High Performance Architecture of Elliptic

Curve Scalar Multiplication

Bijan Ansari and M. Anwar Hasan
Department of Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario, Canada

{bansari, ahasg@uwaterloo.ca

Abstract

A high performance architecture of elliptic curve scalarltiplication over finite fieldGF(2™) is
proposed. A pseudo-pipelined word serial finite field muikipwith word sizew, suitable for the scalar
multiplication is also developed. Implemented in hardwénés system performs a scalar multiplication
in approximately6[m/w](m — 1) clock cycles and the gate delay in the critical path is equoal t
Tanp + (logy w)T'xor, WhereTynyp andTxor are delays due to two-input AND and XOR gates

respectively.

Index Terms

Scalar multiplication, elliptic curves, finite fields

I. INTRODUCTION

Elliptic curve scalar multiplicatiork P, wherek is an integer and’ is a point on the curve, is
a fundamental operation in elliptic curve cryptosystemshk recent past, a number of hardware
architectures have been proposed in the literature to sppetlis operation, for example see
[1]-[3] Among them, parallel and pipeline structures hawgegged as the most promising ones
for high performance systems.

Elliptic curve scalar multiplication is normally perform®@y repeating point addition (ECADD)
and doubling (ECDBL) operations over the curve in some sppegay. ECADD and ECDBL

operations in turn rely on finite field (FF) operations sucladdition/subtraction, multiplication
and inversion. One way to achieve parallel and pipelinetascaultiplication is to decompose
ECADD and ECDBL operations into FF operations, which resuita sequence of FF addition,
subtraction, squaring, multiplication and inversion @tens. Proper grouping of these field
operations reveals new possibilities for optimizationisTidea is used in [1], [2], [4] to achieve
parallelism and/or pipelining in the scalar multiplicatioperation. In [4], finite field operations
are optimized for single instruction multiple data (SIMDYlhitecture. In [2], such a grouping
has been used for obtaining pipelining and systolic opamatlin [1], the sequence of operations
is divided into a collection of uniform (similar) atomic ldks, where each block consists of
a series of finite field operations. This leads to a pipelingdrihm, in which two blocks of
operations run in parallel and consequently require a dosizied hardware. The idea of atomic
blocks have been used in [5] as a low cost solution to achieweunity against simple power
analysis attacks (SPA) on the scalar multiplication.

Grouping of finite field operations is a key factor in the impkntation of parallel and/or
pipelined algorithms. Among the finite field operations, éecution time of a squaring operation
varies considerably depending on the type of fields— primextension. For field~ F'(p), where
p is prime, the complexity of squaring is comparable to the glexity of multiplication. This
approach has been used in [1] to create the uniform groupidgatomic blocks. However, in
binary extension field7F'(2™), when the irreducible polynomial defining the field is known
in advance, the complexity of squaring is significantly lowlean that of multiplication and
generally becomes comparable to that of addition [3], [@], [n practice, FF squaring, like FF
addition, can be performed in one clock cycle. Thereforeffer@int approach for optimization
is needed.

Finite field multiplication is the bottleneck of scalar mplication, specially using projective
coordinates. Most high speed elliptic curve processorsP)E@ G F'(2™) use a word serial
(WS) finite field multiplier, either in direct form [3], [8] om the Karatsuba form [3], [9], [10].
Assuming the field size af™ elements and the word size afbits a typical, WS multiplication
algorithm is performed infm/w] iterations. It is also common in the literature to ignore the
execution time of FF addition (and sometimes FF squaringhpared to the execution time
of FF multiplication. Simple analyses show that scalar iplidation is achievable inV/(m —

1)[m/w] clock cycles, wheré/ is the number of FF multiplications in one iteration of thalsc

TABLE |

TYPICAL NUMBER OF CLOCK CYCLES OF BASIC FINITE FIELD OPERATIGS

Design| m | Multiplication | Addition | Squaring
[8] 167 7 3 3
[3] 163 71012 3 3
[9] 233 9 >2 2 (est.)
[7] 163 7 3 2

multiplication loop. However, this level of performanceshaot been reported in the literature

yet and the main reasons are the followings:

1)

2)

3)

4)

In hardware implementation of WS multipliers, a few exttack cycles are spent on
loading inputs and unloading outputs [3], [7], [8]. Thisdeao a total offm/w] + ¢ clock
cycles in practice. Typically, the value aofis 3 [3], [7], [8] for elliptic curves that are
of practical interest. For other finite field arithmetic @itike adder and squarer, extra
clock cycles are spent to transfer data to and from memaigter file as well. Table |
compares the execution times of these operations in ternctook cycles as reported in
various articles.

For high speed hardware implementation of operation§ Bf2™) the execution time of
addition and squaring are comparable to that of multipiiceend may not be ignored
(Table 1).

In a typical processor architecture the computationsuaite connected to the mem-
ory/register file or to each other by a common bus. If two uretguire data at the same
time, one has to stay idle until the other unit releases tlee bhis could lead to a large
number of idle cycles for the processing units [7].

The FF multiplier, which occupies the bulk of hardware imigh performance design,
is not used efficiently. In some cases, the inputs of one FRiphiohtion depends on
the output of the previous FF operation. Therefore the FRiphar, if implemented in
pipelined form, stays idle while waiting for the next inptihis is specifically true in two

consecutive iterations of the scalar multiplication loop.

This work proposes an architecture/scheme for elliptiwewwcalar multiplication over binary
extension field7F'(2™) that alleviates the above mentioned problems. In this sehm output
of one field multiplication operation is not used as an inputhie next multiplication operation,
rather the underlying finite field operations of the scalartiplication are divided into two
streams (addition/squaring and multiplication) that axeceted in parallel, and simultaneous
loading of operands to the multiplier and adder/squareersited. The proposed scalar multi-
plication scheme achieves better performance by pregthim finite field multiplier to become
idle during the entiren — 1 iterations of the scalar multiplication loop.

We demonstrate the effectiveness of the scalar multiptmascheme by applying it to a
classical processor architecture, which uses a pseuady@pWs finite field multiplier. This
multiplier computes one multiplication evefyn/w]| clock cycles instead ofm/w]| + ¢, where
[m/w] =4 andc = 3, as reported in the literature for practical applicatioBis [7]. A decrease
in the number of clock cycles from 7 to 4 is extremely usefud anmes without any significant
cost, since the hardware added for pipelining is negligiolepared to the rest of the multiplier.
This multiplier enables us access relevant variables iallghwith finite field computations.

The organization of the remainder of this report is as folowection Il briefly reviews
the Montgomery scalar multiplication algorithm. There al@a dependencies in the steps of
the algorithm and hence the latter cannot be readily exdantgipelined fashion as desired. In
Section Ill, we develop a pipelined version of the scalartiplitation scheme. In Section IV we
explain an architecture of a finite field multiplier suitalite the proposed scalar multiplication
scheme. In this section, implementation issues are alssidened and some results for ASIC

and FPGA implementations are presented. Finally, conctudemarks are given section V.

II. REVIEW OF THEMONTGOMERY SCALAR MULTIPLICATION

Points on an elliptic curve”, defined over a finite field7F'(¢), along with a special point
called infinity, and a group operation known as point additiorm a commutative finite group.

If P is a point on the curve’, andk is a positive integer computing

kP=P+P+P+---+P

k times

is called scalar multiplication. The result of scalar nplitiation is another poin) on the curve

E. 1t is normally expressed a® = kP. If E is an elliptic curve defined oveF'(q), the

number of points inE(GF(q)) is called the order off over GF(q), denoted by#E(GF(q)).
For cryptographic applicationg E(GF'(q)) = rh wherer is prime andh is a small integer and
P and @@ have orderr. Scalars such as are random integers wherle< k£ < r — 1. Since
r = ¢, the binary representation éf= Y7 k;2' hasn bits wheren ~ m = [log, ¢]. Scalar
multiplication is the most dominant computation part ofjpit curve cryptography. More on
this can be found in [11], [12].

Algorithm 1 shows the Montgomery [13] scalar multiplicatischeme for non-supersingular
elliptic curves over binary fields as it was introduced in][14 this algorithmMadd(X1, Z;, X5, X5),
Mdoubl e(X1, Z;) andMky(Xy, Z;, X5, X5) are functions for point addition, point doubling
and conversion of projective coordinates to affine cootgmaThe computation involved in
these functions can be found in the appendix. The readerfasred to [11], [14] for detailed

explanation.

Algorithm 1 Montgomery scalar multiplication in projective coordiest
Input: A point P = (z,y) € E, anintegerk >0, k=2""14+3Y"2k2 Lk €{0,1}
Output: @ = kP = ([L’k,yk)

1 Xy 2,7 1, Xy — a2+ 0,7y — 2* {calculateP and2P}

2. if (k=0 or x =0) then

3 x—0,y<0

4: stop

5: end if

6: for i=n —2to0do

7. if k; =1 then

8: (X1, 7)) —Madd(X1, Z1, Xo, Z5) , (X2, Z5) —Mdoubl e(X,, Z,)
9. €dse

10: (Xo, Zy) —Madd(Xy, 25, X4, Z1), (X1,7;) <—Mdoubl e(Xy, Z;)
11: end if

12: end for

13: Q My (Xy, 21, Xy, Z)

14: return @

This algorithm has been used in several high speed ECC ingpitations [3], [8], [15]. For
a straight-forward implementation in hardware, it may talsemany agm — 1)(6 M + 3A +
55)+ (10M + 7TA+ 4S5+ 1) clock cycles, wheré/Z, A, S and I are the number of clock cycles
required for multiplication, addition, squaring and insien respectively, in the underlying finite

field andm is the dimension of the binary extension field"(2™).

[1l. ARCHITECTURE FORSCALAR MULTIPLICATION

Since finite field multiplier is the bottle neck of scalar niplitation, it requires special
consideration for realizing a high performance architexfor scalar multiplication. Consider a
word serial finite field multiplier. It can be divided into twianctional units: the multiplication
core and the input/output buffers. When data is being loaded ¢oinput buffer or the result
is unloaded from the output buffer, the multiplier core isesttially idle. One of our goals is
to utilize the multiplier in such a way so that it effectivabecomes the sole component that
determines the time duration of each pass of the loop in th&senultiplication algorithm.
This can be achieved by performing a field addition and a sagan parallel with a field
multiplication. For this the combined execution time foe tAddition and squaring is assumed
to be less than or equal to that of multiplication. Since thdtiplier is a finite state machine
and performs the multiplication in a certain number of clagkles, the multiplier should be
fed with data in equal pace. This is addressed in Sectior8 #hd IlI-C.

Our another goal is to keep the multiplier core working dgrthe entire time of the loop
of the algorithm including the transition from one iteratito the next iteration. This means
when one multiplication is performed, data for the next mplittation should be available to the
multiplier on time. Additionally, the end of one iteratiom the scalar multiplication loop be tied
properly to the start of the next iteration. This needs to ¢éweedcarefully since the next iteration

uses the result of the previous iteration (Section IlI-D).

A. Merging of Two Execution Paths

In Algorithm 1, depending on the value bf, either line 8 or line 10 is executed. The operations
are the same in both paths, but the inputs and the outputéadti(.) and Mloubl e(.)
functions are different. In order to keep the algorithm ami and suitable for pipelining we

merge the twd:; dependent execution paths in Algorithm 1. Since point &oldis commutative,

Algorithm 2 Scalar multiplication algorithm with uniform addressing

Input: A point P = (v,y) € E, an integerk >0, k=2""1+3""2k2"
Output: Q = kP = (x, yx)

10:

11:

12:

13:

14:

15:

16:

Xy —a, 7)1, Xy —a*+b, 7y — 2?
if (k=0 or x=0) then
Q— 0O
stop
end if
if k,_o =1 then
Swap (X1, X»), Swap(Z1, Z2)
end if

for i=n—-2to0do

(Xo, Zy) —Madd(X1, Z1, Xo, Z5) , (X4, Z1) —Mloubl e(Xy, Z)
if (1 #0and k; #k;_1)or (: =0and k; =1) then
Swap(Xi, Xs), Swap(Z1, Z»)
end if
end for
Q —My(X1, Z1, Xo, Z5)
return @

k; € {0,1}

the inputs toMadd(.) function affectively remain the same. The output variabtevéver

depends on the value @f. In the case oiMdoubl e(.), input and output variables depend

on k;. It is sufficient to swapX;, with X, and Z; with Z, before and after any calculation,

if k; equals to one. Doing so, the input Mioubl e(.) remains the same but the output

goes toX,, 7, instead. Input and output variables Mfioubl e(.) are changed td, and 7,

accordingly. After calculation, the variables need to begwed back to their original states.

If two consecutive bits are one, then a pair of swapping camliminated. This is shown in
Algorithm 2.

In hardware, when indexing mechanism is utilized to accestables X, X5, Z; and Z,,

swapping can be easily performed by exchanging the addiress to these registers or by an
equivalent mechanism. Swapping does not take any cloclesydl swap signal can be generated

using the current state eéfandk;. It can then be applied to the address logic of the regiseer fil

B. Parallel Execution

If the finite field operations required for eadvadd(.) and Mdoubl e(.) as defined in
the appendix are performed in sequence, then each pass ofaineloop of Algorithm 2 will
require aboutt M + 3A + 55 clock cycles. There are ways (see for example [3]) to improve
the performance by using parallel operations. To this emé&, @an simply use one multiplier,
one adder, and one squaring unit. Figure 1 depicts the flowhgd scalar multiplication
algorithm in which each multiplication is performed in pehwith an addition and/or with
a squaring. We assume that multiplication takes longer #ultlition and squaring. This enables
us to make the critical path of the scalar multiplication r@pien dependents only on tHimite
field multiplication Using this algorithm the execution time for one iteration the scalar
multiplication loop is equal t&M + A. In Fig. 1 the dashed line shows the critical path of
the algorithm, which is dependent di as long asM > A andM > S.

Algorithm 2 is very flexible. If enough hardware resources available two multiplications
can be performed in parallel. This is shown in Fig. 2. Thihaecture can reduce the execution
time to 3M + A clock cycles, assuming the input operands to the multplage available at
appropriate clock cycle. This architecture however, alnglosibles the hardware size and is not

considered further in this work.

C. Data Dependency at Transitions of Iterations

Let M = M, + c be the number of clock cycles needed for a finite field muttadion, where
M,(= [m/w] for WS multiplier) is the number of clock cycles needed to calculate the result
andc is the total clock cycles needed to load the input and unlbadésult from the multiplier.
We call ¢ as theidle time of the multiplier core. In the flowgraph shown in Fig. Irfpemance
can be improved if another multiplication can start while thultiplier core is in the idle state.

In order to prevent the multiplier to become idle new opegsaneled to be fed to the multiplier
at the rate of),. However, for an idle free operation one needs to make cetteit the next

multiplication is not dependent on the current one. The flapl of scalar multiplication in Fig. 3

Fig. 1. Parallel execution of multiplication and additiseqiaring
Doubling Addition

b X1 Zl ‘\ X2 Zz T

X1 Z1 X2 ZZ

assumes a multiplier with a computation timeldf, clock cycles and a total multiplication time
of M clock cycles, wherell = M, + c.

In Fig. 3, each® (circle) corresponds to the start of a finite field multiptioa. Vertically
below each circle, there is a triangle to indicate the enchefrhultiplication that originated at
the circle. The minimum time difference between two conteelcircles (or two consecutive
triangles) is the operation rate,, of the multiplier. The result of the multiplication cannag b
used before the triangle event in the flow graph. We assunteMba> A and M, > S. In the
flowgraph the multiplier receives its operands regularlgt ahequal intervals. Using this scheme
the total execution time equals fa/, + M + A clock cycles.

The dashed lines through the circles in Fig. 3 indicate time tup to which operands at the
input of multiplier are intact and may be used for other opens. Modification to the register
happens at the triangle event. Near the bottom of flowgraphigf3, the adder needs to wait

until the multiplier computes the field multiplication anldetoutput of the adder would be the

10

Fig. 2. Parallel execution using two multipliers
b X1 Zl X2 Z2 T

@ * @ %M

X1 4 X Zy

next set of inputs to the multiplier. This causes a delay &f — M, + A) clock cycles per
iteration, which in turn translates into an overall delay(of — 1)(M — M, + A) clock cycles

in the scalar multiplication operation. This problem canefieninated as follows.

D. Resolving Data Dependency at Iteration Transitions

As shown in Fig 1, the first multiplication in the next itexati can be eitherX; x Z, or
X, % Z1. We observe tha¥;, Z, and X; are ready before the triangle event in the last finite
field multiplication in the flowgraph Fig. 3. Ik; = 0, we may start the next iteration at the
triangle event by theX; x Z, operation. Ifk; = 1 the variables are swapped} in the current
cycle goes taX; in the next cycle. Therefore, we should start the next cydta the X, x 7,
operation which is actually &, x Z, operation. In the new arrangement the first multiplication
in the loop will depend ork;. The complete loop is shown in Fig. 4. A switch box is added
at the end (or start) of the flowgraph which swaps the regigtevperly. It does not take extra

clock cycles since the logic is simple and can be done by coatioinal logic. One addition

11

Fig. 3. Parallel with no idle cycle in the middle of the iteost
b X1 Zy X2 Zy x

G o

M

2M,

)
e

¢

3M,

M,

- 5M,

operation, from the end of the previous iteration appeatbeaistart of the next iteration. This
is highlighted in Fig. 4 with a bold faced circle. As it is showeach iteration take&)/, clock
cycles and the multiplier does not become idle.

The scheme can be implemented by a multiplier that has a catigral time long enough
to allow an addition or squaring to be performed in parakefinite field multiplier suitable for
this scheme is proposed in section IV-B.

Table Il summarizes and compares the speed of scalar nicatipin operation as mapped on
to the flowgraph of Fig. 1, Fig. 3 and Fig. 4. For finite field cgtens indicated in the flowgraph,
high speed architectures similar to [3], [7]-[9] are assdnie these architectures one typically
hasA = S =3 and M = [m/w] + 3 = 7. The first row in Table Il serves as a basis of

comparison and corresponds to a straight-forward hardwapéementation of Algorithm 1.

12

Fig. 4. Parallel with no idle cycle in entire scalar multgaltion loop

b X1 1 X Zo T
nQ * 0
© N 2) Y
oo
i X/
ol

ol
ST &
{% ¥

! e

®
Swap Box 6M,

Xl or XQ

Z] or Z2

—

IV. IMPLEMENTATION

The number of clock cycles by itself does not show the spedtetystem, since the clock
rate may vary considerably. Therefore an implementati@aiged out to verify the performance
of the system. Traditional elliptic curve processors argeldaon an instruction set which allows

them to execute different scalar multiplication schem@s|[[3, [8].

A. Implemented Architecture

The proposed scalar multiplication scheme is highly opteditoward the execution of the
Montgomery ladder in projective coordinates. Therefoteisiimplemented in the form of a
state machine. Figure 5 shows the basic architecture ofxtkeugon unit, which consists of a
squaring/addition unit, a finite field multiplier, a dual p8rx m bit register file and an address

swapping logic. An FF addition or squaring, an FF multigiica and a load/save operation

13

TABLE Il

SUMMARY, ASSUMING [m/w| =4,A=S=3

Method ‘ #Clks in one iteration‘ #Clks in(m — 1) iterations‘ Speed‘
Straight-forward (Alg. 2) 6M +3A+5S 66(m — 1) 1.00
Parallel addition/squaring (Fig. 1) 6M + A 45(m — 1) 1.47
No idle cycle for the FF multiplier (Fig. 3) 5Mpy+ M+ A 30(m — 1) 2.13
No idle cycle in the entire operation (Fig. 4) 6 M), 24(m — 1) 2.75

Fig. 5. Implemented Architecture

| I |

Squarin
Addr._ % _| swap logi i Mult. quaring
% | swap logi Reg. File Addition

bm b

from/to the register file can be performed in parallel. A siqu@ for example, is performed in 3
clock cycles — one for each of the following operands: logdime accumulator with data from
the register file, squaring and finally saving the result ia thgister file. The multiplier and
the squaring/addition unit can be loaded with the same dattaeasame clock cycle, to prevent

redundant data transfer in the data bus.

B. Pseudo-Pipelined WS Finite Field Multiplier

In this section a pseudo-pipelined finite field multiplierimnsroduced which can be used in
the proposed scalar multiplication scheme. A polynomiaidaepresentation of the field is
assumed. In Fig. 6 four registes T, D and P construct the interstage buffers of the pipeline.
The multiplier operands are fed sequentially to the muéiplThis arrangement provides the
multiplier with one more level of delay/pipelining whichHalvs us to transfer one of the operands
into the multiplier while the multiplier is still busy penfiming the previous multiplication. i.e.
the inputs to then x w-bit bit-parallel multiplier (BPM) finite field multipliershown as> in
Fig. 6, remain unchanged after transferring the first opktanthe multiplier. Another benefit
is that at some point in the scalar multiplication algorithttme addition/squaring unit and the
multiplier use the same operand (see Fig. 3). This arrangeprevides a good mechanism to

load both units at the same time and save one clock cycle. Tuigpiter is controlled by its

14

Fig. 6. Pseudo-pipelined finite field multiplier

Data Bus

W
Sk2]} m

TR s

mod m+w-

S.T mod f(x)

own state machine.

RegisterS is arranged like a stack dfm/w| words with w bits in each word. Therefore
no multiplexer is needed for word selection, as it is used anventional WS multipliers.
This reduces the gate delay in the critical pathTtoyvp + (log, w)Txor resulting from the
multiplication of the contents of registefsand¢. This is apparently the shortest critical path in
WS multipliers reported in the literature, especially wiies field defining irreducible polynomial
is known in advance and hence reduces the complexity of thed”moperation shown in the
multiplier structure.

The operation of the multiplier for the special case€/of/w]| = 4 is presented in Table Ill. It
shows register contents for two consecutive multiplicgagicnamely4d x B andU x V' assuming

a "cold” start. In the table, operandsandU are split asd = Az23% + Ayz?V 4+ A12¥ + Ay and

TABLE 11l

STATE DIAGRAM OF THE PSEUDGPIPELINED FINITE FIELD MULTIPLIER

lcyce| s|[7]] D | P

1 B

2 A | B | As

3 A | B | A2 | Bx A3

4 A| B| A1 | Bx A, B x As mod f(x)

5 |V |B|A4 | BxA (B x As)z® + B x Ay mod f(z)

6 U|V | Us | BxAo ((Bx A3)z™ + B x A2)z¥ + B x A1 mod f(x)

7 U |V | Uz | VxUs | ((BxA3)zY+ BxA2)z¥ + B x A1)z¥ + B x Ay mod f(x)
End of A x B mod f(x)

8 |U|v| v | VxUs V xUs mod f(z)

9 V|Uy | VxUs (VxUs3)z¥+V x Uz mod f(z)

10 V x U (VxU3)x¥+V xU)zx® +V x Ui mod f(x)

11 (VxU3)z¥+V xU)ax® +V x Ur)z® +V x Up mod f(x)
End of U x V' mod f(x)

similarly U = Usa®® + Uy2®® + U 2® + Uy. One can see from the table that each multiplication

takes 7 cycles. The multiplier has a pipeline rate of 4, ifteravery 4 clock cycles a new set

of input operands can start entering the multiplier.

As stated before, in theory, WS finite field multiplicatiomatithm takes/m /w] iterations or
clock cycles. However, the operation of loading the inpuid anloading the output occupies the

data bus and takes a few extra clock cycles([3], [7], [9])e Ky to the fast execution of scalar

15

multiplication is to perform loading and unloading in p&ealvith the finite field computations,

namely addition, multiplication and squaring. As an examjlnsider the execution ¢f; =

Z; x X, in parallel with squaringX; = X? and Z, = Z; + X,, and the start of another

multiplication X, x Zj.

1. S« X3, ACC « X, {load register S and the accumulator simultaneobsly
2. S — 7y, ACC «+ ACC? {the content of S will be pushed automatically to T by the pligti

state machine. The squaring is performed in one cycle.

3 ACC «— Z;,X; «— ACC {Save the result in ACC. Load ACC with the next operand.

Multiplier is busy}

16

4. ACC — ACC + X,

5. S — Xy, Zy — ACC {Another multiplication can start here, however the restilt B, x X;
is not ready yet

6: S «— Zy

7: {The result of multiplication is ready. i.&2 «— Z; x X; }

C. Implementation Results

Using the proposed multiplier, the scalar multiplicatiaheme can be implemented in an
architecture with the delay due to gates in the critical patjwal to Tsnp + log, wTxor.
Synthesized folG F'(219%) using with Synopsys Design Analyzer, the layout was analyaith
Cadence Encounter. The critical path equalérte for 0.18um CMOS technology. The delay in
the critical path is caused by the wiring delay in the laycatngell as gate delay. Using Xilinx
ISE, the critical path equals ttOns for Xilinx XC2V2000 FPGA. The system computes the
scalar multiplication for curves oveérF(219%) in 21 and 415 on ASIC and FPGA respectively.
The hardware takes about 36000 gates in CMQA8um; on Xilinx XC2V2000 FPGA it takes
8300 lookup tables (LUT) and 1100 flip flops (FF) and 7 block RAM

D. Comparison

In Table IV a number of high speed elliptic curve process®@€R) are compared with
the proposed one on the basis of number of clock cycles fdarsaaultiplication. The scalar
multiplier of [1] is not included in the table above. This isdause the scalar multiplier of [1] uses
a multiplier for squaring, which increases the total numtfemultiplications but it is necessary
for the creation of atomic blocks. It also uses two multiggdjevhich means a larger hardware.
Considering an implementation of [1] forl&0 bit scalar (i.emn = 160) andr-N AF with r = 4,
an elliptic curve scalar multiplication over F'(2™) takes1152(M + A+ A+ 0) ~ 91(m — 1)
clock cycles (the cost of additive inversion in a binary esien field is zero clock cycles).

In the scalar multiplication algorithm a conversion fronojective to affine coordinates, which
includes a finite field inversion, is required at the end ofltdm (i.e.Mky(.)). Using the Itoh-
Tsujii algorithm it takes(m — 1) + M (|logy(m — 1) + h(m — 1) — 1) = (m — 1) clock cycles.
When the extended Euclidean algorithm is used, inversikestan clock cycles [3]. The middle

column of Table IV gives the number of clock cycles that iggithe conversion and the — 1

17

TABLE IV

PERFORMANCE OF THE SCALAR MULTIPLIERS

Design ‘ [m/w] ‘ Number of Clk forkP | Point Representation

[9] - 44(m — 1) (est.) Projective with NAF?

[8] 4 47(m — 1) (est.) Montgomery Projectivew = 42 °
[3] 4 57(m — 1) (est.) Montgomery Projective

[7] 4 93(m — 1) (est.) Projective with NAF

Proposed Scheme 25(m — 1) Montgomery Projective

2For [9], we have usedV AF representation for scaldr.

®In [8], the maximum value ofv is 16. For our comparison we have scaled it uputo= 42.

passes of the main loop of the scalar multiplication openatirhe proposed scheme performs

better than a parallel system because it is using a pseyedir@ multiplier effectively.

E. Comments

« Security Against Simple Power Analysis Attack (SPA): The figomery algorithm is
considered to be inherently resistant against SPA and girattacks. This is because the
computation cost does not depend on the specific bit of thiarskaFor each bit of the
scalar, one point addition and one doubling are performée. groposed scheme has two
different execution paths depending on the current bit efdtalark. Both execution paths
have the same complexity and take the same number of clodkescyid the attacker is
not able to separate swapping operation in the whole prpdessexpected that the new
scheme have the same level of resistance against SPA attacks

« Simple Swapping: In order to keep the swapping operatiomplgnparameters(;, X,, 7;
andZ, are stored in a register file. Therefore this operation ifopered by merely swapping
the address information, this does not take any additiolmakccycles. A simple scheme
for swapping is shown in Fig. 7, which can be considered edent to the switching of
maximum two gates. The swap signal is generated by the ¢ondit Algorithm 2.

« Modular Construction: Fig. 4 can be used to derive a streightard architecture. The
basic building block is composed of an adder, a squarer, éiptieff, and a set of registers

which hold the output of these units and a data path contril (&rg. 8). The output of

18

Fig. 7. Swapping mechanism

X 000
X, 001
Swap
A —
A——| 7z 011

A

111

Fig. 8. Basic Building Block

i |

I
] 2],
| I

Data Path Contro

the registers goes to the data path control unit. It arratigesiata for the next round of
arithmetic operation. It takes/, clock cycles for data to be processed in the basic building
block. One can cascade building blocks to construct a pipeline system which ousput
the result of one scalar multiplication evety, clock cycles with a latency of.)/,, clock

cycles.

V. CONCLUSION

A high performance scalar multiplication scheme based enMbntgomery scalar multipli-
cation algorithm has been proposed. Using a pseudo pipelioed serial multiplier the scheme
performs a scalar multiplication i25(m — 1) clock cycles, which is approximately 2.75 times
faster than a straight-forward implementation and 1.6 sirffaster than best implementations
reported in this category in the open literature. The unydtagl finite field multiplier performs
loading and unloading of data while it is in operation anddeeperforms a field multiplication in
[m/w] clock cycles. The gate delay in the critical path of the nplikér is 7'y p +log, wT'xor-
Implemented on FPGAS, the scalar multiplication systemratps at 100MHz and performs

about 24000 scalar multiplications per second for curves 6 (2%3).

19

APPENDIX

Assume thatF is a non-supersingular elliptic curve ovérF(2™) defined asy? + zy =
3 +az?+bandP = (z,y) € E(GF(2™)). FunctionsMadd(.), Mloubl e(.) andMky(.)
in Algorithm 1 are defined as follows [14]. In these functipmsaandy are the coordinates of the
original point P which are fixed during the calculation 6% and,x; andy; are the coordinates
of Q = kP.

function Mdoubl e (input X3, input 7;)
{

X —X{+bv-7{

7 — 7% X}

return (X, 2)
¥

function Madd (input X1, input Z;, input Z,, input Z5)
{
X — (X1 Zy+ Xy Z1)?
Z—x-Zsg+ (Xy-2Zs) - (Xo- Z7)
return (X,Y)
¥

function Mky (input X, input 7;)
{

rr = X1/Z1

yk = (@ +ap)[(y + 2%) + (Xo/ Z2 + 2)(X1/ Z1 + 7)) x (1/2) +y
return (x, yx)

}

REFERENCES

[1] P. K. Mishra, “Pipelined computation of scalar multigtion in elliptic curve cryptosystems.” @HES 2004, pp. 328-342.
[2] A. K. Daneshbeh and M. A. Hasan, “Area efficient high speé#ipbtic curve cryptoprocessor for random curves.1TiCC
(2), 2004, pp. 588-.

(3]

(4]
(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

20

H. Eberle, N. Gura, and S. C. Shantz, “A cryptograhpicoessor for arbitrary elliptic curves ové?F'(2™).” in ASAR
2003, pp. 444-454.

T. Izu and T. Takagi, “Fast elliptic curve multiplicatis with simd operations.” inCICS, 2002, pp. 217-230.

B. Chevallier-Mames, M. Ciet, and M. Joye, “Low-costsibns for preventing simple side-channel analysis: Sioeanel
atomicity.” IEEE Trans. Computerssol. 53, no. 6, pp. 760-768, 2004.

H. Wu, “Bit-parallel finite field multiplier and squarersing polynomial basis.IEEE Trans. Computersvol. 51, no. 7,
pp. 750-758, 2002.

J. Lutz and M. A. Hasan, “High performance fpga basedp&dicurve cryptographic co-processor.” iiCC (2), 2004,
pp. 486-492.

G. Orlando and C. Paar, “A high performance reconfiguraddliptic curve processor foff F'(2™).” in CHES London,
UK: Springer-Verlag, 2000, pp. 41-56.

C. Grabbe, M. Bednara, J. von zur Gathen, J. Shokrollahd J. Teich, “A high performance vliw processor for finite
field arithmetic.” inIPDPS 2003, p. 189.

M. Ernst, M. Jung, F. Madlener, S. Huss, and R. Blumal,réconfigurable system on chip implementation for elliptic
curve cryptography oveZF'(2™).” in CHES 2002, pp. 381-399.

D. Hankerson, A. Menezes, and S. VanstoBejde to Elliptic Curves Cryptography.Springer, 2003.

I. Blake, G. Seroussi, and N. SmaElliptic Curves in Cryptography. Cambridge University Press, 2002.

P. Montgomery, “Speeding the pollard and elliptic @imethods of factorizationMathematics of Computatiowol. 48,
pp. 243-264, 1987.

J. Lépez and R. Dahab, “Fast multiplication on elliptiurves overG F'(2™) without precomputation.” iCHES 1999,
pp. 316-327.

A. Satoh and K. Takano, “A scalable dual-field elliptiaree cryptographic processotEEE Trans. Computersol. 52,
no. 4, pp. 449-460, 2003.

