=0



Now, we group the expression and obtain

-1 -1
A" mod F(a) = (O + Z ai10 + am_q Z fiozi>
i=1 =0

-1 -1
l 7 7
+a a1+ E Al4i—100 + Q-1 E Jivia
i=1 i=0

-1 -1
4o D (a(kl)ll + Z a(kfl)lJriflOfi + Q-1 Z f(kl)l+iai> .
i=1 =0

Thus, the;*" part of A’ for 0 < j < k — 1 can be derived as:

-1 -1
, i i i
A = o (ajl—l + E Ajii—10" + Ay E fjl-i—z‘a) (2
i=1 =0

wherea_, = 0. Fig. 2 shows a circuit diagram implementiay. In practice, many coefficients

of F'(x) are zero and hence the corresponding XOR gates in Fig. 2 areerded. By cascading

k copies of the circuit shown in Fig. 2, amMul module can be constructed as illustrated in

Fig. 3.

Fig. 2. Thej*" part of thea-Mul module
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Let w be the Hamming weight of'(z). The total number of two-input XOR gates required

in an a-Mul module isw — 2, since no XOR gate is needed for the first and the last coeftiie

of F(x).



Fig. 3. a-Mul module
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For parity prediction of thg** part of thea-Mul module, we have the following lemma where
A= aA and PF]. = Zi;(l) fjl+i-
Lemma 1: Let P(A;) and P(A}) be the parities of the input and the expected output of the

4t part of thea-Mul module, respectively. Then,

P(A}) = aj1+ P(Aj) + agiyi-1 + am1 Pr;.
Proof: Using (2) the proof is immediate. [ ]

Fig. 4 shows the parity prediction circuit of thé" part of thea-Mul module, whereP(x)
is predicted parity of:. The parity of thej"" part of F(z) is P, and is assumed to be known,
since it can be pre-computed. Thus, the corresponding AN iganot really required. On the
other hand,F'(x) can be a trinomial or a pentanomial and usually it can be chesethat the
parities of all parts become zero, i.d%;, = 0 for 0 < j < k — 1. In this case, the value of
ax—1,-1 1S not important and one XOR gate is removed. In the worst taseircuit of Fig. 4
can be implemented with 3 two-input XOR gates. The total nemd two-input XOR gates for
the whole parity prediction circuit i8k.

Hereafter, ann-Mul module together with its parity prediction circuit (Bl is referred to

as a-Mul-P module. It should be mentioned that different pamiing of A and F' can change
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Fig. 4. Parity prediction circuit of thg*" part of thea-Mul module

the parity prediction circuit of the-Mul module. Section VI presents a partitioning dfand
F that reduces the number of XOR gates of each parity predidiccuit by two, i.e., parity

prediction circuit can be constructed by only one XOR gate.

B. Parity Prediction in Scalar Multiplication and Vector Addition Modules

In this work, scalar multiplication refers to multiplicati of an element of7F(2) by an
element of GF'(2™) and vector addition refers to addition of two elementsGaf(2™). For
b; € GF(2) and A € GF(2™) = (ag, a1, - ,am_1), Scalar multiplication ob; and A is b;. A =

(biao, bial, ceey biam,l). ThUS,

P(bIA) Zbiao + bial + -+ biam—l = bi(ao +a;+ -+ am_l) = bZP(A) (3)

For A, B € GF(2™), vector addition ofA and B is:

m—1 m—1 m—1
A+ B= Z a;o’ + Z bia' = Z(ai + b;)a’.
=0 =0 =0
Thus,
m—1 m—1 m—1
P(A+B)=> (ai+b)=Y a;+ Y b =P(A)+P(B). ()
=0 =0 =0

The circuit of the parity prediction, as defined in (3) and, @)} shown in Fig. 5 where they
needk two-input AND gates and two-input XOR gates, respectively. These circuits for fyari
bits are now included with the SM and the VA modules apprdglyaand the resulting new

modules are hereafter referred to as SM-P and VA-P.
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C. Parity Checking Circuit

In order to detect errors in the multiple parity scheme, thedjgted parity bits should be
compared with the corresponding actual parity bits. Acpelity bits are generated by parity
generating circuit. Fig. 6 shows the parity generator ardpthrity checker.

In Fig. 6, Z and Z can be considered as the expected and the actual outputsajfdhe
three modules discussed earliét(Z) and P(Z) are k-bit parities of Z and Z, respectively.
The result of bit by bit comparison dP(Z) and P(Z) are ORed to signal any difference which
indicates an error. The parity generator is constructed ®RXrees which contaifi-1 two-input
XOR gates. Furthermoré, two-input XOR gates are required for comparison. Total nerslof
two-input XOR and OR gates required for a parity checkerraré= k(I — 1) + k) andk — 1,
respectively.

D. Polynomial Basis Multiplier with CED

To construct a bit-serial and a bit-parallel multiplier vitoncurrent error detection capability,
we will use PPC embedded modulesMul-P, SM-P, and VA-P. Fig. 7 shows a bit-serial
multiplier with PPC.A and B are the inputs of the multiplier. Registér is initialized with A
and its k-bit parity P(A). A parity checker can be at each of the three locations: L1ah@
L3. In the next section, the frequency of check points willdigcussed.

Fig. 8 shows a bit-parallel multiplier with PPC. In the bitrplel multiplier a parity checker

Fig. 5. PPC for a) SM module and b) VA module

P(Ao) 0

k| DA } k
P(A?L I 7Lp(bi.A) k

P(Ak-1)

(a) (b)
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Fig. 6. Multiple-bit parity checker
P(2) k SRR :

Parity Generator

Fig. 7. Bit-serial polynomial basis multipliers with parity prediction circuit
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can be placed after each modules. Thus, there can be as many -a® error checkers for a

bit-parallel multiplier.

IV. ERRORDETECTION CAPABILITY

In this section, first the error model is explained. Then thabpbility of error detection at
the output of the circuit using the multiple parity methoddestermined. Finally, the frequency

of the check points is discussed.
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Fig. 8. Bit-parallel polynomial basis muIAFipIiv(sgs) with parity prediction circuit
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A. Error Modelling

The effect of a fault, such as a transient fault, in one lacaf the multiplier circuit is
modelled by XORing an error vector with the expected correetue” of that location. The
i'" bit of the error vector of a location being one implies that i bit of the value of the
location has changed from 0 to 1 or vise versa due to a faulhelfiocation is one of the main
components-Mul-P, SM-P or VA-P), without loss of generality we can as®uthat the error
vector should be XORed with the output of the component. Itastivmentioning that the parity
prediction circuits, parity generators and parity cheslame assumed to be fault free or at least
self checking [9]. In this work, they are assumed to be fale ffor the sake of simplicity. The
assumption appears to be reasonable, since in practiceuthben of parity bitsk, is much
less than the size of the input operands of the multiplierand as it will be shown in Section
V that with a moderate number of parity bits the probabilifyeoror detection becomes quite
close to unity. As an example, for = 163, with 8 parity bits, the error detection probability is
approximately 0.996.

Let e = (e, e1, - ,emik_1) be the representation of an error of a location in the miugtipl
The firstm bits of e correspond to errors in an element, sdy= GF(2™) that is part of the

value of that location. The remainingbits of e correspond to errors in thie-bit parity vector
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P(A). There is no error it = (0,0, ---,0). Thus, the number of possible errors2i8™ — 1.

We logically dividee into k parts each of length+ 1 = = + 1 bits where thej™ part is

(6jz7 Cjl+1y " 5 ChlHl-1, em—i—j)‘

In the following, we investigate which kind of errors canrim# detected by thé-bit parity

scheme.

B. Probability of Error Detection

Let ep be an odd parity error, i.e., the number of 1'sepn is odd. Then the parity of at least
one of thek partitions is odd. Therefore,, can be detected by the proposed CED method and
the probability of undetected error Bry(ep) = 0.

Let e be a nonzero even parity error. Sincec m, there is at least one erraerg, such that all
of its partitions have even parity. Then the error cannot éteated. AccordinglyPry(eg) > 0.

Theorem 1. Let £ be the number of parity bits of the scheme. Suppose the probability
thate; = 1 for 0 <i < m+ k — 1. The probability of error detection is given as follows:

Prp(e) =1 — ((1—2p)r+1—|—1) g 5)

2
Proof: Prp = 1—Pry wherePry is the probability of undetected errors. As it is mentioned,

all nonzero errors with even parity in their partitions areletectable. Thus, considering error
vectors are(m + k)-bit long and each of them hds partitions, first we need to compute the
probability of an(%* + 1)-bit number with even parity.

Let F; and O; be the probabilities that aibit number has even parity and odd parity,
respectively. Thusf; = 1 — O;. Moreover, letg be the probability that a bit of the error vector

is zero, i.e.,g = 1 — p. We proceed in a recursive manner.
Ei1 = qE; + pO;
= (1—-p)E; +p(1 - E))

= (1—-2p)E; +p.



Let1 —2p = A andp = B. We determineF; for some: to find a closed formula:

E():l
E1=q

E;=A%’¢+ AB+ B

E,= A%+ A*B+ AB+ B

E,=A"'+A2B+...+AB+B
) Ai—l -1
=AY+ B | — .
v ()
Now, we write the expression only in terms af

Fm =g (S)
=(1-2p)"(1—p) — L= Zpg)i_l =
=(1-2p)"(1—p—1/2)+1/2
_(=2p) 41

14

The probability that ar(’ + 1)-bit partition of the error vector has even parity 5 ;.

Moreover, the partitions are independent. Thus, the pibtyabf having a vector with even

parity in each of its partitions iséE':%H)k or

((1 —2p) "t + 1)’“
5 .

However, the zero vector should be excluded and hence,

1—2p) 5t +1\"
PT’U — (( p) k + ) o (1 _p)m+k

2

As a result,

Prp=1-— [<<1_2p)2%+1+1)k_(1_p)m+k] '
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C. Frequency of the Check Points

Suppose that there are several multiple-bit errors in dilmtaf the circuit of a PB multiplier.
For having an error detection capabil®-, as given in Theorem 1, each of the above mentioned
locations in Section IlI-D should have a parity checker.sTbauses a very high area overhead
especially for bit-parallel multipliers. The following nema helps us reduce the number of
checkers considerably.

Lemma 2: Suppose only a maximum of one multiple-bit error occurs pend of a bit-serial
multiplier or per row of a bit-parallel multiplier (see Fid@. and Fig. 8). Then any such error
can be detected with the probabilifyrp, given in Section IV-B, using a parity checker at L3
of the bit-serial multiplier or a parity checker before thertical input of every VA-P and one
parity checker after the final VA-P in the bit-parallel mplter.

Proof. It should be verified if a detectable error vector can be chdrig an undetectable
one after passing through a main component and before repomie of the check points.

If a detectable error vector passes throughcaMul-P module, it can be changed to an
undetectable one. However, the check points are locatedasahy error vector can reach one
of the check points without passing through aniul-P module. Therefore, one of the following
cases should be considered: 1) a detectable error vectsep#sough an SM-P module or 2)
a detectable error vector passes through a VA-P module ootB) b

In the first case, i, = 0 then regardless of the other input value, the value of theutut
vector and parity are zero. This is a correct result and tleen® error anymore. Ib; = 1 then
the input and the output of the SM-P module are equal. Hemeegtror vector passes SM-P
without any change.

In the second case, if only one of the two inputs of VA-P modhds erroneous bits, the error
vector can pass the VA-P module without any change. Sinceyanman of one multiple-bit
error is allowed in a round of a bit-serial multiplier or in @ of a bit-parallel multiplier, only
one of the inputs of VA-P can be erroneous.

In the third case, the error must occur before an SM-P moduti@fter thea-Mul-P module
(in the corresponding row of a bit-parallel multiplier). diefore, according to case 1 and case 2,

it passes SM-P and VA-P modules and reaches the parity ahecke [ |
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V. RESULTS

Important performance measures for an error detectionnsehaclude probability of error
detection, area and time overhead. In this section thetsestilour studies on these measures
are presented. The results can guide the choice of a propeberuof parity bits for design

requirements.

A. Error Detection Probability

We simulated the error detection scheme using the C progmagnianguage for various parity
bits and for various values gf. In our simulation, we generated a multiple-bit error witte t
probability of p for each bit being 1. The error was at one of the locatidns L2 and L3 in
bit-serial multiplier (Fig. 7) and before or after the moekllin bit-parallel one (Fig. 8). The
results of the simulation confirmed the results obtainedf(s).

Fig. 9. Probability of error detection vs. parity-bit number

Fig. 9 shows the probability of error detection for the npl#ibit parity scheme vs. In the
figure, the small square and plus signs are the results ofiaiomni for p = 0.5 andp = 0.001,
respectively, and the solid lines are from equation (5). Vdlae ofm is chosen to be 163 and the
corresponding fieldw £(21%3), is one of the finite fields included in the NIST recommendgtio

for elliptic curve digital signature algorithm (ECDSA).
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As mentionedp is the probability of an error vector bit being one. A redantpf p increases
the probability of having an all-zero error vector. This wuetion means a reduction in the
probability of (nonzero) errors, which in turn means a redurcin the probability of undetectable
errors. Thus, with a reduction in, the probability of error detection increases.

As shown in Fig. 9, as the number of parity bits increases ptiobability of error detection
quickly approaches unity so that it reaches 0.996 for 8 ypaiits. The reason is that the
probability of having undetectable errors, which is eqlg@aato the probability of having error

vectors with even parity in all of their partitions, sharpBaches zero.

B. Time and Area Overhead

We have described the multiple-bit parity scheme by VHDL bitat a realistic approximation
of area overhead. In order to reduce the number of XOR gatéseimultiplier, field defining
polynomial F'(z) can be chosen to be a trinomial or a pentanomial such thatattiey pf F'(x)
in each partition is zero, i.eRPr, = 0. In Section VI-B, the complexity of the parity prediction
circuit for NIST recommended irreducible polynomials fo€EEBSA is discussed.

We used Modelsim to simulate the design for checking itsemdrfunctionality. We imple-
mented the multiple parity scheme on a Xilinx Spartan 3 (XCB®§ FPGA using Xilinx ISE
7.1i.

1) Bit-Serial PB Multiplication: The circuit of a complete bit-serial multiplier with CED is
shown in Fig. 10. The circuit consists of two major blocks:PB multiplier with PPC and 2)
checker. The parity generator of the checker is used at thaliration phase to generate the
parity of input A. Note that no extra clock cycle is needed for the circuit shawFig. 10 when
compared to a bit-serial PB multiplier without CED.

From the first experiment, we obtained the area overheadepexge of the scheme for
multipliers of different field sizes. The number of paritysofor this experiment was chosen to
be 8 bits since the probability of error detection was withateptable range for our experiment
(=~ 0.996). Furthermore, the defining polynomial of the fieldedugn the experiment included
the NIST recommended irreducible polynomials for ECDSA.. Hifj shows the result of the
experiment.

As shown in the figure, the area overhead for a fixed number riffydaits tends to decrease

as the size of the field increases. The area overhead doescm@ade in a strictly monotonic
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Fig. 10. A complete biltﬁ;serial multiplier with CED
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way because the FPGA compiler used in the experiment omsrilze multiplier for different
field sizes differently. The worst area overhead percentageng the fields implemented is for
GF(2%") and is still reasonably low, i.es 12%.

In the second experiment, we implemented the schemenfer 163 andm = 283 using the
NIST recommended field defining polynomials for ECD$Az) = 263 + 27 + 25 + 23 + 1 and
F(x) = 2?8 + 212 + 27 + 2° + 1, respectively. Both of these polynomials are quite suitddite
implementation because the parity prediction circuitsha scheme would be in the simplest

form since, in ak-bit parity scheme, we have:
{P(F;))=0|0<i<k-—1and2 <k <20}.

The results are summarized in Fig. 12. As shown in the figuverhead cost increases as

the number of parity bits increases. For all points in ea@plgrdepicted in the figure, a line is



19

11.5 o

11.0 /

. —#&— Slice Overhead
10.5 -

10.0

\ I/I\_//\_

9.0

\

Area Overhead (%)

8.0

T T T T T T T T T T
100 200 300 400 500 600
Field Size

Fig. 11. Area overhead for different size of fields

fitted as follows:

for GF(2'%%) : overhead= 0.50 x (# of parity bits)+ 5.94,
(6)
for GF(2**%) : overhead= 0.30 x (# of parity bits)+ 6.44.

As expected according to the first experiment, the slopeefitted line forG F(2!%%) is more
than that forGF'(22%%), i.e., the area overhead increase rate vs parity-bit nusnihes F/(22%) is
lower. Furthermore, based on the experimental results, averhead tends to increase linearly
except for very small numbers of parity bits.

Note that Equation (6) implies that even if one parity is u@deach information bit, circuit
overhead would not be more than 100%, which is the overheatiéaconventional dual modular
redundant (DMR) scheme.

2) Bit-Parallel PB Multiplication: A circuit diagram of a complete bit-parallel polynomial
basis multiplier with CED is depicted in Fig. 13. The parityecker is very similar to that
presented in Fig. 10. As shown in Fig. 13, once the inplitand B are updated, the results
of the multiplication and error detection are ready aftertate amount of delay due to the
propagation of various signals through the circuit wherecloaking is used.

For bit-parallel multiplier, the first experiment was to ragee the area overhead percentage
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Fig. 12. Area overhead vs. parity-bit number

of the eight parity-bit scheme for multipliers of differefitld sizes. The results show that the
area overhead decreases as the field size increases (Fig. 14)

There is a major difference between the structure of biekand bit-parallel PB multipliers
and this affects the area overhead considerably. A bigls&B multiplier contains registers
and shift registers, but a bit-parallel multiplier does.ridasically, registers and shift registers
are relatively area consuming components in FPGAs. Thergssuming that one wants to
implement a PB multiplier for a field of size:, the area (in terms of slices) needed for a bit-
parallel PB multiplier without CED is significantly smalldnanm times the area needed for a
bit-serial multiplier. Accordingly, CED overhead on a barpllel PB multiplier is much higher
than that on a bit-serial one. This fact can be observedyeiasihe experiments reported in this
section.

The second experiment was to investigate the area overmeadase rate vs the number
of parity bits for the fieldGF(2!%) (see Fig. 15). The field defining polynomial i8(z) =
o+ 27 + 2% + 22 + 1. Since the bit-parallel implementation is very area corisgmour
simulation tools were able to correctly handle a bit-patatiultiplier for field size upton = 144

with twenty parity bits. However, the results for higheruwes ofm are expected to be better
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than the result of this experiment as one can infer from Hgwihere the number of parity bits
is fixed to eight.

Fig. 15 illustrates that as the number of parity bits incesaghe area overhead for a bit-
parallel implementation increases at a greater rate cadptr the bit-serial implementation.
However, the area overhead may be still acceptable for s@pkcations. This is because for
obtaining a sufficiently high probability of error detectigsay~ 0.996), one needs only about
8 parity bits in the proposed scheme and it results in aboit area overhead, which is better
than 100% overhead of the DMR scheme.

VI. ALTERNATIVE PARTITIONING

In this section another partitioning of and F' is presented. The new partitioning reduces the
overhead of the parity prediction circuit of theMul module.

As mentionedA = 37" ' a;a’ is partitioned intok parts. As before, we assume thatis
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divisible by £ andi = m/k. The alternative (vertical) partitioning is illustrateelbw:

Qo ) aj ) a2 )
ag ) Qg1 ) Qg2 )
Y Y Y
-1k > a-Dk+1 5 AU-1k+2
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For0 < j < k — 1, the j** partition is:
-1
-y
Aj = i@ = (a5, ey, Aok
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y Q-1

y A2k—1
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A. Sructure of a-Mul Module

A" = aA mod F(a)

k—1 1—1
= g E iy ;0 F T mod F(a)
=0 i=0
Eo1-1
= g E aikﬂ-_lamﬂ mod F'(«)
j=1 i=0
k—1 1-1
- ik+ i+1 m
= g E Qi j10" T 4 E Ale(i+1) oM )—l—(am_la mod F(«))
7j=1 =0
k—1 1-1
- Qjf45— 104 7 + aszla +am 1 fz
7=1 =0
k=1 1-1 -1
_ E E zk+ §
- azk+] 1+ Qe 1fzk+] / + a/kl 1+ Qe 1fk1>
7j=1 =0
k=1 1-1
_ k+
= E E (Qikgj—1 + Am1 fikgs) @7
=0 i=0
wherea_; = 0.

23

(7)
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Fig. 16 shows thg'" part of thea-Mul module. The complete-Mul module is shown in
Fig. 17. The number of gates is exactly the same as for thequew-Mul module mentioned

in Section llI-A, as only the position of the coordinates snged.

Fig. 16. Thej'" part of thea-Mul module
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The following lemma discusses parity prediction in tH& part of thea-Mul module.
Lemma 3: Let P(A;) and P(A’) be the input and the expected output parities of tfigoart

of the a-Mul module, respectively anér, = Zﬁ;é fik+j. Then,

P(Aj_1) + am-1Pr, if 1<j<k-1,

P(Ag-1) + am—1(Pp, +1) if j=0.
Proof: According to (7), we have:

P(A)) =

-1

A;‘ - Z (Giktj—1 + Qm—1 finsj) o,

=0
Therefore, forl < j <k — 1, we have:

-1 -1
P(A}) =P (Z aik+j—106ik+j> +P (Z am—lfik+jaik+j>
1=0 =0

= P(Aj_l) + am_lij.
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Fig. 17. «-Mul module
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For j = 0, we have:
-1 -1
P<A6) =P ( aiklOéik> + P <Z amlfiko/k>
=0 =0
= (P(Ak-1) + am—1) + am—1Pr,
= P(Akfl) + am,1<PFO + 1)
[ |
Pr,'s can be pre-computed. Therefore, the maximum number @sgatquired for the parity
prediction circuit of each part of the-Mul module is one XOR gate. No XOR gate is needed
for the parity prediction circuit of a part of the-Mul module whenPr, = 1 or Pr, = 0 for
0 < j < k. Furthermore, the probability of error detection can be potad by Theorem 1, since

the conditions are the same.

B. Comparison of a-Mul Modules

According to Section V-A, the scheme with eight partitioesults in a fairly high probability
of error detection for values ofi that are of interest for elliptic curve cryptosystems. Hiere,
we have divided each of corresponding NIST recommendeduaible polynomials into eight

partitions using our horizontal and vertical partitioningethods. Table | gives the number of
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partitions with nonzero parity and the number of required-tmput XOR gates for PPC of the
a-Mul module along with the NIST recommended irreducibleypoimials.

TABLE |

XOR coOuNTS FORPPCOF AN a-MUL MODULE FOR NIST RECOMMENDED IRREDUCIBLE POLYNOMIALS FORECDSA

APPLICATION
Irreducible polynomials No. of nonzero-parity partitions No. of 2-input XOR gates for PPC af-Mul
Horizontal partitioning| Vertical partitioning | Horizontal partitioning| Vertical partitioning
Flz)=a2'% 42" +2° + 234+ 1 0 4 15 4
Fx) =2 4+ 2™ +1 2 2 17 2
Flx) =2 422 + 2" +2° +1 0 4 15 4
F(z) = 2" + 257 +1 2 2 17 2
Flx) =2 + 2" + 25+ 22 +1 0 2 15 2

As it can be seen in Table I, the-Mul-P module is relatively area efficient in the vertical
paritioning than the horizontal partitioning. Howevere ti-Mul-P module is much less resource
consuming than any of the SM-P and VA-P modules. Thereftwe,otverheads resulting from
the vertical partitioning are expected to be very similartiose presented in Section V for

horizontal partitioning.

VII. CONCLUSIONS

In this paper, a multiple parity error detection scheme iatuced. The corresponding parity
prediction circuit is presented. In this scheme, the proitabf error detection for random errors
is more than 75% and it quickly approaches unity for appratety 8 parity bits. The overhead
of our implementation tends to increase linearly as the raralb parity bits increases. Results
show that the area overhead cost of the bit-serial impleatient is lower than that for the bit-
parallel one. Both implementations have lower overhead thal modular redundant scheme
for a sufficient number of parity bits. Additionally, no tintverhead has been observed due to
the use of the scheme. Using the results provided in thisrpape can choose an appropriate

number of parity bits for specific applications.
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