Low-Weight Polynomial Form Integers for

Efficient Modular Multiplication

Jaewook Chung and M. Anwar Hasan
February 9, 2006

Abstract

In 1999, Jerome Solinas introduced families of moduli chllee generalized Mersenne numbers
(GMNSs), which are expressed in low-weight polynomial fopms f(¢), wheret is limited to a power of
2. GMNs are very useful in elliptic curve cryptosystems opeme fields, since only integer additions
and subtractions are required in modular reductions. Heweince there are not many GMNs and each
GMN requires a dedicated implementation, GMNs are hardgfuldor other cryptosystems. Here we
modify GMN by removing restriction on the choice ofand restricting the coefficients gf(¢) to 0
and+1. We call such families of moduli low-weight polynomial forimtegers (LWPFIs). We show an
efficient modular multiplication method using LWPFI modulWPFIs allow general implementation
and there exist many LWPFI moduli. One may consider LWPFla #tade-off between general integers

and GMNSs.

Index Terms

Cryptography, Mersenne numbers, modular multiplicatR®A, elliptic curve cryptosystems, Mont-

gomery reduction, Barrett reduction.

I. INTRODUCTION

Modular multiplication is the main performance bottleneckmany cryptosystems, such as
RSA [1], XTR [2] and the prime field based elliptic curve crgpystems (ECC) [3], [4]. Hence,
many algorithms have been proposed for implementing efficodular multiplication. These

algorithms can be classified into the following three catiego

Jaewook Chung and M. Anwar Hasan are with Department of idattand Computer Engineering, and with Centre for

Applied Cryptographic Research at the University of WaterlOntario, Canada.

1) Algorithms for general moduli: the classical algorithBi,[the Barrett algorithm [6] and
the Montgomery algorithm [7].
2) Algorithms for special moduli: pseudo-Mersenne numlj@fsand generalized Mersenne
numbers [9].
3) Look-up table methods: Kawamura, Takabayashi and SHembethod [10]; Hong, Oh
and Yoon’s method [11]; and Lim, Hwang and Lee’s method [12].
Look-up table methods are normally faster than the geredlones, but require a large amount
of memory and are suitable only when some parameters are fixedmodular multiplication
method presented in this paper falls into the second categor

In 1644, Marin Mersenne conjectured that the numbers of tnenfp = 2¥ — 1 are prime
numbers for a certain set of integefs< 257. Although his conjecture turned out to be not
entirely correct, the numbers of the fopmn= 2* — 1 are now known as th#ersenne numbers
It is very easy to perform modular reduction using these remibbHowever, these numbers are
not attractive for cryptographic applications since thare very few Mersenne primes (e.g., if
k is composite, Mersenne numbers are never primes) that actiqally useful.

The moduli of the formp = 2% — ¢, wherec is a small integer, are known a@seudo-Mersenne
numbersand they are patented by Richard Crandall [8]. Modular rédocusing a pseudo-
Mersenne number is also very efficient. However, becauseafriy threats, these numbers are
not recommended for cryptosystems that are based on theuttiffiof integer factorization or
discrete logarithm problem [13], [14].

In 1999, Jerome Solinas proposed generalized Mersenne aranf@BMNs). GMNs are ex-
pressed in low-weight polynomial form = f(t) wheret is a power of 2 and the coefficients
of low-degree polynomialf(t) are very small compared to If the modulus is a GMN, the
modular reduction requires simple integer additions aratraations only. It is well known that
all prime-field based elliptic curves recommended by NIS&t{dhal Institute of Standards and
Technology) use GMNs [15], [16]. However, two significanbglsomings of GMNs are that
there are not many useful GMNs and that each GMN requirecdesi implementation. Hence
the use of GMN is currently limited to elliptic and hyper ptic curve cryptosystems.

In this paper, a new family of integers, called thmv-weight polynomial form integers
(LWPFIs), is introduced. LWPFIs are similar to GMNs. However LWPFIs,t does not have to

be a power of 2, and the coefficients fift) are either O oet1. It will be shown in this paper that

an efficient modular multiplication based on LWPFI modulhdae implemented even though
is not a power of 2. Analysis and implementation results sttt modular multiplication based
on LWPFlIs is asymptotically faster than any reduction atgars for general moduli.

For software implementation, new modular multiplicatiased on LWPFI moduli can be im-
plemented without using division instructions of the tayg®cessor. This feature is advantageous
for processors whose division instruction is much slowanths multiplication instruction. Since
LWPFI moduli are represented in polynomial form, their leibdjths are limited to a multiple of
the degree off (¢). However, extended LWPFIs make it possible to generate thotlany bit
length.

Since the publication of a preliminary version of this wotkSAC 2003 [17], Bajard et al.
have proposed two number systems called the adaptive nrocluaber system (AMNS) [18]
and the polynomial modular number systems (PMNS) [19]. €medular number systems have
some similarities with LWPFIs in the sense that they use Wwmight polynomial form moduli
for efficient arithmetic and that numbers are representegalynomial form. However, the
representation of numbers and modular arithmetic in modulanber systems are quite different
from those in our modular multiplication using LWPFI moduh the modular number systems,
an integerx € Z, is represented as a vectoto, z1,...,2,_1), Wherex = E?:_ol ;7" mod p,

1l <vy<pandz; € {0,...,p— 1}. Bajard et al. show that a careful choice of parameters,
p and p, makes arithmetic operations in the modular number systffigent, and state that
modular multiplication in AMNS is more efficient than Montgery multiplication. However,
the drawbacks of modular number systems are that the nunib@oduli for AMNS of practical
use appears to be quite limited and that modular multipboatin PMNS require a large look-up
table.

The remainder of this paper is organized as follows. Firg, hwiefly review in Section I
well known modular reduction algorithms and present a gdized version of the Barrett
algorithm for integer division. In Section Ill, we describew a modular multiplication using
LWPFI moduli can be implemented efficiently. In Section Ve wliscuss how to implement
polynomial multiplication modulgf(¢) efficiently for somef(t)’s of small degrees. In Section V,
we give detailed analysis of our LWPFI based modular mutigion scheme. We discuss
practical considerations when using LWPFIs and show implgation results in Section VI.

In Section VII, we show how our modular multiplication usih§VPFIs can be improved.

Conclusions follow in Section VIII.

[I. OVERVIEW OF MODULAR REDUCTION ALGORITHMS

In this section, we briefly discuss two well known modularuetibn algorithms: the classical
algorithm [5] and the Montgomery algorithm [7], [20], [2IThen we present a generalization
of the Barrett algorithm for modular reduction [6] [22]. ke the original Barrett algorithm,
the generalized one does not have a limitation on the inm& and can perform a multiple
precision division for a fixed divisor.

Throughout this paper, we use the following notations:

« b > 2 is a radix for integer representation. In software impletagon, b = 2* wherew is
the word-length in bits of the processor used.
o« o= (z,_1- - x170)p, Where0 < x; < b, is a radixb representation ofi-digit integerz.

. word(z) denotes the number of words required to represent an integer

A. The Classical Algorithm

A good description and analysis of the classical algoritbmiriteger division (CAID) can be
found in [23]; we have slightly modified this algorithm so thiaaccepts only normalized input,
i.e., the most significant digit of the divison,_, > |b/2]. The resulting pseudo code is given
in Algorithm 1.

Algorithm 1. Classical Algorithm for Integer Division (CAID)

INPUT: : Integerse = (zy,—1 -+ - 120)p aNdm = (mg_1---mimg)py With n >k > 1, mi—1 > |b/2].
OuUTPUT: : The quotienty = (gn—k - q190)» and the remainder = (rp_1---rir9), such thatx = gm + r,

0<r<m.
1) Forj from 0 to (n — k) do: ¢; < 0.

2) If x> mb" % theng,_p «— qn_p + 1, r — 2 — mb"*; otherwiser «— x.

3) Fori fromn — 1 down tok do the following:
3.1 If r; =my_1 theng;_ < b — 1; otherwiseq;,_p « [(rib+7i—1)/mg_1].
3.2 While (g;—xmi—2 > (rib+71i—1 — qi—gxmi—1)b+1i—2) dO: i — ¢i— — 1.
3.3 r—r—q_pmbk
3.4 Ifr<0thenr —r+mb % andqg_; — q;i_p — 1.

4) Returng andr.

The input conditionn,_; > |b/2] guarantees that step 3.2 is repeated at most twice [5]. This
condition can be met by left shifting andm by a suitable number of bits. To obtain a correct
result, we only need to shift the remaindeto the right by the same number of bits. Step 3.2
makesg;_;, to be at most one larger than the true value of quotient didie probability of
r < 0 at step 3.4 is approximateB/b. Note that the valueg;_;m;_1 andg;_pmy_» in step 3.2
can be reused in step 3.3. Hence Algorithm 1 requitles— k) single-precision multiplications

and at mos{n — k) single-precision divisions.

B. The Montgomery Algorithm

The Montgomery algorithm performs modular reduction withasing any division instruction
of the underlying processor [7]. Let be a modulus, and’ be a positive integer which is to
be reduced. We choose an integesuch thatk > m, ged(m, R) =1 and0 < T < mR. The
Montgomery reduction is an operation which compufgs— mod m. If R is chosen properly,
then this modular reduction can be performed efficiently.

Let m’ = —m™! mod R, andU = T'm’ mod R. Then (T + Um)/R is an exact division.
One can easily check th&l’ + Um)/R = TR™' (mod m). Modular reduction and division by
R can be done trivially ifR = b* for some integek. Since the conditior? > m must be met,
k is usually chosen to be the number of digitsrin' SinceT < mR andU < R, it follows
that (7' + Um)/R < 2m. Hence a final subtraction may be needed depending on ifiplihe
Montgomery algorithm for integer reduction (MAIR) is deibad in Algorithm 2.

Algorithm 2. The Montgomery Algorithm for Integer Reduction (MAIR)

INPUT: : m = (mg_1 ---mimg)p With ged(m,b) =1, R =b*, m' = —m~! mod b, andT = (tap_1 - - - t1to)p <
mR.
OUTPUT: : A=TR~* mod m.

1) A= (agk—102p—2---ao)y < T.

2) For: from 0 to (k — 1) do the following:

2.1 u < agm’ mod b.

22 A— (A+um)/b.

*However, in [24] and [25], to avoid the final subtraction, dueathat is one or two more than the number of digitsrinis
proposed. Such techniques are useful in implementing @syptems, which resist timing attacks [26] better at aelitibst in

speed.

3) If A>mthenA«— A—m.

4) ReturnA = (agx_1a5_9---ag)s.

Step 2.1 of MAIR requires one single-precision multiplioatand step 2.2 requirdssingle-
precision multiplications. Therefore, MAIR requires aaloof k(k + 1) single-precision multi-
plications.

To use MAIR for computing modular multiplications, inputlwas must be transformed to
the so-calledVlontgomery domainTo transform an integer € Z,, to the Montgomery domain,
we computeg(z - R?) - R~! mod m using a pre-computed valu&* mod m. Hence one multiple-
precision multiplication and one execution of MAIR are reqd.

To compute modular multiplication - y mod m using MAIR, first we have to transform
and y to the Montgomery domainy = = - R mod m, y = y - R mod m. Then we multiply
them in the Montgomery domain, which resultsig = zy - R? (mod m). One execution of
MAIR will bring it back to an integer in the Montgomery domaithat is,zj - R~ = 2y - R
(mod m). Another execution of MAIR oney - R (mod m) will result in zy (mod m). It is
not at all efficient to use MAIR just to compute one modular tiplication. However, MAIR
is very efficient when many modular multiplications are topgeegformed, since, for example, in

modular exponentiation, one needs transformations ontiileabeginning and at the end.

C. The Barrett Algorithm

The Barrett algorithm [6] [22] is advantageous for appimas in which a fixed modulus
is used. It does not use any division instructions of the dgohg processor, but it uses a
small amount of pre-computation of size similar to that a¢ thodulus. The description given
in Algorithm 3 is a generalized version of the Barrett alomn. We refer to it as GBAID (the
generalized Barrett algorithm for integer division) sifickas been modified such that a quotient
is also computed. The original Barrett algorithm can redntegers that are at most twice as
long as a modulus. However, GBAID does not have such a limaitalNote that, Algorithm 3
becomes the original Barrett algorithm for integer reducif we letu = 2v, remove 4§ «— ¢+1”

in step 4, and change step 5 to “Retutn

Algorithm 3. The Generalized Barrett Algorithm for Integer Division (GIB)

INPUT: Positive integers = (xy—1 -+ - £120)p, M = (My—1 - - - mymg)p With m,_1 # 0, u > v and a pre-computed

value pi = (pu—v - -+ p1po)p = [0%/m].
OuUTPUT: Integersq andr such thatr = gm + r» wherer < m.
1) g {Zuqugiﬂ- xiﬂ,lujb”j_”ﬂJ’l/bQJ (= | La/b° /b1).
2) r1 < 2 mod b’ ry — D<ot i

3) If r <0thenr « r+bvtt,

m ;b mod b'F1 (= g - m mod bVH1), r — ry —ro.

4) Whiler > m do:r —r—m andq «— g+ 1.

5) Returng andr.

The computation of; in step 1 of Algorithm 3 is not exact, but it is quite accurdtet ¢’ =
| [x/0°~ | p/b*~>TL]. Theng computed in step 1 is an approximationgf The approximation
error ¢’ — ¢ is at most 1 when, — v < b [23], [27] and a proof is given in Appendix A. L&}
denote|xz/m]. Then it can be easily shown th@t— 2 < ¢’ = | [z/0* ! |pu/b" "] < Q.

1 b x
q,>m<a—1)(bv_l—l>_ly

v—1
L A S (1)
m m bu bu—v—i—l
> Q-2

Trivially, ¢ < Q.

Let & = u — v for simplicity of description; then both and |z/0°~!| are at mostk + 1
words long. It can be easily seen that step 1 requires at (hdst 5k + 2)/2 single-precision
multiplications. Note thayy computed in step 1 is also at most+ 1 words long. One can
easily verify that the number of single-precision muligglions required in step 2 is at most
(k+ 1o —k(k—1)/2if k < v, (v?+ 3v)/2 otherwise; therefore, the total number of single-
precision multiplications required in Algorithm 3 is + 3u — v? — 2v + 1 if u < 2v, (u® +
5u)/2 —uv +v? — v+ 1if u> 2v.

D. Comments

In Table I, we show results of our analysis of CAID, MAIR and &IB on the basis of number
of single-precision multiplications and divisions. Nokaat while any of these three schemes can
be used for modular reduction, only CAID and GBAID can perfoa long integer division
to output the quotient. As it can be seen in Table I, MAIR is enadvantageous than CAID

since a typical microprocessor’s division instruction leager than its multiplication instruction

TABLE |

ANALYSIS OF ALGORITHMS 1, 2AND 3 (word(m) = n AND word(z) = 2n)

Algorithm # Mul ‘ # Div ‘ Pre-Computation
CAID n? n No
MAIR n?+n 0 R?>mod m andm’ = —m ™! mod b
GBAID | n®+4n+1 0 w=[b"/m]
TABLE I

INSTRUCTIONTIMING OF PENTIUM PROCESSORS

Processor mul (tw) | div (tq) | ta/tm

Pentium Il @ 350MHz 14.3ns 111.7ns | 7.81

Pentium 1ll Mobile @ 1.13GHz 4.6ns 35.7ns 7.76
Pentium IV @ 3.2GHz (Family 7, Model 4) 3.45ns 23.86ns | 6.92

(see Table Il for instruction timings on Pentium proces§oidAIR is more advantageous than
GBAID also. In microprocessors where the ratio of divisian nultiplication instruction is
approximately greater than 4, CAID uses more time for mlidtion and division instructions.
Note that the ratios shown in Table Il are all greater than 4.

The above analysis is based on the number of multiplicataots divisions only. The three
algorithms being considered here, however, require otfstructions and various implementation
overheads. In order to have a more realistic comparison,ave implemented these algorithms
and performed their timing analysis. Details of our impleta¢ion environment are given in
Section VI-A, but timing results for varying bit sizes of mddare presented in Figure 1. The
figure shows that MAIR is the best reduction method among lineet algorithms considered
in this section. As a division algorithm, GBAID performs tasthan CAID on Pentium 4 @
3.2GHz. An important feature, not shown in Figure 1, of GBAIDthat for a long integer
division, GBAID is more advantageous than CAID if many dieiss are to be performed for a
fixed divisor. It is the case when our modular multiplicatimethod presented in the following

section is used in a modular exponentiation algorithm. Weark that Bosselaers et al. have

2The timing data in this table is the average time between ¢g@hing of a corresponding multiplication or divisiontingtion

to the next dependent instruction ov&6 x 10° executions using random operands.

160 -
140
120

=

o

o
|

80 -
60 -
40 -

20

0 =g | | | | l

0 500 1000 1500 2000 2500 3000 3500 4000
log, p

Time in us

Fig. 1. Timing of Division Methods on Pentium 4 @ 3.2GHz

presented more detailed research on the three reductidmodsein [28].

[[I. M ODULAR MULTIPLICATION USING LOW-WEIGHT POLYNOMIAL FORM INTEGERS

In [9], Solinas has proposed generalized Mersenne numi@viNE) for efficient modular
multiplication. A GMN is expressed as a low-weight polynaimf(¢), wheret is a power of 2,
and f(t) is a small-degree polynomial. An LWPFI is also expressed pelgnomial f(¢), but
t is not necessarily restricted to a power of 2, and the coeffisi of f(¢) are limited to0 and
+1. Even though allowing only 0 angt1 for the coefficients off (¢) leaves3' possible choices

for f(t), allowing any integer fot gives far more choices of integers than does GMN.

Definition 1 (LWPFI) For a positive integet, let f(t) = t' — fi_1t"" 1 — fi ot "2 — ... — fit — f, be
a monic polynomial of degrek We call a positive integep = f(¢) a low-weight polynomial
form integer (LWPFI) if f; € {—1,0,1}, 1> 2 andt > 2(2%+! — 1)(2! — 1) ~ 23142,

In Definition 1, the value = 1 is excluded so that LWPFIs are different from the usual
form of integers, and the reason for having the condition2(2%+! — 1)(2! — 1) is explained
in Section IlI-B. In practice, the condition > 2(22+1 — 1)(2! — 1) is easily satisfied. For

cryptographically useful values of = f(t), the degred of f(¢) is a very small integeri(=

10

2,3,4,...) andt is a large integer (at least> 2*, wherew is the processor’s word length in
bits).

When computing modular arithmetic using LWPFI moduli, @yels must be expressed in
degreel — 1 polynomial form. For an integer ¢ Z,_), we use the following special form of

redundant signed-digit representation,
z(t) = (Ti—1 - T1%0)SD—(1,4) (2)
where |z;] < = (t + 2! — 2) and
=t ot 4+ 2o (mod p= f(t)). (3)

For anyx € Z,, suchx;'s for i = 0,...,] — 1 exist. For simplicity, we say a representation
of an integerz is in SDHt,v) form if it is in the above form. Note that we have chosen a
slightly wider rang€z;| < (¢ + 2!*! — 2) than|z;| < ¢, which is used in traditional signed-digit
redundant representation [29]. The use of this wider rang&es it possible to simplify our
modular multiplication method using LWPFI moduli descdblater in this section. Given two
input values in SD, 1) form, our modular multiplication method computes an outplgb in
SD-(t,) form.

Converting an integer %) into an SDft,) form requires no more thah— 1 integer
divisions byt, wherel = deg f(t). Usually this requirement is not an issue in cryptographic
applications since, when the modular multiplication aihon based on LWPFI moduli is used
in exponentiation, conversions between the usual reptasem and an SO#,) form is not
significant compared to the entire exponentiation.

Letz, y € Z,—s«) be represented in SD;+)) form as follows:

z(t) = (v-1 - 'xwo)sp—(t,w),
(4)
y(t) = (Y11 'y1y0>SD—(t,w)-

In the following, we show an efficient way to perform modulaultiplication of these two
integers modulo an LWPH = f(t); that is,z(t) - y(¢) mod f(t). We call the proposed scheme
the LWPFI modular multiplication

The LWPFI modular multiplication is performed in two steps:

1) POLY-MULT-REDC: computes(t) = z(t) - y(¢) mod f(t).

11

2) COEF-REDC: reduce coefficients 6ft), such that the resulting polynomial has coeffi-

cients that are at most in magnitude.

A. POLY-MULT-REDC: Multiplication iri[t]/ f (t)

Algorithm 4. Polynomial Multiplication & Reduction (POLY-MULT-REDC)

INPUT: 2(t) andy(t) in SD<¢,v) form
OUTPUT: 2(¢t) = x(t) - y(t) mod f(t).
1) 2(t) = (z21-2- - 2120)sD—(t,4) = T(t) - y ().
2) Fori from 2/ — 2 down to! do the following:
2.1 z(t) = 2(t) + 2z - (fierficz - fo)sp— -t

3) £(t) = (21-1---21,20)$D—(t,%)-
4) Returni(t).

Algorithm 4 is the most simple and general way to perform tl@ RMULT-REDC step.
Step 1 is a multiplication of twd-term polynomials and can be computed in many different
ways, requiring different amount of computation as disedss Section V-A. Step 2 performs
a polynomial reduction of a degréet — 2) polynomial by f(¢). Note that it is only a general
polynomial reduction method that works for amyt). For specificf(t)’s, one may find better
ways to do this step.

Even though polynomial multiplication and polynomial retlan are separated in Algorithm 4,
one can choose to combine them for better performance. tio8d¥, we show how Algorithm 4

can be optimized by combining polynomial multiplicationdapolynomial reduction.

Proposition 1 Suppose that the magnitude of the coefficients(in and y(¢) are bounded by a
positive integer). Then the coefficients 6ft) computed by Algorithm 4 are at ma&t — 1)1)?

in magnitude.

Proof: Let z(t) = x(t) - y(¢). It is easily seen tha;| < (i + 1)y* fori=0,...,1—1
and|z;| < (21 —1—4)y? for i = ,..., 2] — 2. The magnitude of the coefficients ift) = z(¢)
mod f(t) is maximum when all the coefficient§’s of f(¢) are either 1 or -1. In both cases,
the maximum value of3;| is computed ag2' — 2!=:~1)%, Therefore,|;| < (2! — 1)w? for all
i=0,...,01—1. m

12

B. COEF-REDC: Coefficient Reduction

After POLY-MULT-REDC is completed, we obtain a degrée— 1) polynomial 2(¢). As
shown in Proposition 1, the bit lengths &fs could be more than twice as long as that.ofhe
coefficientsz;'s must be reduced so that the result can be used as input secqudnt modular
multiplications. Algorithm 5 shows an efficient way to reduihe coefficients of(t), where we

used|-] to denote truncation toward zero, andem v to denotew — v - |u/v].

Algorithm 5. Coefficient Reduction (COEF-REDC)

INPUT: 2(t) = (4_1--- 2120)s, Where|2;| < (2! — 1)y? foralli =0,...,1— 1.

OUTPUT: 2/(t) = (2]_1 - 21 20) sD—(t,9)-
1) z <0, 2/(t) — 2(¢).

2) a« |z[_,/t], 2y «— #_ remt.
3) 2(t) «—2'(t) +a-(ficificz " fo)sD—(t,%)-
4) For¢ from 0 tol — 1, do the following:

4.1 z 1 — |2zl/t] andz; 0 — z,rem t.

4.2 zj — 20, Zj41 — 241+ Zi1-
5) 2'(t) « 2'(t) + 21 - (ficrfic2 - fo)sD—(t,5)-
6) Returnz’(t).

Below we show that Algorithm 5 results in S@;¢) form output.

Proposition 2 Suppose that the coefficients0f) satisfy|2;| < (2! —1)v?, wherey = t+2+1 —2.
Given this inputz(¢), Algorithm 5 outputs:’(¢), whose coefficients are no greater thanin

magnitude.
Proof: Let§ = 2+1 — 2. Then it follows that
(28 = 1)(* + 40 +2) = 2(2' — 1)(2%T - 1) < ¢, (5)

due to Definition 1. We use (5) throughout this proof.
In step 2, sincdz, | < (2! —1)(t +0)?, it is easy to see that
lal < L@ =D)(E+0)*/t] =@ - 1)(t+20), (-2 =1 <) (6)
where | -] is a truncation toward zero. After step 3,
< 2 = D[t +0)*+t+20)fori=0,...,1—2,

(7)
2] | < (2= 1)(t+20) +t— 1.

13

In step 4, the maximum values of, are determined as follows:

12),] < ' {(QZ — DI +t9)2 +tt 29}}

since (2! — 1)(6? + 20) < t. We consider three cases whére 2, [= 3 and/ > 3.

21+ 20,4
t

SH<2l_1>(t+29+i+29+1>+t_1H§(2l+1_1)' (9)

< (28— 1)(t+20+1), (8)

1) Case 1:ifl =2,

|25 = |21,] =

(2P =1)4o+1)-1<1)
2) Case 2: ifl = 3,

I 2
|Zivl|§H(2 D[(t+0) +§+29+t+29+1]H§(2’—1)(t+29+2),
(10)
I _
|Z§|=|Zé,1|§H(2 1)(t+29+i+29+2)+t 1H§(2H1_1)'
3) Case 3:ifl > 3,
b 2 2 20+ 1
|z1,1|§H(2 DI +96) +i+ a0+]H§(2l_1)(t+29+2),
I 2
%I‘SH@ D[(t+0) +t+29+t+29+2]”§<21_1)(t+29+2)7
! (11)

A DEt+20+t+20+2)+t—1
\z;|=\z;_11\sH< JE+20+¢t+26+2)+ Hs@l“—l).
’ t

Hence, |z]] < (21! — 1) after step 4 of Algorithm 5 for all > 2. Since|z]| < ¢t — 1 for

i =0,...,l —1 after step 4, the magnitudes pf/|'s for 0 < i < [will be no greater than

Y = t + 21 — 2 after the execution of step 5. Therefore, the output of Athar 5 is in
SD-(t,) form. u
Algorithm 5 is much like the modular reduction algorithm ngipseudo-Mersenne num-
bers [23]. However, Algorithm 5 is quite different from itnse Algorithm 5 does not require a
“while” loop, the reason being that the output of Algorithnisreduced only to the point where
the output meets the conditions for §B+)) form. This feature makes Algorithm 5 behave in a

completely deterministic way, that is, its performance a$ random or input-value dependent.

14

V. OPTIMIZATION OF POLY-MULT-REDC Srep

In this section, we show that the POLY-MULT-REDC step canrhplemented efficiently for
some specifi¢f(t)’s by combining polynomial multiplication and polynomiaduction byf (¢).
We provide optimalf(¢)’s for implementing the POLY-MULT-REDC step fdr= 2 and 3. It
will be shown in Section V that larger values bfead to a better asymptotic bound; however,
they introduce more overheads. We consider only smallegefyit)’s that are useful in practice.
It is straightforward however to extend this idea to largegrees off(¢).

The combining methods shown in this section are more effitiean the multiply-then-reduce
method described in Algorithm 4. Fdr= 2, the combining method’s performance is almost
as good as that of polynomial multiplication only. Moreqveolynomial squaring ir¥[t]/ f (¢)
when/ = 2 is asymptotically faster than polynomial multiplicatioor fsomef(¢)’s. Forl = 3,
somef(t)’s make it possible that combined polynomial multiplicatiand polynomial reduction
can be performed using the same number of operations as fgrgroial multiplication only.

The methods shown in this section are to optimize Algorithfor4d = 2 and3. The resulting
output of the following methods will be identical to that ofighrithm 4 for the same input.
Thus, the polynomials computed by the following methodd wiket the input condition of
Algorithm 5 too, provided that the input(t) andy(t) in this section are also in SD;) form.
However, computations in Algorithm 4 and the methods in #&stion do not depend on the
fact that the input is in SD¢, 1)),

We only consider irreduciblg(¢)’s. Reduciblef(¢)'s are guaranteed to generate composite
numbers that are, in most cases, not useful for cryptograytyen f(¢) is reducible there
are better ways to perform polynomial multiplicationsZif¢|/f(¢). In particular, for f(t) =
1., f:(t), wheref;(t)’s are irreducible factors of (¢), the minimum number of multiplications

required to compute a polynomial multiplication #jt|/ f(¢) is 2 - deg f(t) — k [30].

A. Case 1l =2

We use KOA for 2-term polynomial multiplication. We considevo degree-2 polynomials
z(t) = (2120)sp—(t,p) ANAY(t) = (¥1%0)sp—(t,v)- KOA computesz(t) - y(t) using only three

multiplications.

x(t) - y(t) = s t® + ((mo + 1) (Yo + ¥1) — 2191 — ToYo)t + ToYo- (12)

15

After polynomial reduction by (¢), we have the following formula for polynomial multiplicati
and squaring ir[t]/ f(t).

z(t) - y(t) = ((wo + 1) (Yo + y1) + (fi — D)a1ys — 2oyo)t + forryr + zoyo (mod f(¢)). (13)
2(t)* = ((wo + 1) + (fi = Daf — ag)t + fori + 25 (mod f(t)). (14)
Or, we can obtain alternative formulae by using the follaywersion of KOA due to Knuth [5]:

x(t) - y(t) = vyt + (21y1 + 2oyo — (2o — 21) (Yo — Y1)t + ToYo. (15)

The following formulae are obtained by taking modyi¢) of (15).

z(t) - y(t) = ((fi + Dzays + woyo — (ro — 1) (Yo — 1))t + for1y1 + 2oyo (mod f(t)). (16)
z(t)” = ((fr + Daf +af — (zo — 21)°)t + foa? + 25 (mod f(t)). (17)

Note that (13) and (14) are good whegn = 1 and (16) and (17) are good whef = —1.

Interestingly, whenf, = —1, we can simplify (14) and (17) as follows:
2(t)? = 21 (fraey + 220)t + (20 — 21) (20 + 1) (mod f(t)). (18)

Formula (18) needs only two multiplications. Long integquaring is usually faster than long
integer multiplication. As long as integer squaring takes laess than 2/3 of multiplication
time, (18) is faster than (14) and (17).

We find thatf(t) = *4+¢+1 and f(t) = t*+ 1 are the most attractive choices for 2. Note
that f; = 0 reduces one addition in (18), biit = +1 reduces one double length addition in (13)
and (16), respectively. However, modular multiplicatiosscur less frequently than modular
squaring in exponentiation algorithms. For example, timatyl exponentiation algorithm requires
twice more modular squarings than modular multiplicationsverage. So, both(t) = t>+t+1
and f(t) = t* + 1 result in the same speed up. For exponentiation methodsiseaess number

of multiplications than the binary algorithnf,(t) = t* + 1 is preferred.

16

B. Case 2l =3

For 3-term polynomials, the following 3-way method reqaireix multiplications [31] as

follows:
z(t)-y(t) = Dy - t*
+ (Dy + Dy — Dj) - £
+ (Dy+ D1+ Dy — Dy) - 12 (19)
+ (D1 +Dg—D3) -t
+ Dy,
where

Dy =xz0y0, D3z = (vo—21)(¥0 — y1),
Dy =z, Di = (z0—22)(Y%0 — ¥2), (20)
Dy = x3ys, Ds = (1 — x2)(y1 — y2).
After polynomial reduction, we have the following result:
z(t) -y(t) (mod f(t))
= ([fa(fo+ 1)+ (fi + 1] Do+ (fo+1)- Dy + Dy — fo- D5 — Dy) - 2
+ ([fi(fe+1)+ fo] Do+ (fi+1)-Di+Dy— fi-Ds — Ds) - t
+ (fo(fo+1)- Dy + fo- D1+ Do — fo - Ds).
Among all combinations of f», f1, fo) that makef(¢) irreducible,(f2, f1, fo) = (—1,—1,1) and
(0,—1,1) put (21) into the simplest form.
For f(t) =t*+* +t—1,

z(t) - y(t) (mod f(t))

(21)

(22)
= (Dy— Dy+ Ds)-t*+ (Dy+ Dy — D3+ Ds) - t + (Do + D1 — Ds).
For f(t) =t*+¢—1,
z(t) - y(t) (mod f(t))
(23)

= (Dy+ Dy — Dy) - t* 4+ (Do — D3 + Ds) - t + (Do + Dy + Dy — Ds).
It is interesting to observe that the computational costaatheof (22) and (23) is exactly the

same as that of (19).

17

V. ANALYSIS OF LWPFI MODULAR MULTIPLICATION

In this section, the performance of LWPFI modular multigtion described in Section llI
is analyzed. In our analysis, we useto denote the bit length used for+ 2+2 — 2; that is,
t+242 -2 < 27, In practice will be quite larger thar2'*2 —2, hence both andy) = ¢+2/*+1 -2
are almost always-bit integers. We use to denote the number of non-zefgs in f(t). The
following notations are used in our analysis of Algorithmanrd 5.

e T,,(u): time needed for multiplying twa-bit integers.

« T,(u): time needed for adding/subtractingpit integers.

e Ty(u,v): time needed for dividing a-bit integer by av-bit integer.

We will use an assumption that addinguebit integer to av-bit integer takesl, (min(u,v))
time. This is a reasonable assumption for most softwareamehtations. A carry at the top
most bit-position of the shorter integer may occur when iagldiwo integers and it may increase
the computation time slightly. However, the carry occurshwirobability ~ 1/2 when adding
two random integers and the probability that the carry withgagate more than one word is

only 1/2%, wherew is the bit size of a computer word.

A. POLY-MULT-REDC step
POLY-MULT-REDC takes two polynomials in S[X; ¢) form as input; that is, the coefficients

of the two input polynomials are at mogt< ¢ + 21*2 — 2 < 2" in magnitude.

There are many different ways to perform POLY-MULT-REDC pstélgorithm 4 is the
most straightforward and general approach. If the schadbuethod is used for polynomial
multiplication in step 1]? multiplications and(/ — 1)? additions are required. The polynomial
reduction, step 2, requireg! — 1) additions.

Clearly, the multiplications among coefficients arerabit wide. For integer additions, the bit
lengths of operands are not the same. However, regardletbe ahethod used for polynomial
multiplication and polynomial reduction, the outpt(it) of Algorithm 4 will have coefficients
that are at most2! — 1)? in magnitude, which is at most ait + 2n)-bit integer. Hence, for
simplicity, we assume that all the integer additions @dre 2n) bits wide. As a result, we have

the upper bound for the running time of Algorithm 4 as follows

T(POLY-MULT-REDC) < 1> - T, (n) 4+ (I +7 — 1)(1 — 1) - Tu(l + 2n). (24)

18

TABLE 11l

MODULAR MULTIPLICATION AND SQUARING COST INZ[t]/f(t) FORALL IRREDUCIBLEDEGREE2 f(t)'S

7@ Multiplication modulo f(¢) | Squaring modulof (%)
t?+1 3M +3A + 2a 2M +2a +h
P +t+1 3M +2A+ 2a 2M +3a+h
t2—t4+1 3M +2A + 2a 2M +3a+h
2+t—1 3M +2A+ 2a 35 +2A+a
2 —t—1 3M +2A + 2a 35 +2A+a

Instead of the schoolbook method, other methods can be asdtdd multiplication of twol-
term polynomials in POLY-MULT-REDC step. For example, a¢ #xpense of some overheads,
KOA or KOA-like formulae [32] can reduce the facttrassociated with;,, (n) in (24) to M (1),
where M (1)'s for some small’s are given as follows:

M@2)=3, M(3)=6, M(5) =13, M(6)=17, M(7)=22. (25)

Alternatively, one can use the Toom-Cook multiplicationtheel [33]-[35] which requires only
(20 + 1) multiplications at the expense of much more overheadsudieg exact divisions by
fixed integers.

The number of additions and subtractions in (24) can be eatlly combining polynomial
multiplication and polynomial reduction as shown in Secti¥. There are only five irreducible
f(t)'s for I = 2 and we list all of them in Table Ill. The table also shows regdicost for
polynomial multiplication and squaring ii[t]/ f(t), where the notation3/, S, A, a and h
respectively mean multiplication, squarin@n + [)-bit addition, n-bit addition and bit-shift.
For [= 3, there are twelve irreduciblé¢(¢)’'s. The best performance is obtained whgft) =
t3+t*+t—1or f(t) =t3+t—1is used. In these cases, the running time of the POLY-MULT-
REDC step i67,,,(n) + 67,(n) + 67,(2n + [). This computational cost is exactly the same as
that for performing one 3-way multiplication as shown in)19

In terms of the number of single-precision multiplicatiptisere is little difference between
multiplying two In-bit long integers and multiplying twéterm polynomials whose coefficients
aren-bits long. In fact, polynomial multiplication has a littless overhead since coefficients do

not have to overlap, unlike the long integer multiplicatibfowever, if implemented in software,

19

polynomial multiplication could be slower because micaom@ssors can deal only with units
of data called word. For example, a 160-bit integer needs\igeds on 32-bit architecture,
while the same integer in SD;) form with [= 2 needs three 2-word coefficients, each filled
with 80 bits, assuming + 2!*! — 2 < 28, Multiplying two 160-bit integers require only 15
multiplications using 2-way and 3-way KOA. However, muljipg two integers in SD#, 1)
form requires 18 multiplications using the same KOA methods

B. COEFF-REDC step
Figure 2 shows how Algorithm 5, i.e. COEFF-REDC step, is graned; some input and

intermediate values are labeled with circled numbers. V¢ dietermine the maximum possible
bit lengths of these values. Note th&t) = (21 - - - 2)sp—(+) IS the output of Algorithm 4;
that is, |2;] < (2! = 1)y? fori=0,...,1— 1.

O It is clear thatZ,’s are at mos{2n + [) bits long.
O Ja| < (2" = 1)(t + 272 — 4) is at most(n + [) bits long.
O |2, < (28 = 1)(t + 22 —4) + ¢ — 1 is at most(n + [) bits long, since|z]_,| <
(28 —1)(2" — 1)+ 2" — 1 < 2+,

O 2] < (2'=1)((t+2F1—2)2 4t +2!72—4) for i < [—1 are at mos{2n+1) bits long. Note
thatt+2+1 -2 < 2" andt+2/72—4 < 2", It follows that|z]| < (2!—1)((2"—1)24+2"—1) =
(28 — 1)(2% — 2n) < 22,

O |z, < (2" =1)(t+22 —2) for i # 1 — 1 is at most(l + n) bits long.

O |z < (21 —1) is at most(/ + 1) bits long.

O |2 < (t+ 2! —2) is at mostn bits long.

Note that we used the detailed calculations that have beeadyl done in the proof of Propo-
sition 2. Now it is easy to analyze Algorithm 5 using the abossults.

. Step 2: one integer division for dividing(@n -+ [)-bit integer by am-bit integer is needed;
that is, Ty(2n + 1, n).

. Step 3:7 additions of(2n + [)-bit integers andn + [)-bit integers; that isy - T,,(n +).

. Step 4.1: fori = 0,...,l — 2, a total of (I — 1) integer divisions for dividing2n + [)-bit
integer by am-bit integer are required. Far= [— 1, this division can be done b + 1)
subtractions of up tdl + n)-bit integers from ar{l + n)-bit integer. Thus, for step 4.1, the
costis(l—1)-Ty(2n+1,n)+ (I +1)-To(l +n).

20

IS

|

O
>

S
N
-

N

<)

0O 0O 0
o %
0O

fie1 f2 f1 fo

& & Y ‘ | ¢ '
Gf}»@ Gf}»@ C?H@ (?H +

) Y - i vy o) vy O 0

211 U 2 ‘ ‘ G2l ‘ ‘ 20 ‘

1
-

e

-

(- Le -
DA A T

N

¥ | | |

(>I<}>® (>I<}>® (?a@ (}9&?

) | u j) ‘ u) | g u
’ (2n + 1)/ (n)-bit division @ : addition/subtraction @ : quotient
Q : (n+1)/(n)-bit division ® : multiplication R : remainder

Fig. 2. Coefficient Reduction

. Step 4.2: fori = 0,...1—3, atotal of(I—2) additions of(2n+1)-bit and (n+1)-bit integers
are required. Foi = [—2, an addition of twan+1)-bit integers is performed. For= [—1,
no operation is required sincg = 0. Thus, the cost of step 4.1 {$— 1) - T, (n +1).

. Step 5:7 additions of an(/+1)-bit integer ton-bit integers are performed; that is,7,,(+1).

In total, Algorithm 5 requires the following amount of timerfreducing coefficients:

T(COEFEREDC) =1 -Ty(2n+1,n)+ 21+ 1) - To(n+1) + 7 - To(1 + 1). (26)

21

With regard to the time complexity related to the long intediision in (26), i.e.,l- Ty(2n+
[,n), note that the division algorithms, CAID and GBAID, shownSection Il takeO(n?) time
for one division, where: is the modulus size in bits. Hendegxecutions of such algorithms for
n-bit modulus takeO(In?) time. The overhead terms in (2GR0 +7) - T,(n+1) +7-T,(1+ 1),
take O(nl) time.

C. Putting It Together

The main computational cost of an LWPFI modular multiplieatis due to the following
three, where L1 and L2 are performed in POLY-MULT-REDC sted &3 is in COEFF-REDC
step.

L1: polynomial multiplication (e.g., using KOA)

L2: polynomial reduction

L3: coefficient reduction (e.g., using GBAID)
On the other hand, the main computational cost of a usual lapduwiltiplication is due to the
following two:

Ul: integer multiplication (e.g., using KOA)

U2: modular reduction (e.g., using MAIR)
If L1 and U1 use the same algorithm (e.g., KOA), then they iireou equal amount of compu-
tation.

For an(nl)-bit modulus, assuming that GBAID is used for L3, the combicest of L2 and
L3 is

T(l—=1) - T,(l+2n)+1-Ty2n+1l,n)+ 2l+71) - Tun+1) +7-T,(1+ 1), (27)

which is O(in?) time. On the other hand, U2 using MAIR requir@$/*n?) time. Therefore, the
LWPFI modular multiplication has better asymptotic bebathan the usual modular multiplica-
tion. For example, the number of multiplication instruasorequired in GBAID for(2n + [)-bit

dividend andn-bit divisor is expressed as follows:

w4+ 3u—v2—2v+1 if uw<2v,
#Mecparp = (28)
(u?2+5u)/2 —uv + v —v+1 if u> 2v,

22

whereu = [(2n+1)/w], v = [n/w], andw is the word length of a target architecture in bits. For
n = 512 andl = 2, the COEFF-REDC step requires oml§0 = 2-340 multiplication instructions,
whereas MAIR for a similar size (i.e.,1024-bit) modulusuigs 1056 multiplications.

Based on the above discussion, we see that the main advaoitdg®PFI modular multi-
plication compared to usual modular multiplication is naedo the POLY-MULT-REDC step.
Rather, the main performance gain for using LWPFI modulattiplication comes from the
reduced complexity in the COEFF-REDC step.

D. Comments

The reduced complexity of LWPFI modular multiplication doeot come for free. In fact,
LWPFI modular multiplication introduces overhead maingsulting from additions and sub-
tractions. Such overhead due to additions and subtractieeds to be carefully considered. On
some microprocessors, the time difference between mighijgbn and addition/subtraction is
relatively not that significant. For example, on Pentium 2GHz processor (Family 7, Model
4), the latency of multiplication instructionmgl) is 11 clock cycles, and that of add-with-
carry (@dc) and subtract-with-borrowspb) instructions, the most frequently used ones for
long integer additions and subtractions, is 10 clock cyf3€$. On the other hand, on Freescale
ColdFire 5307, timing ratio of multiplication to additios 5 when operands are in registers,
and the ratio is only 2 when the operands are in memory [37].

In addition, overheads may result from factors pertainm¢he implementation environment,
and can potentially affect the performance of the moduldtiplication algorithms. For example,
for software implementation using general purpose praxssshese factors would include the
size and the number of the registers, cache size and spegdiefe of the data-path including
pipe-lining, multiple execution units, etc. A detailed bsés of the effect of such factors on the
performance of the modular multiplication algorithms ig sonple. However, to give a good
indication on how the LWPFI based algorithm compares wihciunterparts we will consider

timing results based on actual implementations. This isgeed in the following section.

VI. IMPLEMENTATION RESULTS AND PRACTICAL CONSIDERATIONS

In this section, first we present timing results of modularltiplications. Then we discuss

some general practical considerations for LWPFIs.

23

TABLE IV

FUNCTIONSUSED FORIMPLEMENTING LWPFI MODULAR MULTIPLICATIONS

Long Integer Operation GMP
Multiplication npz_mul ()
Addition npz_add(), npz_add_ui ()
Subtraction npz_sub(), nmpz_sub_ui ()
Bit-Shift nmpz_mul 2exp()

A. Our Platform and Software Routines

We have implemented LWPFI modular multiplications basedf¢n) = ¢ + 1 and f(t) =
t3 4+t — 1, and an LWPFI modular squaring based ¢ft) = ¢ + 1. Our implementation
uses GNU multiple precision (GMP) library v4.1.4t(p: // ww. swox. coni gnp). We
implemented GBAID, which is not provided in GMP, using the @gramming language.
Since our implementation of GBAID uses only the C prograngrlanguage, we have disabled
all assembly routines in GMP library. We used Microsoft \dk®tudio 2005 to compile all
programs, and performed timing measurements on Intel dferdi 3.20GHz (Family 7, Model
4). To compile GMP with Visual Studio, we used Visual Studimjpct file for GMP v4.1.4
downloaded fromht t p: / / f p. gl adman. pl us. com conputi ng/ gnmp4wi n. ht m

Our implementation of LWPFI modular multiplication is bdsen high level functions of
GMP library. Table IV lists GMP functions that we used for il@menting LWPFI modular
multiplications. We used our GBAID routine for divisions @OEFF-REDC step, since our
GBAID routine is much faster than the division function in @Mhpz _t di v_r ()). The timing
results shown in this section could be improved by using el functionsigpn_* () functions)
that have less redundancy than high level functions.

Our GBAID routine turned out to be faster than MAIR routines GMP. Thus, we have
written our own MAIR routine using the same coding style aptimization that we used when
writing GBAID. Our MAIR performs better than our GBAID for lainput lengths. The timing
results in the following subsection are based on our own Blamiery reduction routine, not on
redc() in GMP library.

24

TABLE V

DETAILED ANALYSIS OF LWPFI MODULAR MULTIPLICATION (n = log, p)

T(POLY-MULT-REDC) = T + T»

f(t) 11 T
f)y=t>+1 3 Tm(n/2) 2-Ta(n+2)+2-Ta(n/2)
f@)=t>+t-1 6 - Tm(n/3) 6-To(2n/3 +2)+6-Tu(n/3)

T(COEFF-REDG = T + T4
f@) T3 Ty
fit)y=t*+1 2-Tg(n+2,n) 5-Ta(n/2+2) +Ta(3)
fO)=t*+t—1|3-Te(2n/3 +3,n) 8- Ta(n/3+3)+2 Tu(4)

B. Component-wise Breakdown of Timing

Table V shows detailed analyses of LWPFI modular multipiaamethods for the twg (¢)’s
that we used in our implementation. The notati@hgn), 7,(n) andTs(u, v) respectively refer
to the running time for long integer multiplication of twebit integers, long integer addition
of two n-bit integers and GBAID for:-bit dividend andv-bit divisor. T'(POLY-MULT-REDC)
and T'(COEFF-REDG refer to the time required for POLY-MULT-REDC and COEFF-RED
steps, respectively.

We experimentally measureti, 75, T3 and 7,, as defined in Table V, for varying bit sizes
of p and plotted the results in Figures 3 and 4. In the figures, weelL$) to denoteT; for the
[-th degreef(t) in Table V. In Figure 41, (u,v) denotes the timing for Montgomery reduction
when the input integer ig bits long and the modulus is bits long. In Figure 4, we present
Tp(2n,n) to show how much amount of time COEFF-REDC saves by breaking full (2nl)-
bit by (nl)-bit division into! short divisions for(2n +[)-bit dividend andr-bit divisor and some
overheads. Th&),(u, v) is shown as a reference timing of the best modular reductgorithm
considered in this paper.

In Figures 3 and 4, we see that the overheads resulting frahti@us/subtractionsiy’s and
T,'s) are not significant in both POLY-MULT-REDC and COEFF-REDsteps. Especially in
Figure 4, the overhead timing®, (i) for i = 2 and 3, are very small compared to the reduction
timings and they both are plotted close to thexis of the graph. The figures confirm our

analytical conclusion in Section V that the efficient modutaultiplication using LWPFI moduli

25

120 .
100}
80

60 -

Time in us

20

=
A~

O _ . N L —— === b T T S T]
0 500 1000 1500 2000 2500 3000 3500 4000
log, p

Fig. 3. Timing Results for POLY-MULT-REDC step on Pentium 4 3@2GHz

100 %223 + Ty(2) —— | '/_/'_

Time in ps

0 B oy W W O U S Ny
0 500 1000 1500 2000 2500 3000 3500 4000

log, p

Fig. 4. Timing Results for COEFF-REDC step on Pentium 4 @ Bl2G

is not due to the POLY-MULT-REDC step where KOA has been ubetldue to the COEFF-
REDC step.
Note that GMP’snpz_nul () routine switches from classical algorithm to KOA when the

operand size is more than 32 words long (i.e., 1024 bitafer 32), and hence there is are sudden

26

changes in7,,(n) wheneverlog, p = 1024 - 2° for + > 0. The performance of POLY-MULT-
REDC forl! = 2 is very close to that ofrpz_nul () (7,,(n) in Figure 3) forlog, p > 1024,
since they both have the same asymptotic speed-up due to KO&ever, the timing results of
POLY-MULT-REDC for [= 3 shows sudden changes in timing whenelgy, p = 3 - 1024 - 2
for ¢ > 0, but it does not become similar #,(n), since the 3-way KOA presented in (19) does

not lead to the same asymptotic speed-up as the originaly2<i@sA.

C. Overall Timing Results and Comparisons

Figures 5 shows timing results of our implementations offtilwing three modular multi-
plication methods:

1) “LWPFI mul.” where KOA is used for polynomial multiplic@mn and GBAID is used
for COEFF-REDC (as discussed in this article). For this rméthwe show three plots
corresponding tof (1) =2+ 1, f(t) =t +t—1and f(t) = t* — t* — 1 as well.

2) “Mul. + MAIR” where KOA is used for long integer multiplications ardAIR is for
modular reduction.

3) “Mul. + GBAID” where KOA is used for long integer multiplications &G BAID is for
modular reduction.

In method 3), instead of GBAID, one can use the original Baregluction algorithm, which does
not generate a quotient as output, However, as discussezttios I, the difference between the
computational costs of these two schemes is negligibleo Aste that in method 3), the divisor
of GBAID is the modulus (saynl) bits long). On the other hand, for the same size moduli, the
size of the divisor in the GBAID used in method 1)risbits only. However, in method 1), the
GBAID routine is used times, whereas in method 3), the GBAID is used only once fahea
modular multiplication.

Figure 6 shows timing results for modular squaring openatiosing the same three methods,
and in the case of LWPFI, only one graph foe 2 is shown.

We clearly observe in the figures that LWPFI modular multiglions become more efficient
than GBAID and MAIR based modular multiplications as the niod size increases. We also
observe that the asymptotic behavior of LWPFI modular mlittation improves a$ increases,
and that the LWPFI squaring fdr= 2 indeed performs better than modular squaring methods
using GBAID and MAIR.

27

| | | | | | | |
200} LWPFI mul, (F(f) = £2 + 1) —— -
LWPFI mul. (t)(f 0)153 +i—1) - L
LWPFI mul. (f(¢)'=t* —¢* —1) ------ J
» 150 ' !
=
=
g 100f
=
S0
0 = | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000
log, p
Fig. 5. Modular Multiplication Algorithms on Pentium 4 @ &Rz
200 | | | | | | | 1
LWPFI sqr. (f(t) =t> +1) ——
T
+ GBAII) ------ s Y
150} ar L
VA
3
=
- 100f
£
|_
S0
- ,I, | | | | | |

0 g
0 500 1000 1500 2000 2500 3000 3500 4000
log, p

Fig. 6. Modular Squaring Algorithms on Pentium 4 @ 3.2GHz

D. Practical Considerations
« General implementation is possible using LWPFI proposethis work. For a given bit
length, we can find many useful moduli by varying the value,oéven for a fixedf ().
On the other hand, the most limiting part of GMNs proposed9hi$ that there can be

28

only one GMN for a given bit length and a polynomi(t). This fact makes generalized
implementation infeasible, and each GMN requires a deelicahplementation. This is not
a problem in ECC and HECC, since it is the usual practice tagetomain parameters for
use by many users in such cryptosystems. There are everefined sets of recommended
parameters for ECC [15], [16]. However, in RSA cryptosysteevery user has to generate
his or her own parameters, and in XTR cryptosystems [2],yeuser is advised to do so.
Hence, these cryptosystems do not benefit from the fast rapdulltiplication that GMNs
provide.

LWPFI modular multiplication makes it easy for parallel ilmmentation. In POLY-MULT-
REDC, KOA involves several multiple-precision multiplians. These multiplications are
independent of each other and they can be computed in a glarainner. For example,
if [=deg(f(t)) is 3, then six multiplications9, through D5 in (19)) can be computed
by two, three or six processors or multipliers simultané&ougloreover,(divisions byt

in coefficient reduction step can be parallelized, even ghomot explicitly shown in this
paper.

Cryptographic computations usually require operationslinng large operands. However,
implementing operations which deal with very long operaimmés is challenging in re-
stricted environments, such as smart cards and certaindelablesystems. LWPFI modular
multiplications make it possible to reduce the operandssigel /I, wherel = deg (f(1)).
There are security concerns when moduli take a special fdiensenne numbers are avoided
in cryptosystems, since they are easier to be factored uwkagpecial number field sieve
(SNFS) [13], [14]. A similar technique known as special ftiowc field sieve (SFFS) can
be used for solving discrete logarithm problems based ogiaprm of moduli [38].
However, SNFS and SFFS are applicable only to integers ofdim p = b° — ¢, where

b andc are very small (e.g., Fermat's numbers, Mersenne numb&x¥, SNFS and SFFS
are not applicable to LWPFI, since LWPFI moduli are not intsacform of integers i.e.,
p=t'—(fiest" "+ -+ fo) in whicht and(f,_,t""'+- - -+ f,) are both very large. However,
currently there is no guarantee that cryptographic apipica are secure when LWPFI is

used. It is an open question whether LWPFI makes factorimydiscrete logarithm easier.

29

VIl. ENHANCING THE LWPFI MODULAR MULTIPLICATION

In this section, we show some methods for enhancing LWPFlulaodnultiplication.

A. Using Pseudo-Mersenne Numbers fdt = 2 — c)

If ¢ is chosen to be a pseudo-Mersenne number, such th& — ¢ for somek and smallc,
the performance of the LWPFI modular multiplication can heHer improved. For a pseudo-
Mersenne numbet, there exists an efficient modular reduction algorithm due€tandall [8].
The original Crandall’s algorithm is used only for compgtithe remainder. Algorithm 6 shows
the modified Crandall’s algorithm which also computes thetigunt.

Algorithm 6. Modified Crandall's Algorithm

INPUT: positive integers: > t andt = 2F — .

OuUTPUT: ¢ andr, such thatr = ¢ -t 4+ r and0 < r < t.
1) qo < |z/2%], ro « 2 mod 2*

2) q+qo, 10,7 0.

3) While ¢; > 0 do:
3.1 giv1 < |gi-¢/2%], rix1 < q; - c mod 2%,
32 i—i+tlq—q+q,r—r+r.

4) Whiler > t, do:r «—r —t, g« q+ 1.

5) Returng andr.

The correctness of Algorithm 6 can be easily derived from ¢dhe shown in [23] for the
original Crandall’'s algorithm. The main difference betwetthe original Crandall's algorithm
and Algorithm 6 is that Algorithm 6 accumulatess also, while original Crandall’s algorithm
accumulates only;’s.

The multiplication by a constant is required only twice if the size of is at most half the
size oft. In general, ifl = (s — 2)k/(s — 1) where! is the bit length ofe, then step 3.1 is
executeds times [23].

B. Using LWPFI fort

When LWPFIs are used faf, coefficient reduction could be done trivially. We show that
dividing an integer in SO¢,) form by an LWPFI can be done very efficiently. Suppgge)
is a monic polynomial of degreke

fO)y=t—fit"™' — = fit — fo. (29)

30

Let z(t) be a degre@l — 2 polynomial:
.I'(t) = .Tgl_gtzl_z + 4 .Tlt -+ Zg-. (30)
Define a polynomialj(¢) of degreel — 2 such that

q(t) = qot ™2 + -+ @it + qo,

1-2 (31)
G = Ti+i + Z qjfis1--
j=it+1
Then it follows thaty(¢) satisfies the following:
w(t) = q@)f() +r(t) (deg (r(t)) < deg (f(1)))- (32)

Therefore, we have a formula for the quotient polynomj@l). The formula forr(t) can be
easily obtained by a similar method as shown in Section IllSfce the quotient polynomial
q(t) can be obtained while computing the remainder polynomigl the above method requires

at mostr(l — 1) additions/subtractions, whetreis the number of non-zerg;’s in f(t).

C. Generatingp = f(t) of Any Bit Length

Given the definition in Section Ill, we see that the bit lengftan LWPFI can be only about a
multiple of [= deg (f(t)). We can remove this constraint by introducing éx¢éended low-weight
polynomial form numbers (ELWPFISELWPFIs are almost the same as LWPFIs, except that
f(t) is not necessarily a monic polynomial; for examglg) = fit! — fi_t'=t — - — fit — fo,
wheref, > 1 and f; € {0, £1} for i < .

With appropriately choserf;,, we can generate moduli of any bit length. For example, if we
chooseh-bit integer for f; and a third degree polynomigl¢), we can generatg's that are about
(In + h) bits long, wheren is the bit length oft.

However, a polynomial reduction by an ELWPFI is not simplecsi the reduction formula
involves many divisions byf;. Even thoughf; is chosen to be a power & the dividends
are not necessarily divisible byj. This issue can be resolved easily by using the following
representation:

w(t) =z (fit) "+ 2 (fit) + 2 (mod f(1)). (33)

Then it becomes straightforward to check that a polynongdlction by non-monic polynomial

f(t) will not have divisions byf,. Note that the introduction of, > 1 will result in constant

31

multiplications by f; when performing LWPFI modular multiplication. Thereforg, must be
either a very small integer or a power of 2 to avoid actual iplitation instructions in the

computation of LWPFI modular multiplication.

VIII. CONCLUSIONS

In this paper we have considered low-weight polynomial fomtegers (LWPFIS) to devise an
efficient modular multiplication method. LWPFI is a family integers expressed in polynomial
form p = f(¢), and they further generalize Mersenne numbers by allowimg iateger for
t. Our analysis shows that LWPFI modular multiplication hastdr asymptotic behavior than
other general modular reduction methods. Our implementagsults show that LWPFI modular
multiplication is faster than Montgomery reduction for nadidof large sizes. We have shown
techniques that can speed up LWPFI modular multiplicat@+N or pseudo-Mersenne number
based modular multiplication would be faster than LWPFIlgolsne, however there are not that
many GMNs and pseudo-Mersenne numbers. LWPFI has its ayamthat the implementation
does not have to be specific to a single modulus and that LWRIvides a considerably large
choices of moduli. Hence, one may consider LWPFI as a tréfdeetween general integer and

other special type of moduli such as GMNs and pseudo-Meesanmbers.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers doefally reading the manuscript
and providing useful comments to improve its quality. Ja@Ghung’s research was funded by
Natural Science and Engineering Research Council of Ca8&RC) through Post Graduate
Scholarship — B (PGS-B) and in part by Canadian Wirelesscdelenunications Association
(CWTA) Scholarship. This work was also supported in part [SHRC discovery and strategic

project grants awarded to Dr. Hasan.

APPENDIX A

PROOF FOR THEGENERALIZED BARRETT ALGORITHM FORINTEGERDIVISION

Proposition 3 Computation of; in step 1 of Algorithm 3 is not exact. The error ¢nis at most
1,ifb>u—o.

32

Proof: For simplicity, we letk = u—v, v = (- 7117)6 = (Tu_1*** ToTo_1)p = |2/].
Note thaty is also at mos& + 1 = u — v + 1 words long, sinceu = |b*/m| wherem is v
words long. Lety’ = [yu/0*"v"!] be the value computed by the following full multiplication:

g = V%MJ _ \‘Zi-i-j %’Mjb”jJ . (34)

ki1 Je+1
b b

The computation of; in step 1 of Algorithm 3 is done by the following partial mylication:

q= {Zk‘lﬁiﬂ' %Wbm_HIJ

= (35)

Observe that/ andg have a common part:

q = {E”J'Sk Va0 + D oki1<it %’MjbﬁjJ

Pt

Bt
2 : iti—k—1 Zz’—l—jﬁk %ij
k+1<i+j b

(36)

7= \‘Zk_lfiﬂék %/“ijiﬂ_kﬂ + Zk+1§i+ﬂ' %'ujbi”_ﬁlJ
= 7

= > b+ {Ek—lgiﬂ'szﬁ %’Mjb”j—kHJ |

b2
E+1<i+j

Let ¢ be the difference betweeyi andgq, i.e.,e = ¢ —gq.

Zz’—i—jgk %‘ijiﬂ Zk—lgi+j§k Viﬂjbiﬂ_kﬂ
ph+1 B b2

_ Zk—lgz’—i-jgk %,’ujbz'ﬂ + Zi+j§k—2 %ujbiHJ B \‘Zk—léi—i-jgk %'/ijbz’ﬂ'—kﬂJ

bk-i—l b2

b2 bk‘—i—l

_ Zk-1gi+j§k %'ijiﬂ_kﬂ n Zi+j§k—2 %Ny’ijJ (37)

<

bk—l—l

_ {Zk—mﬂ«c Viwbﬁj_HlJ
b2

o ; pitd
{Zz+g<k—27ﬂy J+1‘

(- lA+B] < [A]+|B]+1)
Sincewy;, p; < b,

bk+1 bk—l

{ngk—z%’ﬂjbmJ < {Zﬁjgk—? ijJ) (38)

33

Then we can see that for> k,

Z piti — (k‘ . l)bk—Z + (/{5 _ 2)619—3 4+ 4+204+1< bt (39)
i+j<k—2
Therefore,
D iti<k2 Vbt
i< - — 0, (40)
and
e <1. (41)
|
REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

R. Rivest, A. Shamir, and L. Adleman, “A method for obtaig digital signatures and public-key cryptosystems,”
Communications of the ACMol. 21, no. 2, pp. 120-126, 1978.

A. K. Lenstra and E. R. Verheul, “The XTR public key systgéim Advances in Cryptology - CRYPTO 20G@r. LNCS
1880. Springer-Verlag, 2000, pp. 1-19.

V. Miller, “Use of elliptic curves in cryptography,” ilAdvances in Cryptology - CRYPTO '8%r. LNCS 218. Springer-
Verlag, 1986, pp. 417-426.

N. Koblitz, “Elliptic curve cryptosystems,Math. Comp., vol. 48, pp. 203—-209, Jan. 1987.

D. Knuth, The Art of Comuter Programming, Vol. 2, Seminumerical Atgars 2nd ed. Addison-Wesley, 1981.

P. Barrett, “Implementing the Rivest Shamir and Adlen@amlic key encryption algorithm on a standard digital signa
processor,” inAdvances in Cryptology - CRYPTO '86er. LNCS 263. Springer-Verlag, 1987, pp. 311-323.

P. L. Montgomery, “Modular multiplication without triadivision,” Mathematics of Computatiorvol. 44, no. 170, pp.
519-521, 1985.

R. E. Crandall, “Method and apparatus for public key exule in a cryptographic system (oct. 27, 1992),” U.S. Patent
5,159,632.

J. A. Solinas, “Generalized Mersenne numbers,” CerdréApplied Cryptographic Research, University of Waterldech.
Rep. CORR 99-39, 199%1tt p: // cacr. uwat erl 0o. ca/t echreports/ 1999/ corr 99- 39. ps.

S. Kawamura, K. Takabayashi, and A. Shimbo, “A fast mladexponentiation algorithmEICE Transactionsvol. E-74,
no. 8, pp. 2136-2142, August 1991.

S.-M. Hong, S.-Y. Oh, and H. Yoon, “New modular multigdition algorithms for fast modular exponentiation,’Liacture
Notes in Computer Sciencser. LNCS 1070. Springer-Verlag, 1996, pp. 166-177.

C. H. Lim, H. S. Hwang, and P. J. Lee, “Fast modular reuctvith precomputation,” irProceedings of Korea-Japan
Joint Workshop on Information Security and Cryptology (3@WI'97) Seoul, 1997, pp. 65-79.

A. K. Lenstra and H. Lenstra Jr, “The development of thenber field sieve,” ir_ecture Notes in Mathematicser. 1554,
1993, pp. 11-42.

A. K. Lenstra, H. Lenstra Jr, M. Manasse, and J. Poll&Ftie factorization of the ninth Fermat numbekfathematics of
Computation vol. 61, no. 203, pp. 319-349, 1993.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]
[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

34

National Institute of Standards and Technology, “Reotended elliptic curves for federal government use,” JU899.
N. I. of Standards and Technology, “Digital signatutarslard (DSS),” FIPS Publication 186-2, February, 2000.

J. Chung and A. Hasan, “More generalized Mersenne nusiibia Selected Areas in Cryptography - SAC 2088&r. LNCS
3006. Springer-Verlag, 2003, pp. 335-347.

J.-C. Bajard, L. Imbert, and T. Plantard, “Modular nwentsystems: Beyond the Mersenne family,”Selected Areas in
Cryptography 2004ser. LNCS 3357. Springer-Verlag, 2004, pp. 159-169.

——, “Arithmetic operations in the polynomial modulaumber system,” irProceedings of the 17th IEEE Symposium on
Computer Arithmeticser. ARITH'05, 2005, pp. 206—-213.

S. R. Dussé and B. S. Kaliski Jr., “A cryptographic &by for the Motorola DSP56000,” it\dvances in Cryptology -
EUROCRYPT '90ser. LNCS 473. Springer-Verlag, 1991, pp. 230-244.

C. K. Kog, T. Acar, and B. S. Kaliski Jr., “Analyzing drcomparing montgomery multiplication algorithm$#EEE Micro,
vol. 16, no. 3, pp. 26-33, June 1996.

J.-F. Dhem, “Efficient modular reduction algorithm Iy [x] and its application to “left to right” modular multiplicatn
in F2[z],” in Cryptographic Hardware and Embedded Systems - CHES,Z¥3LNCS 2779, 2003, pp. 203-213.

A. J. Menezes, P. C. van Oorschot, and S. A. Vanstetamdbook of Applied Cryptography CRC Press, 1997.

C. D. Walter, “Montgomery exponentiation needs no fisiatbtractions,'Electronics Lettersvol. 35, no. 21, pp. 1831-1832,
1999.

G. Hachez and J.-J. Quisquater, “Montgomery expoa#ati with no final subtractions: Improved results,'Gnyptographic
Hardware and Embedded Systems - CHES 28@@ LNCS 1965. Springer-Verlag, 2000, pp. 293—-301.

P. Kocher, “Timing attacks on implementations of Diffieellman, RSA, DSS, and other systems,” Advances in
Cryptology - CRYPTO '96ser. LNCS 1109. Springer-Verlag, 1996, pp. 104-113.

D. Naccache and H. M'Silti, “A new modulo computatiorgatithm,” Recherche Opérationnelle - Operations Research
(RAIRO-OR) vol. 24, pp. 307-313, 1990.

A. Bosselaers, R. Govaerts, and J. Vandewalle, “Coisparof three modular reduction functions,” ikdvances in
Cryptology - CRYPTO '93ser. LNCS 773. Springer-Verlag, 1994, pp. 175-186.

A. Avizienis, “Signed-digit number representation fast parallel arithmetic,TRE Transaction on Computersol. EC-10,
pp. 389-400, 1961.

S. Winograd Arithmetic Complexity of Computatiorser. CBMS-NSF Regional Conference Series in Applied Mattes
33. Society for Industrial and Applied Mathematics, 1980.

A. Weimerskirch and C. Paar, “Generalization of the d&tauba algorithm for efficient implementations,” Ruhr-Uésitat
Bochum, Gemany, Tech. Rep., 2003, available at http://vewto.ruhr-uni-bochum.de/epublications.html.

P. L. Montgomery, “Five, six, and seven-term Karatsilika formulae,” [EEE Transaction on Computersol. 54, no. 3,
pp. 362—369, 2005.

A. L. Toom, “The complexity of a scheme of functional elents realizing the multiplication of integersSoviet Math
vol. 3, pp. 714-716, 1963.

S. A. Cook, “On the minimum computation time of functsghPh.D. dissertation, Havard University, May 1966.

D. Zuras, “More on squaring and multiplying large integ,” IEEE Transactions on Computengol. 43, no. 8, pp. 899-908,
August 1994.

T. Granlund, “Instruction latencies and throughput AMD and Intel x86 processors,” 2005, available at httgtis.com/

doc/x86-timing.pdf.

35

[37] Freescale Semiconductor, Inc., “MCF5307 ColdFirgegnated microprocessor user’s manual,” 2005, availablettp:
IIwww.freescale.com/files/saftev_tools/doc/refmanual/MCF5307BUM%.pdf.
[38] O. Shirokauer, “The special function field siev&IAM Journal on Discrete Mathematicgol. 16, no. 1, pp. 81-98, 2002.

