
1

High Performance Architecture of Elliptic

Curve Scalar Multiplication

Bijan Ansari and M. Anwar Hasan

Department of Electrical and Computer Engineering

University of Waterloo

Waterloo, Ontario, Canada

{bansari, ahasan}@uwaterloo.ca

Abstract

A high performance architecture of elliptic curve scalar multiplication over finite fieldGF (2m) is

proposed. A pseudo-pipelined word serial finite field multiplier with word sizew, suitable for the scalar

multiplication is also developed. Implemented in hardware, this system performs a scalar multiplication

in approximately6⌈m/w⌉(m − 1) clock cycles and the gate delay in the critical path is equal to

TAND + (log
2
w)TXOR, whereTAND and TXOR are delays due to two-input AND and XOR gates

respectively.

Index Terms

Scalar multiplication, elliptic curves, finite fields

I. INTRODUCTION

Elliptic curve scalar multiplicationkP , wherek is an integer andP is a point on the curve, is

a fundamental operation in elliptic curve cryptosystems. In the recent past, a number of hardware

architectures have been proposed in the literature to speedup this operation, for example see

[1]–[3] Among them, parallel and pipeline structures have emerged as the most promising ones

for high performance systems.

Elliptic curve scalar multiplication is normally performed by repeating point addition (ECADD)

and doubling (ECDBL) operations over the curve in some special way. ECADD and ECDBL

2

operations in turn rely on finite field (FF) operations such asaddition/subtraction, multiplication

and inversion. One way to achieve parallel and pipelined scalar multiplication is to decompose

ECADD and ECDBL operations into FF operations, which results in a sequence of FF addition,

subtraction, squaring, multiplication and inversion operations. Proper grouping of these field

operations reveals new possibilities for optimization. This idea is used in [1], [2], [4] to achieve

parallelism and/or pipelining in the scalar multiplication operation. In [4], finite field operations

are optimized for single instruction multiple data (SIMD) architecture. In [2], such a grouping

has been used for obtaining pipelining and systolic operation. In [1], the sequence of operations

is divided into a collection of uniform (similar) atomic blocks, where each block consists of

a series of finite field operations. This leads to a pipelined algorithm, in which two blocks of

operations run in parallel and consequently require a double sized hardware. The idea of atomic

blocks have been used in [5] as a low cost solution to achieve immunity against simple power

analysis attacks (SPA) on the scalar multiplication.

Grouping of finite field operations is a key factor in the implementation of parallel and/or

pipelined algorithms. Among the finite field operations, theexecution time of a squaring operation

varies considerably depending on the type of fields– prime orextension. For fieldGF (p), where

p is prime, the complexity of squaring is comparable to the complexity of multiplication. This

approach has been used in [1] to create the uniform grouping and atomic blocks. However, in

binary extension fieldGF (2m), when the irreducible polynomial defining the field is known

in advance, the complexity of squaring is significantly lower than that of multiplication and

generally becomes comparable to that of addition [3], [6], [7]. In practice, FF squaring, like FF

addition, can be performed in one clock cycle. Therefore a different approach for optimization

is needed.

Finite field multiplication is the bottleneck of scalar multiplication, specially using projective

coordinates. Most high speed elliptic curve processors (ECP) in GF (2m) use a word serial

(WS) finite field multiplier, either in direct form [3], [8] orin the Karatsuba form [3], [9], [10].

Assuming the field size of2m elements and the word size ofw bits a typical, WS multiplication

algorithm is performed in⌈m/w⌉ iterations. It is also common in the literature to ignore the

execution time of FF addition (and sometimes FF squaring) compared to the execution time

of FF multiplication. Simple analyses show that scalar multiplication is achievable inM(m −

1)⌈m/w⌉ clock cycles, whereM is the number of FF multiplications in one iteration of the scalar

3

TABLE I

TYPICAL NUMBER OF CLOCK CYCLES OF BASIC FINITE FIELD OPERATIONS

Design m Multiplication Addition Squaring

[8] 167 7 3 3

[3] 163 7 to 12 3 3

[9] 233 9 ≥ 2 2 (est.)

[7] 163 7 3 2

multiplication loop. However, this level of performance has not been reported in the literature

yet and the main reasons are the followings:

1) In hardware implementation of WS multipliers, a few extraclock cycles are spent on

loading inputs and unloading outputs [3], [7], [8]. This leads to a total of⌈m/w⌉+c clock

cycles in practice. Typically, the value ofc is 3 [3], [7], [8] for elliptic curves that are

of practical interest. For other finite field arithmetic units, like adder and squarer, extra

clock cycles are spent to transfer data to and from memory/register file as well. Table I

compares the execution times of these operations in terms ofclock cycles as reported in

various articles.

2) For high speed hardware implementation of operations ofGF (2m) the execution time of

addition and squaring are comparable to that of multiplication and may not be ignored

(Table I).

3) In a typical processor architecture the computation units are connected to the mem-

ory/register file or to each other by a common bus. If two unitsrequire data at the same

time, one has to stay idle until the other unit releases the bus. This could lead to a large

number of idle cycles for the processing units [7].

4) The FF multiplier, which occupies the bulk of hardware in ahigh performance design,

is not used efficiently. In some cases, the inputs of one FF multiplication depends on

the output of the previous FF operation. Therefore the FF multiplier, if implemented in

pipelined form, stays idle while waiting for the next input.This is specifically true in two

consecutive iterations of the scalar multiplication loop.

4

This work proposes an architecture/scheme for elliptic curve scalar multiplication over binary

extension fieldGF (2m) that alleviates the above mentioned problems. In this scheme the output

of one field multiplication operation is not used as an input to the next multiplication operation,

rather the underlying finite field operations of the scalar multiplication are divided into two

streams (addition/squaring and multiplication) that are executed in parallel, and simultaneous

loading of operands to the multiplier and adder/squarer is permitted. The proposed scalar multi-

plication scheme achieves better performance by preventing the finite field multiplier to become

idle during the entirem− 1 iterations of the scalar multiplication loop.

We demonstrate the effectiveness of the scalar multiplication scheme by applying it to a

classical processor architecture, which uses a pseudo-pipeline WS finite field multiplier. This

multiplier computes one multiplication every⌈m/w⌉ clock cycles instead of⌈m/w⌉+ c, where

⌈m/w⌉ = 4 andc = 3, as reported in the literature for practical applications [3], [7]. A decrease

in the number of clock cycles from 7 to 4 is extremely useful and comes without any significant

cost, since the hardware added for pipelining is negligiblecompared to the rest of the multiplier.

This multiplier enables us access relevant variables in parallel with finite field computations.

The organization of the remainder of this report is as follows. Section II briefly reviews

the Montgomery scalar multiplication algorithm. There aredata dependencies in the steps of

the algorithm and hence the latter cannot be readily executed in pipelined fashion as desired. In

Section III, we develop a pipelined version of the scalar multiplication scheme. In Section IV we

explain an architecture of a finite field multiplier suitablefor the proposed scalar multiplication

scheme. In this section, implementation issues are also considered and some results for ASIC

and FPGA implementations are presented. Finally, concluding remarks are given section V.

II. REVIEW OF THE MONTGOMERY SCALAR MULTIPLICATION

Points on an elliptic curveE, defined over a finite fieldGF (q), along with a special point

called infinity, and a group operation known as point addition, form a commutative finite group.

If P is a point on the curveE, andk is a positive integer computing

kP = P + P + P + · · ·+ P
︸ ︷︷ ︸

k times

is called scalar multiplication. The result of scalar multiplication is another pointQ on the curve

E. It is normally expressed asQ = kP . If E is an elliptic curve defined overGF (q), the

5

number of points inE(GF (q)) is called the order ofE over GF (q), denoted by#E(GF (q)).

For cryptographic applications#E(GF (q)) = rh wherer is prime andh is a small integer and

P and Q have orderr. Scalars such ask are random integers where1 < k < r − 1. Since

r ≈ q, the binary representation ofk =
∑n−1

i=0
ki2

i hasn bits wheren ≈ m = ⌈log
2
q⌉. Scalar

multiplication is the most dominant computation part of elliptic curve cryptography. More on

this can be found in [11], [12].

Algorithm 1 shows the Montgomery [13] scalar multiplication scheme for non-supersingular

elliptic curves over binary fields as it was introduced in [14]. In this algorithmMadd(X1,Z1,X2,X2),

Mdouble(X1,Z1) andMxy(X1,Z1,X2,X2) are functions for point addition, point doubling

and conversion of projective coordinates to affine coordinates. The computation involved in

these functions can be found in the appendix. The reader is referred to [11], [14] for detailed

explanation.

Algorithm 1 Montgomery scalar multiplication in projective coordinates

Input: A point P = (x, y) ∈ E, an integerk > 0, k = 2n−1 +
∑n−2

i=0
ki2

i, ki ∈ {0, 1}

Output: Q = kP = (xk, yk)

1: X1 ← x, Z1 ← 1, X2 ← x4 + b, Z2 ← x2 {calculateP and2P}

2: if (k = 0 or x = 0) then

3: x← 0, y ← 0

4: stop

5: end if

6: for i = n− 2 to 0 do

7: if ki = 1 then

8: (X1, Z1)←Madd(X1, Z1, X2, Z2), (X2, Z2)←Mdouble(X2, Z2)

9: else

10: (X2, Z2)←Madd(X2, Z2, X1, Z1), (X1, Z1)←Mdouble(X1, Z1)

11: end if

12: end for

13: Q←Mxy(X1, Z1, X2, Z2)

14: return Q

6

This algorithm has been used in several high speed ECC implementations [3], [8], [15]. For

a straight-forward implementation in hardware, it may takeas many as(m − 1)(6M + 3A +

5S) + (10M + 7A + 4S + I) clock cycles, whereM, A, S andI are the number of clock cycles

required for multiplication, addition, squaring and inversion respectively, in the underlying finite

field andm is the dimension of the binary extension fieldGF (2m).

III. A RCHITECTURE FORSCALAR MULTIPLICATION

Since finite field multiplier is the bottle neck of scalar multiplication, it requires special

consideration for realizing a high performance architecture for scalar multiplication. Consider a

word serial finite field multiplier. It can be divided into twofunctional units: the multiplication

core and the input/output buffers. When data is being loaded to the input buffer or the result

is unloaded from the output buffer, the multiplier core is essentially idle. One of our goals is

to utilize the multiplier in such a way so that it effectivelybecomes the sole component that

determines the time duration of each pass of the loop in the scalar multiplication algorithm.

This can be achieved by performing a field addition and a squaring in parallel with a field

multiplication. For this the combined execution time for the addition and squaring is assumed

to be less than or equal to that of multiplication. Since the multiplier is a finite state machine

and performs the multiplication in a certain number of clockcycles, the multiplier should be

fed with data in equal pace. This is addressed in Sections III-B and III-C.

Our another goal is to keep the multiplier core working during the entire time of the loop

of the algorithm including the transition from one iteration to the next iteration. This means

when one multiplication is performed, data for the next multiplication should be available to the

multiplier on time. Additionally, the end of one iteration in the scalar multiplication loop be tied

properly to the start of the next iteration. This needs to be done carefully since the next iteration

uses the result of the previous iteration (Section III-D).

A. Merging of Two Execution Paths

In Algorithm 1, depending on the value ofki, either line 8 or line 10 is executed. The operations

are the same in both paths, but the inputs and the outputs ofMadd(.)and Mdouble(.)

functions are different. In order to keep the algorithm uniform and suitable for pipelining we

merge the twoki dependent execution paths in Algorithm 1. Since point addition is commutative,

7

Algorithm 2 Scalar multiplication algorithm with uniform addressing

Input: A point P = (x, y) ∈ E, an integerk > 0, k = 2n−1 +
∑n−2

i=0
ki2

i, ki ∈ {0, 1}

Output: Q = kP = (xk, yk)

1: X1 ← x, Z1 ← 1, X2 ← x4 + b, Z2 ← x2

2: if (k = 0 or x = 0) then

3: Q← O

4: stop

5: end if

6: if kn−2 = 1 then

7: Swap(X1, X2), Swap(Z1, Z2)

8: end if

9: for i = n− 2 to 0 do

10: (X2, Z2)←Madd(X1, Z1, X2, Z2), (X1, Z1)←Mdouble(X1, Z1)

11: if (i 6= 0 and ki 6= ki−1) or (i = 0 and ki = 1) then

12: Swap(X1, X2), Swap(Z1, Z2)

13: end if

14: end for

15: Q←Mxy(X1, Z1, X2, Z2)

16: return Q

the inputs toMadd(.) function affectively remain the same. The output variable however

depends on the value ofki. In the case ofMdouble(.), input and output variables depend

on ki. It is sufficient to swapX1, with X2 and Z1 with Z2 before and after any calculation,

if ki equals to one. Doing so, the input toMdouble(.) remains the same but the output

goes toX2, Z2 instead. Input and output variables ofMdouble(.) are changed toX2 andZ2

accordingly. After calculation, the variables need to be swapped back to their original states.

If two consecutive bits are one, then a pair of swapping can beeliminated. This is shown in

Algorithm 2.

In hardware, when indexing mechanism is utilized to access variablesX1, X2, Z1 and Z2,

8

swapping can be easily performed by exchanging the address lines to these registers or by an

equivalent mechanism. Swapping does not take any clock cycles. A swap signal can be generated

using the current state ofi andki. It can then be applied to the address logic of the register file.

B. Parallel Execution

If the finite field operations required for eachMadd(.)and Mdouble(.) as defined in

the appendix are performed in sequence, then each pass of themain loop of Algorithm 2 will

require about6M + 3A + 5S clock cycles. There are ways (see for example [3]) to improve

the performance by using parallel operations. To this end, one can simply use one multiplier,

one adder, and one squaring unit. Figure 1 depicts the flow graph of scalar multiplication

algorithm in which each multiplication is performed in parallel with an addition and/or with

a squaring. We assume that multiplication takes longer thanaddition and squaring. This enables

us to make the critical path of the scalar multiplication operation dependents only on thefinite

field multiplication. Using this algorithm the execution time for one iteration in the scalar

multiplication loop is equal to6M + A. In Fig. 1 the dashed line shows the critical path of

the algorithm, which is dependent onM as long asM > A andM > S.

Algorithm 2 is very flexible. If enough hardware resources are available two multiplications

can be performed in parallel. This is shown in Fig. 2. This architecture can reduce the execution

time to 3M + A clock cycles, assuming the input operands to the multipliers are available at

appropriate clock cycle. This architecture however, almost doubles the hardware size and is not

considered further in this work.

C. Data Dependency at Transitions of Iterations

Let M = Mp + c be the number of clock cycles needed for a finite field multiplication, where

Mp(= ⌈m/w⌉ for WS multiplier) is the number of clock cycles needed to calculate the result

andc is the total clock cycles needed to load the input and unload the result from the multiplier.

We call c as theidle time of the multiplier core. In the flowgraph shown in Fig. 1 performance

can be improved if another multiplication can start while the multiplier core is in the idle state.

In order to prevent the multiplier to become idle new operands need to be fed to the multiplier

at the rate ofMp. However, for an idle free operation one needs to make certain that the next

multiplication is not dependent on the current one. The flowgraph of scalar multiplication in Fig. 3

9

Fig. 1. Parallel execution of multiplication and addition/squaring

^2

^2

^2

^2

+

+

^2

+

*

*

*

*

*

*

X2

AdditionDoubling

b X1 Z1 X2 Z2 x

X1 Z1 Z2

assumes a multiplier with a computation time ofMp clock cycles and a total multiplication time

of M clock cycles, whereM = Mp + c.

In Fig. 3, each * (circle) corresponds to the start of a finite field multiplication. Vertically

below each circle, there is a triangle to indicate the end of the multiplication that originated at

the circle. The minimum time difference between two consecutive circles (or two consecutive

triangles) is the operation rateMp of the multiplier. The result of the multiplication cannot be

used before the triangle event in the flow graph. We assume that Mp > A andMp > S. In the

flowgraph the multiplier receives its operands regularly and at equal intervals. Using this scheme

the total execution time equals to5Mp + M + A clock cycles.

The dashed lines through the circles in Fig. 3 indicate the time up to which operands at the

input of multiplier are intact and may be used for other operations. Modification to the register

happens at the triangle event. Near the bottom of flowgraph ofFig. 3, the adder needs to wait

until the multiplier computes the field multiplication and the output of the adder would be the

10

Fig. 2. Parallel execution using two multipliers

*

* +

+

*

+

*

*

*^2 ^2

^2

^2 ^2

Z2

3M

b Z1X1 X2 Z2 x

M

2M

0

X1 Z1 X2

next set of inputs to the multiplier. This causes a delay of(M − Mp + A) clock cycles per

iteration, which in turn translates into an overall delay of(m − 1)(M −Mp + A) clock cycles

in the scalar multiplication operation. This problem can beeliminated as follows.

D. Resolving Data Dependency at Iteration Transitions

As shown in Fig 1, the first multiplication in the next iteration can be eitherX1 ∗ Z2 or

X2 ∗ Z1. We observe thatZ1, Z2 and X1 are ready before the triangle event in the last finite

field multiplication in the flowgraph Fig. 3. Ifki = 0, we may start the next iteration at the

triangle event by theX1 ∗ Z2 operation. Ifki = 1 the variables are swapped;X2 in the current

cycle goes toX1 in the next cycle. Therefore, we should start the next cycle with the X2 ∗ Z1

operation which is actually aX1 ∗ Z2 operation. In the new arrangement the first multiplication

in the loop will depend onki. The complete loop is shown in Fig. 4. A switch box is added

at the end (or start) of the flowgraph which swaps the registers properly. It does not take extra

clock cycles since the logic is simple and can be done by combinational logic. One addition

11

Fig. 3. Parallel with no idle cycle in the middle of the iteration

*
+

+

+

*

*

*

*

*

^2

^2

^2

^2

^2

*

*

*

*

*

*

5Mp

4Mp

3Mp

b X1 Z1 Z2X2 x

0

M

2Mp

T1

T2

X1 Z1 Z2X2

Mp

operation, from the end of the previous iteration appears atthe start of the next iteration. This

is highlighted in Fig. 4 with a bold faced circle. As it is shown, each iteration takes6Mp clock

cycles and the multiplier does not become idle.

The scheme can be implemented by a multiplier that has a computational time long enough

to allow an addition or squaring to be performed in parallel.A finite field multiplier suitable for

this scheme is proposed in section IV-B.

Table II summarizes and compares the speed of scalar multiplication operation as mapped on

to the flowgraph of Fig. 1, Fig. 3 and Fig. 4. For finite field operations indicated in the flowgraph,

high speed architectures similar to [3], [7]–[9] are assumed. In these architectures one typically

has A = S = 3 and M = ⌈m/w⌉ + 3 = 7. The first row in Table II serves as a basis of

comparison and corresponds to a straight-forward hardwareimplementation of Algorithm 1.

12

Fig. 4. Parallel with no idle cycle in entire scalar multiplication loop

*

+

+

*

+

i

^2

^2

^2

^2

^2

*

*

*

*

*

*

*

*

*

*

Swap Box

ki

0

b X1 Z1 X2 Z2 x

X1 or X2

Mp

6Mp

Z1 or Z2

IV. I MPLEMENTATION

The number of clock cycles by itself does not show the speed ofthe system, since the clock

rate may vary considerably. Therefore an implementation iscarried out to verify the performance

of the system. Traditional elliptic curve processors are based on an instruction set which allows

them to execute different scalar multiplication schemes [3], [7], [8].

A. Implemented Architecture

The proposed scalar multiplication scheme is highly optimized toward the execution of the

Montgomery ladder in projective coordinates. Therefore, it is implemented in the form of a

state machine. Figure 5 shows the basic architecture of the execution unit, which consists of a

squaring/addition unit, a finite field multiplier, a dual port 8×m bit register file and an address

swapping logic. An FF addition or squaring, an FF multiplication and a load/save operation

13

TABLE II

SUMMARY, ASSUMING ⌈m/w⌉ = 4, A = S = 3

Method #Clks in one iteration #Clks in (m − 1) iterations Speed

Straight-forward (Alg. 2) 6M + 3A + 5S 66(m − 1) 1.00

Parallel addition/squaring (Fig. 1) 6M + A 45(m − 1) 1.47

No idle cycle for the FF multiplier (Fig. 3) 5Mp + M + A 30(m − 1) 2.13

No idle cycle in the entire operation (Fig. 4) 6Mp 24(m − 1) 2.75

Fig. 5. Implemented Architecture

3Addr. Mult.
Squaring/
Addition

3

m

m

Swap logic Reg. File

from/to the register file can be performed in parallel. A squaring, for example, is performed in 3

clock cycles – one for each of the following operands: loading the accumulator with data from

the register file, squaring and finally saving the result in the register file. The multiplier and

the squaring/addition unit can be loaded with the same data at the same clock cycle, to prevent

redundant data transfer in the data bus.

B. Pseudo-Pipelined WS Finite Field Multiplier

In this section a pseudo-pipelined finite field multiplier isintroduced which can be used in

the proposed scalar multiplication scheme. A polynomial basis representation of the field is

assumed. In Fig. 6 four registersS, T, D andP construct the interstage buffers of the pipeline.

The multiplier operands are fed sequentially to the multiplier. This arrangement provides the

multiplier with one more level of delay/pipelining which allows us to transfer one of the operands

into the multiplier while the multiplier is still busy performing the previous multiplication. i.e.

the inputs to them × w-bit bit-parallel multiplier (BPM) finite field multiplier,shown as in

Fig. 6, remain unchanged after transferring the first operand to the multiplier. Another benefit

is that at some point in the scalar multiplication algorithm, the addition/squaring unit and the

multiplier use the same operand (see Fig. 3). This arrangement provides a good mechanism to

load both units at the same time and save one clock cycle. The multiplier is controlled by its

14

Fig. 6. Pseudo-pipelined finite field multiplier

1

D

P

mod

m + w −

m

T

m + w −

S . T mod f(x)

m

m

Data Bus

S...

w

S[k−]

t

w

m

Critical Path

BPM

wx*

2

1m + w −

1

own state machine.

RegisterS is arranged like a stack of⌈m/w⌉ words with w bits in each word. Therefore

no multiplexer is needed for word selection, as it is used in conventional WS multipliers.

This reduces the gate delay in the critical path toTAND + (log2 w)TXOR resulting from the

multiplication of the contents of registersT andt. This is apparently the shortest critical path in

WS multipliers reported in the literature, especially whenthe field defining irreducible polynomial

is known in advance and hence reduces the complexity of the ”mod” operation shown in the

multiplier structure.

The operation of the multiplier for the special case of⌈m/w⌉ = 4 is presented in Table III. It

shows register contents for two consecutive multiplications, namelyA×B andU ×V assuming

a ”cold” start. In the table, operandsA andU are split asA = A3x
3w +A2x

2w +A1x
w +A0 and

15

TABLE III

STATE DIAGRAM OF THE PSEUDO-PIPELINED FINITE FIELD MULTIPLIER

Cycle S T t D P

1 B

2 A B A3

3 A B A2 B × A3

4 A B A1 B × A2 B × A3 mod f(x)

5 V B A0 B × A1 (B × A3)x
w + B × A2 mod f(x)

6 U V U3 B × A0 ((B × A3)x
w + B × A2)x

w + B × A1 mod f(x)

7 U V U2 V × U3 (((B × A3)x
w + B × A2)x

w + B × A1)x
w + B × A0 mod f(x)

End of A × B mod f(x)

8 U V U1 V × U2 V × U3 mod f(x)

9 V U0 V × U1 (V × U3)x
w + V × U2 mod f(x)

10 V × U0 ((V × U3)x
w + V × U2)x

w + V × U1 mod f(x)

11 (((V × U3)x
w + V × U2)x

w + V × U1)x
w + V × U0 mod f(x)

End of U × V mod f(x)

similarly U = U3x
3w + U2x

2w + U1x
w + U0. One can see from the table that each multiplication

takes 7 cycles. The multiplier has a pipeline rate of 4, i.e. after every 4 clock cycles a new set

of input operands can start entering the multiplier.

As stated before, in theory, WS finite field multiplication algorithm takes⌈m/w⌉ iterations or

clock cycles. However, the operation of loading the inputs and unloading the output occupies the

data bus and takes a few extra clock cycles([3], [7], [9]). The key to the fast execution of scalar

multiplication is to perform loading and unloading in parallel with the finite field computations,

namely addition, multiplication and squaring. As an example, consider the execution ofZ1 =

Z1 × X1 in parallel with squaringX1 = X2

1
and Z2 = Z1 + X2, and the start of another

multiplication X2 × Z2.

1: S ← X1, ACC ← X1 {load register S and the accumulator simultaneously}

2: S ← Z1, ACC ← ACC2 {the content of S will be pushed automatically to T by the multiplier

state machine. The squaring is performed in one cycle.}

3: ACC ← Z1, X1 ← ACC {Save the result in ACC. Load ACC with the next operand.

Multiplier is busy}

16

4: ACC ← ACC + X2

5: S ← X2, Z2 ← ACC {Another multiplication can start here, however the result of Z1 ∗X1

is not ready yet}

6: S ← Z2

7: {The result of multiplication is ready. i.e.P ← Z1 ∗X1 }

C. Implementation Results

Using the proposed multiplier, the scalar multiplication scheme can be implemented in an

architecture with the delay due to gates in the critical pathequal to TAND + log2 wTXOR.

Synthesized forGF (2163) using with Synopsys Design Analyzer, the layout was analyzed with

Cadence Encounter. The critical path equals to6ns for 0.18µm CMOS technology. The delay in

the critical path is caused by the wiring delay in the layout as well as gate delay. Using Xilinx

ISE, the critical path equals to10ns for Xilinx XC2V2000 FPGA. The system computes the

scalar multiplication for curves overGF (2163) in 21 and 41µS on ASIC and FPGA respectively.

The hardware takes about 36000 gates in CMOS0.18µm; on Xilinx XC2V2000 FPGA it takes

8300 lookup tables (LUT) and 1100 flip flops (FF) and 7 block RAM.

D. Comparison

In Table IV a number of high speed elliptic curve processors (ECP) are compared with

the proposed one on the basis of number of clock cycles for scalar multiplication. The scalar

multiplier of [1] is not included in the table above. This is because the scalar multiplier of [1] uses

a multiplier for squaring, which increases the total numberof multiplications but it is necessary

for the creation of atomic blocks. It also uses two multipliers, which means a larger hardware.

Considering an implementation of [1] for a160 bit scalar (i.e.m = 160) andr-NAF with r = 4,

an elliptic curve scalar multiplication overGF (2m) takes1152(M + A + A + 0) ≈ 91(m− 1)

clock cycles (the cost of additive inversion in a binary extension field is zero clock cycles).

In the scalar multiplication algorithm a conversion from projective to affine coordinates, which

includes a finite field inversion, is required at the end of theloop (i.e.Mxy(.)). Using the Itoh-

Tsujii algorithm it takes(m− 1) + M(⌊log
2
(m− 1)⌋+ h(m− 1)− 1) ≈ (m− 1) clock cycles.

When the extended Euclidean algorithm is used, inversion takes2m clock cycles [3]. The middle

column of Table IV gives the number of clock cycles that include the conversion and them− 1

17

TABLE IV

PERFORMANCE OF THE SCALAR MULTIPLIERS

Design ⌈m/w⌉ Number of Clk forkP Point Representation

[9] - 44(m − 1) (est.) Projective with NAFa

[8] 4 47(m − 1) (est.) Montgomery Projective,w = 42 b

[3] 4 57(m − 1) (est.) Montgomery Projective

[7] 4 93(m − 1) (est.) Projective with NAF

Proposed Scheme 25(m − 1) Montgomery Projective

aFor [9], we have usedNAF representation for scalark.

bIn [8], the maximum value ofw is 16. For our comparison we have scaled it up tow = 42.

passes of the main loop of the scalar multiplication operation. The proposed scheme performs

better than a parallel system because it is using a pseudo-pipeline multiplier effectively.

E. Comments

• Security Against Simple Power Analysis Attack (SPA): The Montgomery algorithm is

considered to be inherently resistant against SPA and timing attacks. This is because the

computation cost does not depend on the specific bit of the scalar k. For each bit of the

scalar, one point addition and one doubling are performed. The proposed scheme has two

different execution paths depending on the current bit of the scalark. Both execution paths

have the same complexity and take the same number of clock cycles. If the attacker is

not able to separate swapping operation in the whole process, it is expected that the new

scheme have the same level of resistance against SPA attacks.

• Simple Swapping: In order to keep the swapping operation simple, parametersX1, X2, Z1

andZ2 are stored in a register file. Therefore this operation is performed by merely swapping

the address information, this does not take any additional clock cycles. A simple scheme

for swapping is shown in Fig. 7, which can be considered equivalent to the switching of

maximum two gates. The swap signal is generated by the condition in Algorithm 2.

• Modular Construction: Fig. 4 can be used to derive a straight-forward architecture. The

basic building block is composed of an adder, a squarer, a multiplier, and a set of registers

which hold the output of these units and a data path control unit (Fig. 8). The output of

18

Fig. 7. Swapping mechanism

2A

X

ZA

A

0

1

2

1

2

2

1

001

010

011

000

111

...

X

ZA

Swap

Fig. 8. Basic Building Block

Data Path Control

^2* +

Registers

the registers goes to the data path control unit. It arrangesthe data for the next round of

arithmetic operation. It takesMp clock cycles for data to be processed in the basic building

block. One can cascadem building blocks to construct a pipeline system which outputs

the result of one scalar multiplication everyMp clock cycles with a latency ofmMp clock

cycles.

V. CONCLUSION

A high performance scalar multiplication scheme based on the Montgomery scalar multipli-

cation algorithm has been proposed. Using a pseudo pipelined word serial multiplier the scheme

performs a scalar multiplication in25(m− 1) clock cycles, which is approximately 2.75 times

faster than a straight-forward implementation and 1.6 times faster than best implementations

reported in this category in the open literature. The underlying finite field multiplier performs

loading and unloading of data while it is in operation and hence performs a field multiplication in

⌈m/w⌉ clock cycles. The gate delay in the critical path of the multiplier is TAND +log2 wTXOR.

Implemented on FPGAs, the scalar multiplication system operates at 100MHz and performs

about 24000 scalar multiplications per second for curves over GF (2163).

19

APPENDIX

Assume thatE is a non-supersingular elliptic curve overGF (2m) defined asy2 + xy =

x3 +ax2 +b andP = (x, y) ∈ E(GF (2m)). FunctionsMadd(.), Mdouble(.) andMxy(.)

in Algorithm 1 are defined as follows [14]. In these functions, x andy are the coordinates of the

original pointP which are fixed during the calculation ofkP and,xk andyk are the coordinates

of Q = kP .

function Mdouble (input X1, input Z1)

{

X ← X4

1
+ b · Z4

1

Z ← Z2

1
·X2

1

return (X, Z)

}

function Madd (input X1, input Z1, input Z2, input Z2)

{

X ← (X1 · Z2 + X2 · Z1)
2

Z ← x · Z3 + (X1 · Z2) · (X2 · Z1)

return (X, Y)

}

function Mxy (input X1, input Z1)

{

xk = X1/Z1

yk = (x + xk)[(y + x2) + (X2/Z2 + x)(X1/Z1 + x)]× (1/x) + y

return (xk, yk)

}

REFERENCES

[1] P. K. Mishra, “Pipelined computation of scalar multiplication in elliptic curve cryptosystems.” inCHES, 2004, pp. 328–342.

[2] A. K. Daneshbeh and M. A. Hasan, “Area efficient high speedelliptic curve cryptoprocessor for random curves.” inITCC

(2), 2004, pp. 588–.

20

[3] H. Eberle, N. Gura, and S. C. Shantz, “A cryptograhpic processor for arbitrary elliptic curves overGF (2m).” in ASAP,

2003, pp. 444–454.

[4] T. Izu and T. Takagi, “Fast elliptic curve multiplications with simd operations.” inICICS, 2002, pp. 217–230.

[5] B. Chevallier-Mames, M. Ciet, and M. Joye, “Low-cost solutions for preventing simple side-channel analysis: Side-channel

atomicity.” IEEE Trans. Computers, vol. 53, no. 6, pp. 760–768, 2004.

[6] H. Wu, “Bit-parallel finite field multiplier and squarer using polynomial basis.”IEEE Trans. Computers, vol. 51, no. 7,

pp. 750–758, 2002.

[7] J. Lutz and M. A. Hasan, “High performance fpga based elliptic curve cryptographic co-processor.” inITCC (2), 2004,

pp. 486–492.

[8] G. Orlando and C. Paar, “A high performance reconfigurable elliptic curve processor forGF (2m).” in CHES. London,

UK: Springer-Verlag, 2000, pp. 41–56.

[9] C. Grabbe, M. Bednara, J. von zur Gathen, J. Shokrollahi,and J. Teich, “A high performance vliw processor for finite

field arithmetic.” in IPDPS, 2003, p. 189.

[10] M. Ernst, M. Jung, F. Madlener, S. Huss, and R. Blümel, “A reconfigurable system on chip implementation for elliptic

curve cryptography overGF (2m).” in CHES, 2002, pp. 381–399.

[11] D. Hankerson, A. Menezes, and S. Vanstone,Guide to Elliptic Curves Cryptography.Springer, 2003.

[12] I. Blake, G. Seroussi, and N. Smart,Elliptic Curves in Cryptography. Cambridge University Press, 2002.

[13] P. Montgomery, “Speeding the pollard and elliptic curve methods of factorization.”Mathematics of Computation, vol. 48,

pp. 243–264, 1987.

[14] J. López and R. Dahab, “Fast multiplication on elliptic curves overGF (2m) without precomputation.” inCHES, 1999,

pp. 316–327.

[15] A. Satoh and K. Takano, “A scalable dual-field elliptic curve cryptographic processor.”IEEE Trans. Computers, vol. 52,

no. 4, pp. 449–460, 2003.

