
Hardware Implementation of the Compression

Function for Selected SHA-3 Candidates

A. H. Namin and M. A. Hasan

Department of Electrical and Computer Engineering
University of Waterloo

Waterloo, Ontario, Canada
Email: {anamin, ahasan}@uwaterloo.ca

Abstract. Hardware implementation of the main building block (com-
pression function) for five different SHA-3 candidates is presented. The
five candidates, namely Blue Midnight Wish, Luffa, Skein, Shabal, and
Blake have been considered since they present faster software implemen-
tation results compared to the rest of the SHA-3 proposals. The com-
pression functions realized in hardware create the message digest of size
256 bits. We report both ASIC and FPGA implementations. The results
allow an easy comparison for hardware performance of the candidates.

Key words: Hash functions, SHA-3, Hardware, Blue Midnight Wish,
Luffa, Skein, Shabal, Blake.

1 Introduction

Hash functions have many applications in cryptography mainly in digital signa-
tures, message authentication codes (MACs), and other forms of authentication
[1]. A public competition recently organized by the National Institute of Stan-
dard and Technology (NIST) is underway to select the new Standard Hash Al-
gorithm (SHA-3) [2]. The competition is in response to a weakness found in the
SHA family of hash functions [6]. Fifty one submitted algorithms have advanced
to the first round of the competition. The source code of these algorithms in C
language is available through the NIST SHA-3 webpage [2]. Source codes can
be easily compiled for different platforms to measure the performance of each of
the proposals. For a complete list of software performance one should refer to
ECRYPT Benchmarking of All Submitted Hashes (EBASH) [4] or the SHA-3
zoo website [3].

Unfortunately small percentage of the proposals include hardware implemen-
tation results of their work. Also, for the limited number of proposals that were
implemented in hardware, different technologies and platforms (ASIC or FPGA)
were used. This makes a fair comparison of the implementation results almost
impossible. The main motivation behind this work is to address this issue by im-
plementing a group of SHA-3 candidates using the same technology and applying
the same design approach. We then compare the results of our implementations
of the SHA-3 candidates with that of SHA-2.

2 A. H. Namin and M. A. Hasan

The SHA-3 candidates we consider here are: Blue Midnight Wish, Luffa,
Skein, Shabal and Blake [7]-[11]. These five algorithms are selected since they
present faster software implementation results compared to the rest of the pro-
posals and are suitable for hardware implementation [5].

2 Design Approach

In general, most hash algorithms use an iterative process to hash the arbitrary
size input by successively processing fixed size blocks of the input [1]. This is
achieved through a two stage architecture. The first stage which we refer to as
the Preprocessing stage is in charge of padding the input to appropriate size
(usually multiplies of 256 or 512 bits), and then breaking down the message into
blocks of smaller fixed sizes (256 or 512 bits).

Next, the message blocks will be processed by the second stage which is re-
ferred to as the Hash Computation Stage. In this stage, a special function called
the Compression Function is used iteratively through a number of rounds to
create the message digest. The actual number of rounds (or iterations) depends
on the number of message blocks. The first round compression function uses the
first block of the message along with a predefined initial value called the Initial-

ization Vector. The initialization vector is usually created in the preprocessing
stage and is just used for the first round of the compression function. For the
rest of the rounds, the outputs of each round compression function will be used
as the next round initialization vector.

As NIST has requested, all candidates are capable of supporting different
message digest sizes of 224, 256, 384 and 512 bits. However, we have just focused
on the 256-bit versions in this work. If the authors of a candidate proposed hard-
ware architectures for their design, we use that for our hardware implementation
(Skein, Shabal, and Blake). For Luffa and Blue Midnight Wish the authors did
not present any hardware architecture in their proposal, hence their algorithms
are implemented as pure combinational circuit. Input/Output registers are added
at the input and output ports to take into account the loading effect of the in-
puts/outputs and also create the register transfer level modules. The inputs for
the compression function block is a message of fixed block size (256 or 512 bits
according to the algorithm) along with the initialization vector (if needed). The
final output of the compression function is a 256 bit message digest.

We present both ASIC and FPGA implementations. For ASIC implementa-
tions, VHDL is used to describe the modules in hardware. The code is then sim-
ulated using Cadence’s NCSim to verify its functionality. Afterwards, the VHDL
code is synthesized to a gate-level netlist using Synopsys’ Design Compiler. Com-
pilation parameters are always chosen to maximize the operating frequency of
the design.

FPGA implementations are carried out using the same VHDL files used
for ASIC implementations. The only difference is the addition of the serial-in
parallel-out and parallel-in serial-out modules to transfer the data into or out of
the FPGA. Note that FPGA implementations take into account the I/O speed

Title Suppressed Due to Excessive Length 3

limits of the FPGA whereas this limitation is not considered for ASIC imple-
mentations. We have used the 90 nm CMOS technology from STMicroelectronics
for our ASIC implementations. For FPGA implementations, we use Startix III
FPGA from Altera.

We base the comparison of our hardware implementations on area and time
requirements of each design. For ASIC implementations, we report total area in
µm2 which includes area due to combinational circuits as well as I/O registers.
We also give the total number of gates used for each design. Note that this
parameter varies considerably according to the size and types of gates available
in the library. For FPGA implementations as we are using Altera products, the
area requirements are given in terms of the number of Adaptive Look-Up Tables
(ALUTs) and dedicated logic registers.

For time requirements, we report total delay in nano seconds for fully unrolled
designs (Luffa, Skein, BMW, and SHA-2) and is equal to the critical path delay.
For sequential designs (Skein-1c, Shabal, Blake, and SHA-2-1c) the total delay
is the product of the critical path delay and the required number of clock cycles
for each iteration.

For FPGA designs, clock signal of the combinational circuit that implements
the compression function is typically different from the clock signal of the I/O
modules.

3 Blue Midnight Wish Hash Function

3.1 Algorithm Description

The Blue Midnight Wish (BMW) algorithm has been proposed by Svein Johan
Knapskog et al. in [7]. We refer to the variant that creates the 256 bit message
digest as BMW-256. The basic data block used is called a word which is 32 bits
long. BMW makes use of four different operations in the hash computation stage:
bit-wise logical word XOR operation, word addition and subtraction (modulo
232), shift operations (left or right), and rotate left (circular shift left) operation.

BMW uses a Double Pipe design to increase the resistance against generic
multicollision attacks and length extension attacks [12, 13]. In the double pipe
design, the size of the inputs to the compression function are twice the message
digest size. The inputs to the compression function are the message blocks M i

of size 512 bits, along with the initialization vector (previous output of the
compression function) which is called the old double pipe Hi−1 of size 512 bits.
The final message digest output bits are the least significant 256 bits of the
current double pipe Hi.

The compression function uses three separate functions to generate the mes-
sage digest; f0, f1, f2. The general block diagram for the BMW-256 compression
function is shown in Fig. 1. Note that each of the signals in the figure is 512 bits
wide.

The first function f0 : {0, 1}2∗512 −→ {0, 1}512 takes two arguments; a mes-
sage block M i and the previous value of the double pipe Hi−1, and generates

4 A. H. Namin and M. A. Hasan

f
0

f
1

M i

f
2

H i
H i

H i−1

MD

Qa

Qb

Fig. 1. General block diagram of the compression function in BMW-256

Qi
a = Qi

(0,1,...,15) the first part of the quadruple pipe of size 512 bits. Mathemat-

ical definition for the function f0 is shown in Eqs. (1)-(3).

In these equations, initially temporary signal W i
(0,1,...,15) is generated through

word by word XOR of the two inputs and addition/subtraction of the words. Note
that all addition and subtractions are done module 232, hence carry propagation
just exists inside the words. Signal W is then used to create the Qa signal using
s0, s1, s2, s3, s4 s-transforms according to Eq. (2). Each transformation accepts
a 32-bit word and generates another 32-bit word. Details of s-transforms are
shown in Eq. (3). Note that in this equation SHRr(x)/SHLr(x) represents the
shift right/left operation by r bits, while ROTLr(x) represents the rotate left
operation by r bits.

Title Suppressed Due to Excessive Length 5

W
(i)
0 = (M

(i)
5 ⊕ H

(i−1)
5) − (M

(i)
7 ⊕ H

(i−1)
7) + (M

(i)
10 ⊕ H

(i−1)
10) + (M

(i)
13 ⊕ H

(i−1)
13) + (M

(i)
14 ⊕ H

(i−1)
14)

W
(i)
1 = (M

(i)
6 ⊕ H

(i−1)
6) − (M

(i)
8 ⊕ H

(i−1)
8) + (M

(i)
11 ⊕ H

(i−1)
11) + (M

(i)
14 ⊕ H

(i−1)
14) − (M

(i)
15 ⊕ H

(i−1)
15)

W
(i)
2 = (M

(i)
0 ⊕ H

(i−1)
0) + (M

(i)
7 ⊕ H

(i−1)
7) + (M

(i)
9 ⊕ H

(i−1)
9) − (M

(i)
12 ⊕ H

(i−1)
12) + (M

(i)
15 ⊕ H

(i−1)
15)

W
(i)
3 = (M

(i)
0 ⊕ H

(i−1)
0) − (M

(i)
1 ⊕ H

(i−1)
1) + (M

(i)
8 ⊕ H

(i−1)
8) − (M

(i)
10 ⊕ H

(i−1)
10) + (M

(i)
13 ⊕ H

(i−1)
13)

W
(i)
4 = (M

(i)
1 ⊕ H

(i−1)
1) + (M

(i)
2 ⊕ H

(i−1)
2) + (M

(i)
9 ⊕ H

(i−1)
9) − (M

(i)
11 ⊕ H

(i−1)
11) − (M

(i)
14 ⊕ H

(i−1)
14)

W
(i)
5 = (M

(i)
3 ⊕ H

(i−1)
3) − (M

(i)
2 ⊕ H

(i−1)
2) + (M

(i)
10 ⊕ H

(i−1)
10) − (M

(i)
12 ⊕ H

(i−1)
12) + (M

(i)
15 ⊕ H

(i−1)
15)

W
(i)
6 = (M

(i)
4 ⊕ H

(i−1)
4) − (M

(i)
0 ⊕ H

(i−1)
0) − (M

(i)
3 ⊕ H

(i−1)
3) − (M

(i)
11 ⊕ H

(i−1)
11) + (M

(i)
13 ⊕ H

(i−1)
13)

W
(i)
7 = (M

(i)
1 ⊕ H

(i−1)
1) − (M

(i)
4 ⊕ H

(i−1)
4) − (M

(i)
5 ⊕ H

(i−1)
5) − (M

(i)
12 ⊕ H

(i−1)
12) − (M

(i)
14 ⊕ H

(i−1)
14)

W
(i)
8 = (M

(i)
2 ⊕ H

(i−1)
2) − (M

(i)
5 ⊕ H

(i−1)
5) − (M

(i)
6 ⊕ H

(i−1)
6) + (M

(i)
13 ⊕ H

(i−1)
13) − (M

(i)
15 ⊕ H

(i−1)
15)

W
(i)
9 = (M

(i)
0 ⊕ H

(i−1)
0) − (M

(i)
3 ⊕ H

(i−1)
3) + (M

(i)
6 ⊕ H

(i−1)
6) − (M

(i)
7 ⊕ H

(i−1)
7) + (M

(i)
14 ⊕ H

(i−1)
14)

W
(i)
10 = (M

(i)
8 ⊕ H

(i−1)
8) − (M

(i)
1 ⊕ H

(i−1)
1) − (M

(i)
4 ⊕ H

(i−1)
4) − (M

(i)
7 ⊕ H

(i−1)
7) + (M

(i)
15 ⊕ H

(i−1)
15)

W
(i)
11 = (M

(i)
8 ⊕ H

(i−1)
8) − (M

(i)
0 ⊕ H

(i−1)
0) − (M

(i)
2 ⊕ H

(i−1)
2) − (M

(i)
5 ⊕ H

(i−1)
5) + (M

(i)
9 ⊕ H

(i−1)
9)

W
(i)
12 = (M

(i)
1 ⊕ H

(i−1)
1) + (M

(i)
3 ⊕ H

(i−1)
3) − (M

(i)
6 ⊕ H

(i−1)
6) − (M

(i)
9 ⊕ H

(i−1)
9) + (M

(i)
10 ⊕ H

(i−1)
10)

W
(i)
13 = (M

(i)
2 ⊕ H

(i−1)
2) + (M

(i)
4 ⊕ H

(i−1)
4) + (M

(i)
7 ⊕ H

(i−1)
7) + (M

(i)
10 ⊕ H

(i−1)
10) + (M

(i)
11 ⊕ H

(i−1)
11)

W
(i)
14 = (M

(i)
3 ⊕ H

(i−1)
3) − (M

(i)
5 ⊕ H

(i−1)
5) + (M

(i)
8 ⊕ H

(i−1)
8) − (M

(i)
11 ⊕ H

(i−1)
11) − (M

(i)
12 ⊕ H

(i−1)
12)

W
(i)
15 = (M

(i)
12 ⊕ H

(i−1)
12) − (M

(i)
4 ⊕ H

(i−1)
4) − (M

(i)
6 ⊕ H

(i−1)
6) − (M

(i)
9 ⊕ H

(i−1)
9) + (M

(i)
13 ⊕ H

(i−1)
13)

(1)

Q
i
0 = s0(W i

0), Q
i
1 = s1(W i

1), Qi
2 = s2(W i

2), Qi
3 = s3(W i

3), Q
i
4 = s4(W

i
4), Q

i
5 = s0(W

i
5),

Q
i
6 = s1(W i

6), Q
i
7 = s2(W i

7), Qi
8 = s3(W i

8), Qi
9 = s4(W i

9), Q
i
10 = s0(W i

10), Q
i
11 = s1(W i

11),

Q
i
12 = s2(W

i
12), Q

i
13 = s3(W i

13), Qi
14 = s4(W i

14), Qi
15 = s0(W i

15),

(2)

s0(x) = SHR
1(x) ⊕ SHL

3(x) ⊕ ROTL
4(x) ⊕ ROTL

19(x) s4(x) = SHR1(x) ⊕ x

s1(x) = SHR
1(x) ⊕ SHL

2(x) ⊕ ROTL
8(x) ⊕ ROTL

23(x) s5(x) = SHR2(x) ⊕ x

s2(x) = SHR
2(x) ⊕ SHL

1(x) ⊕ ROTL
12(x) ⊕ ROTL

25(x)

s3(x) = SHR
2(x) ⊕ SHL

2(x) ⊕ ROTL
15(x) ⊕ ROTL

29(x)

(3)

The second function f1 : {0, 1}2∗512 −→ {0, 1}512 takes the same mes-
sage block M i as the first function and the output of the first function Qi

a =
Qi

(0,1,...,15) and generates the second part of the quadruple pipe Qi
b = Qi

(16,17,...,31),

through EXPAND1 and EXPAND2 expansion functions as shown in Eq. (4).
Expansion functions make use of the s-transforms along with the r-transforms

which are defined in Eq. (5).

6 A. H. Namin and M. A. Hasan

For ii = 0, 1 : Q
i
(ii+16) = Expand1(ii + 16)

For ii = 2 to 15 : Q
i
(ii+16) = Expand2(ii + 16)

Expand1(j) = s1(Qi
(j−16)) + s2(Qi

(j−15)) + s3(Qi
(j−14)) + s0(Qi

(j−13))

+ s1(Qi
(j−12)) + s2(Qi

(j−11)) + s3(Qi
(j−10)) + s0(Qi

(j−9))

+ s1(Qi
(j−8)) + s2(Qi

(j−7)) + s3(Qi
(j−6)) + s0(Q

i
(j−5))

+ s1(Qi
(j−4)) + s2(Qi

(j−3)) + s3(Qi
(j−2)) + s0(Q

i
(j−1))

+ M
i
(j−16)mod16 + M

i
(j−13)mod16 − M

i
(j−6)mod16 + j × 0x05555555

Expand2(j) = Q
i
(j−16) + r1(Q

i
(j−15)) + Q

i
(j−14) + r2(Q

i
(j−13))

+ Q
i
(j−12) + r3(Q

i
(j−11)) + Q

i
(j−10) + r4(Q

i
(j−9))

+ Q
i
(j−8) + r5(Qi

(j−7)) + Q
i
(j−6) + r6(Q

i
(j−5))

+ Q
i
(j−4) + r7(Qi

(j−3)) + Q
i
(j−2) + r4(Q

i
(j−1))

+ M
i
(j−16)mod16 + M

i
(j−13)mod16 − M

i
(j−6)mod16 + j × 0x05555555

(4)

r1(x) = ROL
3(x), r2 = ROTL7(x), r3(x) = ROTL

13(x)

r4(x) = ROL
16

(x), r5 = ROTL19(x), r6(x) = ROTL
23

(x)

r7(x) = ROL
27(x),

(5)

Finally, the last function f2 : {0, 1}3∗512 −→ {0, 1}512 takes two arguments;
the message block M i, and the quadruple pipe Qi−1

0,1,...,31 = Qi
a ||Q

i
b, (|| represents

the concatenation operation) and generates the current value of the double pipe
Hi. Mathematical definition for the function f2 is shown in Eq. (6).

Title Suppressed Due to Excessive Length 7

XL = Q
i
16 ⊕ Q

i
17 ⊕ Q

i
18 ⊕ Q

i
19 ⊕ Q

i
20 ⊕ Q

i
21 ⊕ Q

i
22 ⊕ Q

i
23

XL = XL ⊕ Q
i
24 ⊕ Q

i
25 ⊕ Q

i
26 ⊕ Q

i
27 ⊕ Q

i
28 ⊕ Q

i
29 ⊕ Q

i
30 ⊕ Q

i
31

H
i
0 = (SHL

5(XH) ⊕ SHR
5(Qi

16 ⊕ M
i
0) + (XL ⊕ Q

i
24 ⊕ Q

i
0)

H
i
1 = (SHR

7(XH) ⊕ SHL
8(Qi

17 ⊕ M
i
1) + (XL ⊕ Q

i
25 ⊕ Q

i
1)

H
i
2 = (SHR

5
(XH) ⊕ SHL

5
(Q

i
18 ⊕ M

i
2) + (XL ⊕ Q

i
26 ⊕ Q

i
2)

H
i
3 = (SHR

1(XH) ⊕ SHL
5(Qi

19 ⊕ M
i
3) + (XL ⊕ Q

i
27 ⊕ Q

i
3)

H
i
4 = (SHR

3(XH) ⊕ Q
i
20 ⊕ M

i
4) + (XL ⊕ Q

i
28 ⊕ Q

i
4)

H
i
5 = (SHL

6(XH) ⊕ SHR
6(Qi

21 ⊕ M
i
5) + (XL ⊕ Q

i
29 ⊕ Q

i
5)

H
i
6 = (SHR

4(XH) ⊕ SHLhQ
i
22 ⊕ M

i
6) + (XL ⊕ Q

i
30 ⊕ Q

i
6)

H
i
7 = (SHR

11(XH) ⊕ SHL
2(Qi

23 ⊕ M
i
7) + (XL ⊕ Q

i
31 ⊕ Q

i
7)

H
i
8 = ROTL

9(Hi
4) + (XH ⊕ Q

i
24 ⊕ M

i
8) + (SHL

8(XL) ⊕ Q
i
23 ⊕ Q

i
8)

H
i
9 = ROTL

10(Hi
5) + (XH ⊕ Q

i
25 ⊕ M

i
9) + (SHR

6(XL) ⊕ Q
i
16 ⊕ Q

i
9)

H
i
10 = ROTL

11(Hi
6) + (XH ⊕ Q

i
26 ⊕ M

i
10) + (SHL

6(XL) ⊕ Q
i
17 ⊕ Q

i
10)

H
i
11 = ROTL

12(Hi
7) + (XH ⊕ Q

i
27 ⊕ M

i
11) + (SHL

4(XL) ⊕ Q
i
18 ⊕ Q

i
11)

H
i
12 = ROTL

13
(H

i
0) + (XH ⊕ Q

i
28 ⊕ M

i
12) + (SHR

3
(XL) ⊕ Q

i
19 ⊕ Q

i
12)

H
i
13 = ROTL

14(Hi
1) + (XH ⊕ Q

i
29 ⊕ M

i
13) + (SHR

4(XL) ⊕ Q
i
20 ⊕ Q

i
13)

H
i
14 = ROTL

15(Hi
2) + (XH ⊕ Q

i
30 ⊕ M

i
14) + (SHR

7(XL) ⊕ Q
i
21 ⊕ Q

i
14)

H
i
15 = ROTL

16
(H

i
3) + (XH ⊕ Q

i
31 ⊕ M

i
15) + (SHR

2
(XL) ⊕ Q

i
22 ⊕ Q

i
15)

(6)

3.2 ASIC Implementation

f
0

f
1

f
2

..
.

M i

..
.

H i−1

..
.

H iQa Qb

In_Reg

In_Reg

Out_Reg

512

512

512

512

512

Fig. 2. hardware architecture used for the compression function of the BMW-256

Block diagram of the architecture that is used for the ASIC implementation
of the BMW-256 is shown in Fig. 2. In this figure, each line presents a 512-bit
wide signal. Inputs M i and Hi−1 are stored inside the 512-bit input registers

8 A. H. Namin and M. A. Hasan

(In Reg). Functions f1, f2, f3 were realized completely as combinational circuits.
Output Hi can be read from the output register (Out Reg) after one clock cycle.

Input Compression Combinational I/O Register Number of
Size Function Delay Area Area Gates

512 19.20 ns 670, 887.14 µm2 48, 746.61 µm2 60, 033
Table 1. ASIC implementation summary of the BMW-256 compression function

Synthesis results for the BMW-256 compression function are summarized in
Table 1. In this table, Compression Function Delay represents the maximum
delay between the Input and Output registers. Combinational Area represents
the area used by functions f0, f1, and f2. I/O Register Area shows the area
utilized by the In reg and Out reg registers. Number of gates may be considered
to be an alternative to measure the area requirements of the implementation.

4 Luffa Hash Function

4.1 Algorithm Description

The Luffa algorithm s due to Christophe De Canniere et al. in [8]. It makes
use of s-boxes (non-linear permutation) along with shift, and XOR operations
to create the output message digest. The basic data block used is a word which
is 32 bits long. Luffa’s compression function is called the round function. The
structure of a round function for Luffa-256 is shown in Fig. 3. It is made of two
separate functions; Message Injection (MI) and Permutation (P).

P

MI

+

Q0

Q1

Q2

Zi

M
i

H1
i−1

0H
i−1

H2
i−1

H1
i

0H
i

H2
i

Fig. 3. General block diagram of the compression function (round function) for Luffa-
256

The detail of the message injection module is shown in Fig. 4. In this figure
the circled plus sign (⊕) represents bit by bit XOR operation of the variables (256
bit each). Also the circled cross sign (⊗) represents the multiplication operation
in the ring of GF (28)32 using the polynomial φ(x) = x8 + x4 + x3 + x + 1.

Title Suppressed Due to Excessive Length 9

The multiplication operation can be defined as follows; Assume that A and
B are each a vector of 256 bits and A = a[7]||...||a[0] and B = b[7]||...||b[0] where
a[i], b[i], i = 0, ..., 7 are vectors of 32 bits each. Assume that B = A⊗ 2, then we
have

b[7] = a[6], b[6] = a[5], b[5] = a[4]

b[4] = a[3]XORa[7], b[3] = a[2]XORa[7], b[2] = a[1]

b[1] = a[0]XORa[7], b[0] = a[7]

(7)

The permutation stage (P) for Luffa-256 is made of three similar permutation
blocks Qj, j = 0, 1, 2 which work in parallel, as shown in Fig. 3. We refer to these
blocks as Permute blocks whose input and output sizes are 256 bits each. They
can be modelled as a composition of an input tweak and eight iterations of an
Step function. The tweak module is just reordering of the wires and does not
contain any gates. The block diagram of the Step function is shown in Fig. 5.

In this figure, the 256-bit input to the step function is stored in eight 32-
bit registers denoted by ak, 0 6 k < 8 where k represents the register number.
Three main submodules exist in the step function: SubCrumb, MixWord, and the
AddConstant. The SubCrumb module is a nonlinear permutation which makes
use of 32 similar s-boxes (4-bit input, 4- bit output) in parallel for its operation.
The s-box input/output relationship is as follows.

s[16] = {7, 13, 11, 10, 12, 4, 8, 3, 5, 15, 6, 0, 9, 1, 2, 14} (8)

The MixWord is a linear permutation module which mixes two words to-
gether. The structure of the MixWord is shown in Fig. 6.

In Fig. 5, the AddConstant module performs two XOR operations involving
constants according to the parameters k and r (the Step number) to the first and
the fourth words. Note that since the value of the constants are predetermined
(one input of the XOR gates), the synthesizer will perform optimization and
replace the XOR gates by the Inverters or wires as required.

+

H
i−1

0

H
i−1

1

H
i−1

2

+

2

+

+

+

+

+

M
i

2

2

Fig. 4. Block diagram of the Message Injection module for Luffa-256

10 A. H. Namin and M. A. Hasan

Fig. 5. Block diagram of the Step function module for Luffa-256

4.2 ASIC Implementation

Block diagram of the architecture that is used for the ASIC implementation of
Luffa-256 is shown in Fig. 7. In this figure, each line presents a 256-bit wide
signal.

Inputs M i and Hi−1 are stored inside the 256-bit input registers (In Reg).
MI and P blocks (including the s-boxes) are realized completely as combinational
circuits. Output Hi can be read from the output register (Out Reg) after one
clock cycle. Synthesis results for the Luffa-256 compression function are summa-
rized in Table 2. In this table, the Combinational Area represents the area used
by the message injection and permutation (three permute blocks). Each permute
block contains a tweak module and eight instances of the step function.

<<< 2

<<< 14

<<< 10

<<< 1

+

+

+

+
32

32

32

32

Fig. 6. Block diagram of the MixWord function module for Luffa-256

Title Suppressed Due to Excessive Length 11

P

MI

+

Zi

M
i

H1
i−1

0H
i−1

H2
i−1

Tweak Step Step Step... {

8

Q
0...

..
.

In_Reg

256

256

256

256

..
.

..
.

..
.

H1
i

0H
i

H2
i

Out_Reg

256

256

256

..
.

..
.

..
.

Fig. 7. Hardware architecture used for the compression function of Luffa-256

5 Skein Hash Function

5.1 Algorithm Description

Ferguson et al. have proposed the Skein algorithm [9]. Skein makes use of 64-bit
adders along with shift, and XOR operations to create the output message digest.
The basic data block used is a word which is 64 bits long. Skein’s compression
function is based on Threefish which is a large tweakable block cipher [14]. Skein-
256 compression function is made of 72 consecutive rounds of Threefish after four
of each there exist a subkey addition module. Subkeys are generated form an
input key through the key schedule module. Note that Skein does not make use
of the initialization vector the way Luffa and Blue Midnight Wish do.

Skein is built on multiple invocations of the Unique Block Iteration (UBI)
which is a variant of the Matyas-Meyer-Oseas hash mode [15]. The basic building
block of UBI is shown in Fig. 8.

The structure of the Skein compression function (including the subkey mod-
ules) is shown in Fig. 9. Note that the key is not an optional parameter for
Threefish and can not be removed from the Skein structure. subkeys are consist
of three contributions: key words, tweak words, and a counter value.

Each round of the Threefish block cipher (256 bit version) is made of two
instances of a Mix function along with a permutation module. The structure of
the Mix function for Threefish-256 is shown in Fig. 10. In this figure the boxed

Input Compression Combinational I/O Register Number of
Size Function Delay Area Area Gates

256 9.96 ns 473, 318.04 µm2 60, 277.99 µm2 68, 884
Table 2. ASIC implementation summary of the Luffa-256 compression function

12 A. H. Namin and M. A. Hasan

72 rounds of

ThreeFish

block cipher

Mi

+>

Fig. 8. Unique Block Iteration (UBI) building block

plus sign (⊞) represents a 64 bit addition (modulo 264), and the circled plus sign
(⊕) represents a bit by bit XOR operation. Parameters Rd,i are constants that
set the size of the rotate shift operations according to the round number.

Fig. 9. Block diagram of compression function module for Skein-256, 4 out of 72 rounds
for Skein-256 including the key

5.2 ASIC Implementation

Fully Unrolled/Parallel Design

Block diagram of the architecture used for the hardware implementation of Skein-
256 is shown in Fig. 11. In this figure, each line presents a 64-bit wide signal
except the input/output wires which are 256 bits wide and the Tweak and key
input wires which are 128 and 256 bits respectively.

Title Suppressed Due to Excessive Length 13

Input Compression Combinational I/O Register Number of
Size Function Delay Area Area Gates

256 81.92 ns 1, 605, 827.19 µm2 13, 788.05 µm2 252, 725
Table 3. ASIC implementation summary of the Skein-256 compression function

Input message M i is stored inside the 256-bit input registers (In Reg). The
Mix functions have been realized completely as combinational circuits. After 72
rounds of Mix and Permute functions (including 18 rounds of key addition), one
level of XOR gates exist to create the UBI structure of the algorithm. Output Hi

can be read from the output register (Out Reg) after one clock cycle. Synthesis
results of the Skein-256 compression function are summarized in Table 3. In this
table, the Combinational Area represents the area used by the 144 Mix functions
and 18 subkey adder modules exist in 72 rounds of Threefish along with 256 XOR
gates in Skein-256.

Sequential Design

Skein compression function architecture presents a highly regular design as
shown in Fig. 9. This property can be exploited to create a complete Skein
compression function by just implementing one round of the Threefish cipher
and a subkey adder module. This can play a major rule when the hashing al-
gorithm is implemented for area constrained applications. To this end, we have
implemented a second version of the Skein algorithm (Skein-1c) using just one
round of the Threefish algorithm.

Note that some modifications to the original round function of Threefish have
been allowed to make the design of Skein-1c capable of creating the message
digest. The main modification here is the addition of program-ability option
to the Mix module, since the rotate shift operation is a function of the round
number. Also some extra modules (a counter and two multiplexers and a key
schedule module) have been used to create the correct inputs for the round
function as shown in Fig. 12. The key schedule module uses circular shift registers
along with three 64-bit adders to generate the subkeys.

+

+

64

<<< Rd,i

64

6464

Fig. 10. Block diagram of the Mix function module for Skein-256

14 A. H. Namin and M. A. Hasan

Fig. 11. Hardware architecture used for the compression function of Skein-256

Fig. 12. Hardware architecture used for the compression function of Skein-1c

Fig. 13. Hardware architecture used for the key schedule of Skein-1c

Block diagram of the architecture that is used for key schedule is shown
in Fig. 12. It should be noted that the clock used for the key module is four

Title Suppressed Due to Excessive Length 15

times slower than the clock used for the rest of the Skein-1c design. Also we
had assumed that the two parameters k4 and t2 are available at the start of the
circuit operation and are loaded into the circular shift registers.

The design is therefore referred to as Skein-1c since it uses one round of the
Threefish compression function and it also includes an extra counter. Synthesis
results for skein-1c compression function are summarized in Table 4.

Input Critical Number Combinational I/O Register Number of
Size Path Delay of Cycles Area Area Gates

256 3.49 ns 72 64, 809.98 µm2 27, 927.33 µm2 11, 634
Table 4. ASIC implementation summary of the Skein-1c compression function

From Tables 3 and 4 the following can be deduced: the area requirement
for the Skein compression function has been reduced from 1, 619, 615.24 µm2

in Skein-256 to 92, 737.32 µm2 in Skein-1c. This reduction comes at the price of
increasing the compression function delay from 81.92 ns in Skein-256 to 251.28 ns
in Skein-1c.

6 Shabal Hash Function

6.1 Algorithm Description

The Shabal algorithm has been proposed by Bresson et al. in [10]. Shabal archi-
tecture is based on Linear Feedback Shift Register (LFSR), meaning the inputs
to the current state of the registers are linear function of the previous state of
the registers. Shabal makes use of 32-bit adders/subtractors along with shift,
and XOR operations to create the output message digest. The basic data block
used is a word which is 32 bits long.

The simplified structure of the compression function block is shown in Fig.
14. In this figure, the boxed plus sign (⊞) represents a 32 bit addition (modulo
232), and the boxed minus sign (⊟) represents a 32 bit subtraction. Circled plus
sign (⊕) represents a bit by bit XOR operation. A, B and C are initialization
vectors, while W is a 64 bit counter used to number the message blocks. The P
block represents a keyed permutation module and its details are shown in figure
15.

In Fig. 15, inputs B, C, and M are represented by sixteen words each. The
32-bit registers are shown as one block in the figure. Note that input A contains
only twelve words and during each clock cycle one word (32 bits) is shifted
towards left or right according to the architecture. In this figure modules U and
V are non linear functions defined by:

U : x 7→ 3 × x mod 232 and v : x 7→ 5 × x mod 232. In hardware, they can
be implemented as small constant multipliers or as two additions and shift for
U and three additions and shift for V . Also symbol ⊕ represents a bit by bit

16 A. H. Namin and M. A. Hasan

XOR operation. Note that the ⊕ module having 0xFFF...F as one of its inputs,
represents an inversion operation.

6.2 ASIC Implementation

We have used the same block diagrams as Fig. 14 and Fig. 15 for hardware
implementation of Shabal-256. The only modification applied is the addition of
a way to load inputs A,B,C and M into the keyed permutation module. This is
achieved by adding a small multiplexer (having one select line and two inputs)
to each register storing the inputs. This way all input bits could be loaded into
the module, similar to other architectures that have been used in our hardware
implementations. Synthesis results for the Shabal-256 compression function are
summarized in Table 5.

P

Mi

+

+
A

B

C
−

W

A

B

C

Fig. 14. Block diagram of compression function for Shabal-256

0 11

<<< 15V

U

+

+

+

+

+

0 8 15

150

+0xFFF...F

150 6 9 13 +
<<< 1

A

C

M

B

Fig. 15. Structure of the keyed permutation module P

Title Suppressed Due to Excessive Length 17

Input Critical Number Combinational I/O Register Number of
Size Path Delay of Cycles Area Area Gates

256 2.42 ns 16 38, 244.77 µm2 49, 041.86 µm2 8, 065
Table 5. ASIC implementation summary of the Shabal-256 compression function

In this table, the Combinational Area represents the area used by U and V
modules along with the area used by the XOR gates and multiplexers. Major
part of the area usage belongs to the five 32-bit adders realizing modules U and
V .

7 Blake Hash Function

7.1 Algorithm Description

The Blake algorithm has been proposed by Aumasson et al. in [11]. The basic
data block used is called a word which is 32 bits long. Blake makes use of bit-wise
logical word XOR operations, word addition (modulo 232), rotate operations (left
or right), and permutations in its structure.

Blake is mainly built on previously designed components. Its iteration mode
is HAIFA which is an improved version of Merkle-Damgard [16]. Its compression
function is a modified version of the ChaCha stream cipher [17]. It also supports
an optional salt (a parameter that can be either public or secret) to create the
message digest. Blake uses a Wide Pipe design to increase its resistance against
collision attacks [18, 19]. The local wide pipe structure of Blake’s compression
function is shown in Fig. 16.

rounds

message

initialization finialization

salt counter chain value salt

chain value next chain value

Fig. 16. Block diagram of compression function for Blake-256

As can be seen from the figure, the compression function is made of three
main stages: initialization, rounds, and finalization. In the initialization stage a
large inner state is initialized from the previous chain value (h), salt (t), and
counter (t). The state value is then updated by message-dependent rounds.
It is finally compressed to create the next chain value. A sixteen word state
v0, v1, · · · , v15 is generated in the initialization stage. The input/output rela-
tionship of the initialization step can be mathematically represented as follows.

18 A. H. Namin and M. A. Hasan

v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15

←

h0 h1 h2 h3

h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3

t0 ⊕ c4 t0 ⊕ c5 t1 ⊕ c6 t1 ⊕ c7

(9)

Ten rounds of transformation are applied in the rounds stage, after the state
v is initialized. Each round of transformation is made of eight operations using
the Gi functions defined as follows.

G0(v0, v4, v8, v12) G1(v1, v5, v9, v13) G2(v2, v6, v10, v14) G3(v3, v7, v11, v15)
G4(v0, v5, v10, v15) G5(v1, v6, v11, v12) G6(v2, v7, v8, v13) G7(v3, v4, v9, v14)

(10)

Note that the first four G functions (G0, G1, G2, G3) can be computed in
parallel since they apply to different set of inputs i.e., G0 applies to v0, v4, v8, v12.
Once the first four G functions are applied, the last four (G4, G5, G6, G7) can
be applied. If desirable the last four G functions can be computed in parallel as
well. A mathematical definition for function Gi(a, b, c, d) is shown below.

a← a + b +
(

mσr
(2i)⊕ cσr

(2i + 1)
)

d← (d⊕ a) ≪ 16
c← c + d
b← (b⊕ c) ≪ 12
a← a + b +

(

mσr
(2i + 1)⊕ cσr

(2i)
)

d← (d⊕ a) ≪ 8
c← c + d
b← (b⊕ c) ≪ 7

(11)

In this equation, cis are 32-bit word constants and σis are permutations of
{0, 1, . . . , 15}, both defined in the Blake submission documents [11]. Architecture
used for the hardware implementation of the Gi function is shown in Fig. 17.

Fig. 17. Block diagram of the Gi function for Blake-256

After 10 rounds of transformation, the next chain value (h′
0, h

′
1, · · · , h

′
7) are

extracted from the state values (v0, v1, · · · , v15) in the finalization stage. The

Title Suppressed Due to Excessive Length 19

input/output relationship of the finalization step can be mathematically repre-
sented as follows.

h′
0 ← h0 ⊕ s0 ⊕ v0 ⊕ v8

h′
1 ← h1 ⊕ s1 ⊕ v1 ⊕ v9

h′
2 ← h2 ⊕ s2 ⊕ v2 ⊕ v10

h′
3 ← h3 ⊕ s3 ⊕ v3 ⊕ v11

h′
4 ← h4 ⊕ s0 ⊕ v4 ⊕ v12

h′
5 ← h5 ⊕ s1 ⊕ v5 ⊕ v13

h′
6 ← h6 ⊕ s2 ⊕ v6 ⊕ v14

h′
7 ← h7 ⊕ s3 ⊕ v7 ⊕ v15

(12)

7.2 ASIC Implementation

For our hardware implementation we have used the VHDL code available with
the initial submission of Blake. The only modification applied is the addition
of the input/output registers to take into account the loading effect on the in-
puts/outputs. Synthesis results for the Blake-256 compression function are sum-
marized in Table 6.

Input Critical Number Combinational I/O Register Number of
Size Path Delay of Cycles Area Area Gates

512 10.4 ns 11 191, 408.26 µm2 42, 204.91 µm2 30, 262
Table 6. ASIC implementation summary of the Blake-256 compression function

8 Comparison of ASIC Implementation Results

As mentioned earlier, for our implementations we have used the 90 nm CMOS
technology from STMicroelecronics; synthesis parameters have always been cho-
sen to maximize the operating frequency of the designs.

Area/Delay complexities of ASIC implementations of all of the SHA-3 can-
didates considered in this work are listed in Table 7. For simple comparison, the
table also includes our two implementations of SHA-2 as described in Appendix
A. At the bottom of the table, SHA-2 presents a high-speed 64-round implemen-
tation of the SHA-256 architecture, while SHA-2-1c presents a low-area 1-round
implementation.

One should note that even though all listed algorithms create the message
digest of size 256 bits, their input block size is different. BMW, Blake, SHA-2 and
SHA-2-1c use input sizes of 512 bits while Luffa, Skein, Skein-1c and Shabal each
accept inputs of size 256 bits. This will make a difference in delay comparisons
if the input message size is small (< 256) or very large (>> 512).

20 A. H. Namin and M. A. Hasan

From Table 7, we can see that Luffa-256 presents the fastest architecture
(9.96 ns) followed by Blue Midnight Wish (19.20 ns) and Shabal (38.72 ns). Note
that for very large input message sizes (>> 512) BMW performs slightly better
than Luffa, and Shabal still ranks third.

Luffa’s high speed comes from the fact that it does not make use of any
adders (32 bit or 64 bit) in the algorithm. The most expensive building block in
the Luffa algorithm is the SubCrumb module (s-box) which can be implemented
with 5-6 levels of logic gates. The major part of the delay in Blue Midnight
Wish and Shabal comes from the 32 bit adder/subtractor modules used in their
architectures.

Skein-1c and Shabal architectures present the smallest critical path delay in
our comparison table; however a number of clock cycles are required for these
two designs to finish one round of compression (72 and 16 clock cycles). This
results in architectures with low performance with respect to the total compres-
sion time. However these two architectures present the smallest area utilization,
approximately 0.092 mm2 for Skein-1c and ≃ 0.087 mm2 for Shabal. Compared
to SHA-2-1c both designs require larger area while Skein-1c presents a slower
design and Shabal presents a faster one.

Fully unrolled Skein requires the highest area among all proposals listed in
the table and it is slightly larger than SHA-2. The area requirement is mainly
due to the multiple 64-bit adders used inside the design (in total it uses 231
64-bit adders). BMW ranks second regarding area requirements after Skein; the
area is again mainly due to multiple adder/subtractor modules in the design.
It is worth mentioning that the high regularity of Skein gives the designer the
ability to set trade-offs between area and speed, i.e. Skein with 8 or 16 rounds
of Threefish present good trade-offs for area/speed for today’s applications.

In Fig. 18, area and time delays of each of the SHA-3 designs considered in
this work are compared with respect to those of SHA-2.

Hash
Input Output Compression Number

Total Delay
Combinational I/O Register

Total Area
Size Size Function Delay of Cycles Area Area

BMW 512 256 19.20 ns 1 19.20 ns 670, 887.14 µm2 48, 746.61 µm2 719, 633.75 µm2

Luffa 256 256 9.96 ns 1 9.96 ns 473, 318.04 µm2 60, 277.99 µm2 533, 596.06 µm2

Skein 256 256 81.92 ns 1 81.92 ns 1, 605, 827.19 µm2 13, 788.05 µm2 1, 619, 615.24 µm2

Skein-1c 256 256 3.49 ns 72 251.28 ns 64, 809.98 µm2 27, 927.33 µm2 92, 737.32 µm2

Shabal 256 256 2.42 ns 16 38.72 ns 38, 244.77 µm2 49, 041.86 µm2 87, 286.64 µm2

Blake 512 256 10.4 ns 11 118.8 ns 191, 408.26 µm2 42, 204.91 µm2 233, 613.18 µm2

SHA-2 512 256 105.1 ns 1 105.1 ns 1, 587, 346.92 µm2 29, 262.01 µm2 1, 616, 609.00 µm2

SHA-2-1c 512 256 2.40 ns 64 153.6 ns 30, 922.68 µm2 27, 808.79 µm2 58, 731.47 µm2

Table 7. ASIC implementation summary of the different compression functions

Title Suppressed Due to Excessive Length 21

Fig. 18. Area delay complexities for ASIC implementation

9 FPGA Implementation

For our FPGA implementations we have selected Stratix III FPGA family from
Altera. The exact device number used is EP3SL340F1760C3 which represents a
1120 I/O pin FPGA using 65 nm technology. Quartus II software package from
Altera under UNIX environment has been used to implement the designs.

FPGA implementations have been carried out using the same VHDL files
used for ASIC implementations. The only difference was the addition of the
serial-in parallel-out (SIPO) and parallel-in serial-out (PISO) modules to transfer
the data into or out of the FPGA. Using these modules, the restricted number
of I/O pins and the I/O speed limits of the FPGA are taken into account which
presents a more practical situation. The details of SIPO and PISO modules are
shown in Fig. 19.

Fig. 19. SIPO and PISO modules used in FPGA implementations

The SIPO module receives the input data as 32-bit words and then stores
them for the proper output selected by the input select lines. Using this method
input bits can be loaded into the SIPO module 32-bits at a time. Then the data
can be transfered to the compression function in parallel. The PISO module uses
a similar idea; it loads the data from the compression function in parallel and
then transfers them to the output 32-bits at a time.

FPGA implementation results are summarized in Table 8. Quartus was not
able to fit the full unrolled version of Skein and SHA-2 in the selected FPGA

22 A. H. Namin and M. A. Hasan

Hash
C.F. Clk C.F. Clk I/O Clk I/O Clk Total Combinational Dedicated Logic I/O

Frequency Cycles Frequency Cycles Delay ALUTs Registers Pins

BMW 9.55 MHz 1 400 MHz 32 184 ns 12917 2607 111

Luffa 47.04 MHz 1 400 MHz 16 61 ns 16552 3247 283

Skein - - - - - - - -

Skein-1c 161.42 MHz 72 400 MHz 18 491 ns 1385 1858 146

Shabal 195.35 MHz 16 400 MHz 32 162 ns 1440 4000 289

Blake 46.97 MHz 11 400 MHz 24 294 ns 5435 2453 144

SHA-2 - - - - - - - -

SHA-2-1c 129.79 MHz 64 400 MHz 24 553 ns 813 1582 109
Table 8. FPGA implementation summary of the different compression functions

even though the selected one is the largest available FPGA in Stratix III family.
In Table 8, C.F. Clk Frequency presents the maximum frequency that the com-
pression function could be clocked at. C.F. Clk Cycles represents the required
number of clock cycles for the compression function to process the input. The
I/O Clk Frequency represents the maximum speed at which the SIPO and PISO
modules could be clocked to load the data into and out of the FPGA. The I/O
speed is limited by the FPGA itself which in our case is 2.5 ns [20]. Total Delay
represents the compression function delay in addition to the I/O read and write
delay to process a block of data.

The area usage of the FPGA is shown as two separate columns; Combina-
tional ALUTs and Dedicated Logic Registers. Combinational ALUTs represents
the number of Adaptive Look-Up Tables (ALUTs) used inside the FPGA. It can
be used as a measure of the area used by the combinational logic. Dedicated
Logic Registers represents the number of memory cells used inside the FPGA.
It can be used as a measure of memory usage.

As can be seen from the table, Luffa presents the fastest architecture (61 ns)
followed by Shabal (162 ns) and Blue Midnight Wish (184 ns). Unlike in our
ASIC implementations, Blue Midnight Wish is dropped from the second place
to the third and Shabal is moved up. This might be the result of having a
simple small architecture for Shabal versus extensive use of multiple input 32-bit
registers for Blue Midnight Wish. Skein-1c and Blake are ranked as the slowest
designs the same way they are ranked in our ASIC implementations. Regarding
area usage, Skein-1c requires the smallest area followed by Shabal and Blake.

Note that the area requirements of Skein-1c and Shabal are still larger than
SHA-2-1c, while their delays are smaller. In Fig. 20, area and time delays of each
of the SHA-3 designs on FPGA are compared with respect to those of SHA-2.

10 Conclusions

In this work we have presented hardware implementation results of the compres-
sion function block for five SHA-3 candidates (Luffa, Blue Midnight Wish, Skein,
Shabal, and Blake). Hardware implementations have been carried out using the

Title Suppressed Due to Excessive Length 23

Fig. 20. Area delay complexities for FPGA implementation

90 nm CMOS technology from STMicroelectronics for ASIC and Stratix III from
Altera for FPGA. The compression function blocks implemented create the mes-
sage digest of size 256 bits. Implementation results allow an easy comparison for
hardware performance of the selected candidates.

Among our fully unrolled ASIC designs of SHA-3 candidates namely BMW,
Luffa, Skein and Blake, Luffa takes the least amount of area and is about three
times smaller than SHA-2. For this type of design, Luffa has the least delay and
is about ten times faster than SHA-2. For fully unrolled FPGA design, Luffa
also ranks at the top for area and delay.

Among our sequential ASIC designs of SHA-3 candidates, namely Skein-1c,
Blake and Shabal, the latter outperforms the other two in terms of area as well
as delay. For the same sequential type of designs using FPGA, Shabal and Skein-
1c rank at the top for delay and area respectively. Each of these three SHA-3
candidates requires more area but less delay than those of sequential SHA-2-1c.

For a given SHA-3 candidate, we are likely to see an improved through-
put per unit area in sequential versions of hardware implementation over the
fully unrolled version. For example, the throughput per unit area for fully un-
rolled Skein is Input Size

Delay×Area
= 1, 929.4 bits/(sec µm2), while that for Skein-1c is

10, 985.7 bits/(sec µm2). Other hash algorithms, such as Blake and Shabal, are
also likely to have such improved utilizations of hardware in their sequential
designs.

Acknowledgments

This work was supported in part by NSERC strategic project grant awarded to
Dr. Hasan. The authors would also like to thank Olga Nam for her assistance
with debugging and testing of the VHDL codes.

24 A. H. Namin and M. A. Hasan

References

1. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. The CRC Press series on discrete mathematics and its applications, pp.
321-383, 1997.

2. National Institute of Standard and Technology (NIST): Cryptographic Hash Algo-
rithm Competition Website: http://csrc.nist.gov/groups/ST/hash/sha-3/.

3. The SHA-3 Zoo - The ECRYPT hash function website. Website:
http://ehash.iaik.tugraz.at/wiki/The SHA-3 Zoo.

4. European Network of Excellence for Cryptology II (ECRYPT II): ECRYPT Bench-
marking of All Submitted Hashes (EBASH): http://bench.cr.yp.to/ebash.html.

5. Fleischmann, E., Forler, C., Gorski, M.: Classification of the SHA-3 Candidates.
International Association for Cryptologic Research (IACR) ePrint archive

6. Wang, X., Yao, A., Yao, F.: New Collision search for SHA-1. Crypto 2005 rump
sesson.

7. Gligoroski, D., Klima, V., Knapskog S.J., El-Hadedy, M., Amundsen, J., Mjlsnes,
S.T.: Cryptographic Hash Function BLUE MIDNIGHT WISH. Submission to NIST,
2008.

8. Canniere, C.D., Sato, H., Watanabe, D.: Hash Function Luffa: Supporting Docu-
ment. Submission to NIST, 2008.

9. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein Hash Function Family. Submission to NIST, 2008.

10. Bresson, E., Canteaut, A., Chevallier-Mames, B., Clavier, C., Fuhr, T., Gouget,
A., Icart, T., Misarsky, J.F., Naya-Plasencia, M., Paillier, P., Pornin, T., Reinhard,
J.R., Thuillet, C., Videau, M.: Shabal, a Submission to NISTs Cryptographic Hash
Algorithm Competition. Submission to NIST, 2008.

11. Aumasson,J.P., Henzen, L., Meier, W., C.-W. Phan. R.: SHA-3 proposal BLAKE.
Submission to NIST, 2008.

12. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In: Proceeding of CRYPTO 2004. LNCS, vol. 3152, pp. 430440, 2004.

13. Lucks, S.: A failure-friendly design principle for hash functions. In: ASIACRYPT,
2005.

14. Liskov, M., Rivest, R., Wagner, D.: Tweakable Block Ciphers. In: Advances in
Cryptology-CRYPTO 2002 Proceedings, Springer-Verlag, pp. 3146, 2002.

15. Matyas, S.M., Meyer, C.H., Oseas, J.: Generating strong one-way functions with
cryptographic algorithms. IBM Technical Disclosure Bulletin, vol. 27, no. 10A, pp.
5658-5659, 1985.

16. Biham, E., Dunkelman. O.: A framework for iterative hash functions - HAIFA.
ePrint report 2007/278, 2007.

17. J. Bernstein, D.J.: ChaCha, a variant of Salsa20. Web:
http://cr.yp.to/chacha.html.

18. Aumasson, J.P., Meier, Phan, R. C.-W.: The hash function family LAKE. In: 15th
International Workshop on Fast Software Encryption, Lecture Notes in Computer
Science, pp. 36-53, 2008.

19. Lucks, S.: A failure-friendly design principle for hash functions. In: ASIACRYPT,
2005.

20. ALTERA: Stratix III Device Handbook, Volume 1, May 2009.

21. Federal Information Processing Standards Publication (FIPS PUB) 180-2: Secure
Hash Signature Standard (SHS), pp. 1-79, Aug. 2002.

Title Suppressed Due to Excessive Length 25

A Appendix - SHA-2 Hash Function

A.1 Algorithm Description

The basic data block used in SHA-2 (SHA-256) is a word which is 32 bits long.
SHA-2 makes use of bit-wise logical word XOR and AND operations along with
word addition (modulo 232), rotate right and shift right operations in its struc-
ture. SHA-2’s compression function is made of 64 consecutive round functions.
The structure of a round function is shown in Fig. 21.

Fig. 21. Block diagram of round function for SHA-2

The inputs to the each round are eight working variables (a, b, c, d, e, f, g, h)
32-bits each along with the two external variables Kt and Wt. The set of working
variables (a, b, c, d.e.f.g.h) are initialized at the start of the first round calculation
with the previous hash value as follows:

26 A. H. Namin and M. A. Hasan

a = H
(i−1)
0

b = H
(i−1)
1

c = H
(i−1)
2

d = H
(i−1)
3

e = H
(i−1)
4

f = H
(i−1)
5

g = H
(i−1)
6

h = H
(i−1)
7 (13)

Kt variables are 32-bit constants and kt variables are created through the
message schedule process as follows:

Wt =

{

Mt 0 ≤ t ≤ 15
σ1(Wt−2) + Wt−7 + σ0(Wt−15) + Wt−16 16 ≤ t ≤ 63.

(14)

Logical functions σ0 and σ1 along with the functions used inside the round
function (Ch, Maj,

∑

0,
∑

1) are defined as follows:

σ0 = ROTR7(x)⊕ROTR18(x)⊕ SHR3(x)

σ1 = ROTR17(x)⊕ROTR19(x)⊕ SHR10(x)
∑

0

= ROTR2(x)⊕ROTR13(x)⊕ROTR22(x)

∑

1

= ROTR6(x)⊕ROTR11(x)⊕ROTR25(x)

Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)

Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z) (15)

In (15), ROTR represents a rotate right operation and SHR represents a shift
right operations. Also, symbol ∧ represents a logical AND operations, ⊕ repre-
sents a logical XOR operation and ¬ represents a logical complements operation.

After sixty four rounds of calculations, the output hash is created by the
addition (modulo 232) of the last set of working variables (a, b, c, d, e, f, g, h)
with the previous hash values as follows:

Title Suppressed Due to Excessive Length 27

H
(i)
0 = a + H

(i−1)
0

H
(i)
1 = b + H

(i−1)
1

H
(i)
2 = c + H

(i−1)
2

H
(i)
3 = d + H

(i−1)
3

H
(i)
4 = e + H

(i−1)
4

H
(i)
5 = f + H

(i−1)
5

H
(i)
6 = g + H

(i−1)
6

H
(i)
7 = h + H

(i−1)
7 (16)

A.2 ASIC Implementation

Fully Unrolled/Parallel Design

The architecture used for the ASIC implementation of the SHA-2 is shown in Fig.
22. The previous hash value H(i−1) is stored inside the 256-bit input registers
(In Reg). All the round functions have been realized completely as combinational
circuits. After sixty four rounds, one level of adders (eight adders in parallel),
exists to create the output hash value according to Eq. (16). Output hash values
Hi can be read from the output register(Out Reg) after one clock cycle.

Fig. 22. Hardware architecture used for the compression function of SHA-2

Synthesis results of the SHA-2 compression function are summarized in Table
9. In this table, the Combinational Area represents the area mainly used by the
456 32-bit adders exist in the architecture. Small part of the area utilization is
used by the sixty four instances of the

∑

0,
∑

1, Ch, and Maj logical functions.

28 A. H. Namin and M. A. Hasan

Input Compression Combinational I/O Register Number of
Size Function Delay Area Area Gates

512 105.1 ns 1, 587, 346.92 µm2 29, 262.01 µm2 168, 193
Table 9. ASIC implementation summary of the SHA-2 compression function

Sequential Design

Similar to Skein, SHA-2 compression function architecture presents a regular
design as shown in Fig. 22. This property can be exploited to create a complete
SHA-2 compression function by just implementing one out of sixty four rounds
inside the compression function. We have implemented a second version of the
SHA-2 algorithm (SHA-2-1c) using just one round which is suitable for area
constrained applications. The hardware architecture used for this purpose is
shown in Fig. 23.

Fig. 23. Hardware architecture used for the compression function of SHA-2-1c

Note that some modifications have been made to the original round function
of SHA-2, to make the design capable of creating the message digest. The main
modification is the addition of the message schedule module in charge of gener-
ating the Wt parameters from the input message blocks according to Eq. (14).
This has to be done through a recursive process to present the small delay/area
requirements of the design.

Hardware architecture used for this purpose is shown in Fig 24. The mes-
sage schedule module operates as follows: Initially all input message blocks
(M0, . . . , M15) are loaded into the shift register. The shift register itself is made
of sixteen registers each made of 32 flip-flops working in parallel. An addition
module along with two other modules (σ0, σ1) exist which create the Wt param-
eters for t ≥ 16 and load them back into the circular shift register.

Title Suppressed Due to Excessive Length 29

Fig. 24. Hardware architecture of the message schedule module inside the compression
function of SHA-2-1c

Also a multiplexer, a counter and a constant module in charge of generating
the constants for each round exist inside the design as shown in Fig. 23. Synthesis
results for SHA-2-1c compression function are summarized in Table 10.

Input Critical Number Combinational I/O Register Number of
Size Path Delay of Cycles Area Area Gates

256 2.40 ns 64 30, 922.68 µm2 27, 808.79 µm2 4, 207
Table 10. ASIC implementation summary of the SHA2-1c compression function

From Tables 10 and 9 the following can be deduced: the area requirement
for the SHA-2 compression function has been reduced from 1, 616, 609.00 µm2 in
SHA-2 to 58, 731.47 µm2 in SHA-2-1c. This comes at the price of increasing the
delay from 105.1ns in SHA-2- to 153.6 ns in SHA-2-1c.

