
1

Low-Weight Polynomial Form Integers for

Efficient Modular Multiplication

Jaewook Chung and M. Anwar Hasan

February 9, 2006

Abstract

In 1999, Jerome Solinas introduced families of moduli called the generalized Mersenne numbers

(GMNs), which are expressed in low-weight polynomial form,p = f(t), wheret is limited to a power of

2. GMNs are very useful in elliptic curve cryptosystems overprime fields, since only integer additions

and subtractions are required in modular reductions. However, since there are not many GMNs and each

GMN requires a dedicated implementation, GMNs are hardly useful for other cryptosystems. Here we

modify GMN by removing restriction on the choice oft and restricting the coefficients off(t) to 0

and±1. We call such families of moduli low-weight polynomial formintegers (LWPFIs). We show an

efficient modular multiplication method using LWPFI moduli. LWPFIs allow general implementation

and there exist many LWPFI moduli. One may consider LWPFIs asa trade-off between general integers

and GMNs.

Index Terms

Cryptography, Mersenne numbers, modular multiplication,RSA, elliptic curve cryptosystems, Mont-

gomery reduction, Barrett reduction.

I. INTRODUCTION

Modular multiplication is the main performance bottleneckin many cryptosystems, such as

RSA [1], XTR [2] and the prime field based elliptic curve cryptosystems (ECC) [3], [4]. Hence,

many algorithms have been proposed for implementing efficient modular multiplication. These

algorithms can be classified into the following three categories:
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1) Algorithms for general moduli: the classical algorithm [5], the Barrett algorithm [6] and

the Montgomery algorithm [7].

2) Algorithms for special moduli: pseudo-Mersenne numbers[8] and generalized Mersenne

numbers [9].

3) Look-up table methods: Kawamura, Takabayashi and Shimbo’s method [10]; Hong, Oh

and Yoon’s method [11]; and Lim, Hwang and Lee’s method [12].

Look-up table methods are normally faster than the generalized ones, but require a large amount

of memory and are suitable only when some parameters are fixed. The modular multiplication

method presented in this paper falls into the second category.

In 1644, Marin Mersenne conjectured that the numbers of the form p = 2k − 1 are prime

numbers for a certain set of integersk ≤ 257. Although his conjecture turned out to be not

entirely correct, the numbers of the formp = 2k − 1 are now known as theMersenne numbers.

It is very easy to perform modular reduction using these numbers. However, these numbers are

not attractive for cryptographic applications since thereare very few Mersenne primes (e.g., if

k is composite, Mersenne numbers are never primes) that are practically useful.

The moduli of the formp = 2k−c, wherec is a small integer, are known aspseudo-Mersenne

numbersand they are patented by Richard Crandall [8]. Modular reduction using a pseudo-

Mersenne number is also very efficient. However, because of security threats, these numbers are

not recommended for cryptosystems that are based on the difficulty of integer factorization or

discrete logarithm problem [13], [14].

In 1999, Jerome Solinas proposed generalized Mersenne numbers (GMNs). GMNs are ex-

pressed in low-weight polynomial formp = f(t) wheret is a power of 2 and the coefficients

of low-degree polynomialf(t) are very small compared tot. If the modulus is a GMN, the

modular reduction requires simple integer additions and subtractions only. It is well known that

all prime-field based elliptic curves recommended by NIST (National Institute of Standards and

Technology) use GMNs [15], [16]. However, two significant shortcomings of GMNs are that

there are not many useful GMNs and that each GMN requires dedicated implementation. Hence

the use of GMN is currently limited to elliptic and hyper elliptic curve cryptosystems.

In this paper, a new family of integers, called thelow-weight polynomial form integers

(LWPFIs), is introduced. LWPFIs are similar to GMNs. However, for LWPFIs,t does not have to

be a power of 2, and the coefficients off(t) are either 0 or±1. It will be shown in this paper that
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an efficient modular multiplication based on LWPFI moduli can be implemented even thought

is not a power of 2. Analysis and implementation results showthat modular multiplication based

on LWPFIs is asymptotically faster than any reduction algorithms for general moduli.

For software implementation, new modular multiplication based on LWPFI moduli can be im-

plemented without using division instructions of the target processor. This feature is advantageous

for processors whose division instruction is much slower than its multiplication instruction. Since

LWPFI moduli are represented in polynomial form, their bit lengths are limited to a multiple of

the degree off(t). However, extended LWPFIs make it possible to generate moduli of any bit

length.

Since the publication of a preliminary version of this work at SAC 2003 [17], Bajard et al.

have proposed two number systems called the adaptive modular number system (AMNS) [18]

and the polynomial modular number systems (PMNS) [19]. These modular number systems have

some similarities with LWPFIs in the sense that they use low-weight polynomial form moduli

for efficient arithmetic and that numbers are represented inpolynomial form. However, the

representation of numbers and modular arithmetic in modular number systems are quite different

from those in our modular multiplication using LWPFI moduli. In the modular number systems,

an integerx ∈ Zp is represented as a vector(x0, x1, . . . , xn−1), wherex =
∑n−1

i=0 xiγ
i mod p,

1 < γ < p andxi ∈ {0, . . . , ρ − 1}. Bajard et al. show that a careful choice of parameters,γ,

ρ and p, makes arithmetic operations in the modular number systemsefficient, and state that

modular multiplication in AMNS is more efficient than Montgomery multiplication. However,

the drawbacks of modular number systems are that the number of moduli for AMNS of practical

use appears to be quite limited and that modular multiplications in PMNS require a large look-up

table.

The remainder of this paper is organized as follows. First, we briefly review in Section II

well known modular reduction algorithms and present a generalized version of the Barrett

algorithm for integer division. In Section III, we describehow a modular multiplication using

LWPFI moduli can be implemented efficiently. In Section IV, we discuss how to implement

polynomial multiplication modulof(t) efficiently for somef(t)’s of small degrees. In Section V,

we give detailed analysis of our LWPFI based modular multiplication scheme. We discuss

practical considerations when using LWPFIs and show implementation results in Section VI.

In Section VII, we show how our modular multiplication usingLWPFIs can be improved.
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Conclusions follow in Section VIII.

II. OVERVIEW OF MODULAR REDUCTION ALGORITHMS

In this section, we briefly discuss two well known modular reduction algorithms: the classical

algorithm [5] and the Montgomery algorithm [7], [20], [21].Then we present a generalization

of the Barrett algorithm for modular reduction [6] [22]. Unlike the original Barrett algorithm,

the generalized one does not have a limitation on the input size and can perform a multiple

precision division for a fixed divisor.

Throughout this paper, we use the following notations:

• b ≥ 2 is a radix for integer representation. In software implementation, b = 2w wherew is

the word-length in bits of the processor used.

• x = (xn−1 · · ·x1x0)b, where0 ≤ xi < b, is a radix-b representation ofn-digit integerx.

• word(x) denotes the number of words required to represent an integerx.

A. The Classical Algorithm

A good description and analysis of the classical algorithm for integer division (CAID) can be

found in [23]; we have slightly modified this algorithm so that it accepts only normalized input,

i.e., the most significant digit of the divisormk−1 ≥ ⌊b/2⌋. The resulting pseudo code is given

in Algorithm 1.

Algorithm 1. Classical Algorithm for Integer Division (CAID)

INPUT: : Integersx = (xn−1 · · ·x1x0)b andm = (mk−1 · · ·m1m0)b with n ≥ k ≥ 1, mk−1 ≥ ⌊b/2⌋.

OUTPUT: : The quotientq = (qn−k · · · q1q0)b and the remainderr = (rk−1 · · · r1r0)b such thatx = qm + r,

0 ≤ r < m.

1) For j from 0 to (n− k) do: qj ← 0.

2) If x > mbn−k thenqn−k ← qn−k + 1, r ← x−mbn−k; otherwiser ← x.

3) For i from n− 1 down tok do the following:

3.1 If ri = mk−1 thenqi−k ← b− 1; otherwiseqi−k ← ⌊(rib+ ri−1)/mk−1⌋.

3.2 While (qi−kmk−2 > (rib+ ri−1 − qi−kmk−1)b + ri−2) do: qi−k ← qi−k − 1.

3.3 r ← r − qi−kmb
i−k.

3.4 If r < 0 thenr← r +mbi−k andqi−k ← qi−k − 1.

4) Returnq andr.
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The input conditionmk−1 ≥ ⌊b/2⌋ guarantees that step 3.2 is repeated at most twice [5]. This

condition can be met by left shiftingx andm by a suitable number of bits. To obtain a correct

result, we only need to shift the remainderr to the right by the same number of bits. Step 3.2

makesqi−k to be at most one larger than the true value of quotient digit.The probability of

r < 0 at step 3.4 is approximately2/b. Note that the valuesqi−kmk−1 andqi−kmk−2 in step 3.2

can be reused in step 3.3. Hence Algorithm 1 requiresk(n− k) single-precision multiplications

and at most(n− k) single-precision divisions.

B. The Montgomery Algorithm

The Montgomery algorithm performs modular reduction without using any division instruction

of the underlying processor [7]. Letm be a modulus, andT be a positive integer which is to

be reduced. We choose an integerR such thatR > m, gcd(m,R) = 1 and0 ≤ T < mR. The

Montgomery reduction is an operation which computesTR−1 mod m. If R is chosen properly,

then this modular reduction can be performed efficiently.

Let m′ = −m−1 mod R, andU = Tm′ mod R. Then (T + Um)/R is an exact division.

One can easily check that(T +Um)/R ≡ TR−1 (mod m). Modular reduction and division by

R can be done trivially ifR = bk for some integerk. Since the conditionR > m must be met,

k is usually chosen to be the number of digits inm.1 SinceT < mR andU < R, it follows

that (T + Um)/R < 2m. Hence a final subtraction may be needed depending on inputT . The

Montgomery algorithm for integer reduction (MAIR) is described in Algorithm 2.

Algorithm 2. The Montgomery Algorithm for Integer Reduction (MAIR)

INPUT: : m = (mk−1 · · ·m1m0)b with gcd(m, b) = 1, R = bk, m′ = −m−1 mod b, andT = (t2k−1 · · · t1t0)b <

mR.

OUTPUT: : A = TR−1 mod m.

1) A = (a2k−1a2k−2 · · · a0)b ← T .

2) For i from 0 to (k − 1) do the following:

2.1 u← a0m
′ mod b.

2.2 A← (A+ um)/b.

1However, in [24] and [25], to avoid the final subtraction, a value that is one or two more than the number of digits inm is

proposed. Such techniques are useful in implementing cryptosystems, which resist timing attacks [26] better at a little cost in

speed.



6

3) If A ≥ m thenA← A−m.

4) ReturnA = (ak−1ak−2 · · · a0)b.

Step 2.1 of MAIR requires one single-precision multiplication and step 2.2 requiresk single-

precision multiplications. Therefore, MAIR requires a total of k(k + 1) single-precision multi-

plications.

To use MAIR for computing modular multiplications, input values must be transformed to

the so-calledMontgomery domain. To transform an integerx ∈ Zm to the Montgomery domain,

we compute(x ·R2) ·R−1 mod m using a pre-computed valueR2 mod m. Hence one multiple-

precision multiplication and one execution of MAIR are required.

To compute modular multiplicationx · y mod m using MAIR, first we have to transformx

and y to the Montgomery domain,̄x = x · R mod m, ȳ = y · R mod m. Then we multiply

them in the Montgomery domain, which results inx̄ȳ ≡ xy · R2 (mod m). One execution of

MAIR will bring it back to an integer in the Montgomery domain; that is, x̄ȳ · R−1 ≡ xy · R

(mod m). Another execution of MAIR onxy · R (mod m) will result in xy (mod m). It is

not at all efficient to use MAIR just to compute one modular multiplication. However, MAIR

is very efficient when many modular multiplications are to beperformed, since, for example, in

modular exponentiation, one needs transformations only atthe beginning and at the end.

C. The Barrett Algorithm

The Barrett algorithm [6] [22] is advantageous for applications in which a fixed modulus

is used. It does not use any division instructions of the underlying processor, but it uses a

small amount of pre-computation of size similar to that of the modulus. The description given

in Algorithm 3 is a generalized version of the Barrett algorithm. We refer to it as GBAID (the

generalized Barrett algorithm for integer division) sinceit has been modified such that a quotient

is also computed. The original Barrett algorithm can reduceintegers that are at most twice as

long as a modulus. However, GBAID does not have such a limitation. Note that, Algorithm 3

becomes the original Barrett algorithm for integer reduction if we letu = 2v, remove “q ← q+1”

in step 4, and change step 5 to “Returnr”.

Algorithm 3. The Generalized Barrett Algorithm for Integer Division (GBAID)

INPUT: Positive integersx = (xu−1 · · ·x1x0)b, m = (mv−1 · · ·m1m0)b with mv−1 6= 0, u ≥ v and a pre-computed



7

valueµ = (µu−v · · ·µ1µ0)b = ⌊bu/m⌋.

OUTPUT: Integersq andr such thatx = qm+ r wherer < m.

1) q ←
⌊

∑

u−v−1≤i+j xi+v−1µjb
i+j−u+v+1/b2

⌋

(

≈
⌊

⌊x/bv−1⌋µ/bu−v+1
⌋)

.

2) r1 ← x mod bv+1, r2 ←
∑

i+j<v+1 qimjb
i+j mod bv+1(= q ·m mod bv+1), r ← r1 − r2.

3) If r < 0 thenr ← r + bv+1.

4) While r ≥ m do: r ← r −m andq ← q + 1.

5) Returnq andr.

The computation ofq in step 1 of Algorithm 3 is not exact, but it is quite accurate.Let q′ =

⌊⌊x/bv−1⌋µ/bu−v+1⌋. Thenq computed in step 1 is an approximation ofq′. The approximation

error q′ − q is at most 1 whenu− v ≤ b [23], [27] and a proof is given in Appendix A. LetQ

denote⌊x/m⌋. Then it can be easily shown thatQ− 2 ≤ q′ = ⌊⌊x/bv−1⌋µ/bu−v+1⌋ ≤ Q.

q′ >
1

bu−v+1
·

(

bu

m
− 1

)

·
( x

bv−1
− 1

)

− 1,

=
x

m
−
bv−1

m
−
x

bu
+

1

bu−v+1
− 1,

≥ Q− 2.

(1)

Trivially, q′ ≤ Q.

Let k = u − v for simplicity of description; then bothµ and ⌊x/bv−1⌋ are at mostk + 1

words long. It can be easily seen that step 1 requires at most(k2 + 5k + 2)/2 single-precision

multiplications. Note thatq computed in step 1 is also at mostk + 1 words long. One can

easily verify that the number of single-precision multiplications required in step 2 is at most

(k + 1)v − k(k − 1)/2 if k ≤ v, (v2 + 3v)/2 otherwise; therefore, the total number of single-

precision multiplications required in Algorithm 3 isuv + 3u − v2 − 2v + 1 if u ≤ 2v, (u2 +

5u)/2− uv + v2 − v + 1 if u > 2v.

D. Comments

In Table I, we show results of our analysis of CAID, MAIR and GBAID on the basis of number

of single-precision multiplications and divisions. Note that while any of these three schemes can

be used for modular reduction, only CAID and GBAID can perform a long integer division

to output the quotient. As it can be seen in Table I, MAIR is more advantageous than CAID

since a typical microprocessor’s division instruction is slower than its multiplication instruction
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TABLE I

ANALYSIS OF ALGORITHMS 1, 2 AND 3 (word(m) = n AND word(x) = 2n)

Algorithm # Mul # Div Pre-Computation

CAID n2 n No

MAIR n2 + n 0 R2 mod m andm′ = −m−1 mod b

GBAID n2 + 4n + 1 0 µ = ⌊bu/m⌋

TABLE II

INSTRUCTIONTIMING OF PENTIUM PROCESSORS

Processor mul (tm) div (td) td/tm

Pentium II @ 350MHz 14.3ns 111.7ns 7.81

Pentium III Mobile @ 1.13GHz 4.6ns 35.7ns 7.76

Pentium IV @ 3.2GHz (Family 7, Model 4) 3.45ns 23.86ns 6.92

(see Table II for instruction timings on Pentium processors2). MAIR is more advantageous than

GBAID also. In microprocessors where the ratio of division to multiplication instruction is

approximately greater than 4, CAID uses more time for multiplication and division instructions.

Note that the ratios shown in Table II are all greater than 4.

The above analysis is based on the number of multiplicationsand divisions only. The three

algorithms being considered here, however, require other instructions and various implementation

overheads. In order to have a more realistic comparison, we have implemented these algorithms

and performed their timing analysis. Details of our implementation environment are given in

Section VI-A, but timing results for varying bit sizes of moduli are presented in Figure 1. The

figure shows that MAIR is the best reduction method among the three algorithms considered

in this section. As a division algorithm, GBAID performs faster than CAID on Pentium 4 @

3.2GHz. An important feature, not shown in Figure 1, of GBAIDis that for a long integer

division, GBAID is more advantageous than CAID if many divisions are to be performed for a

fixed divisor. It is the case when our modular multiplicationmethod presented in the following

section is used in a modular exponentiation algorithm. We remark that Bosselaers et al. have

2The timing data in this table is the average time between the beginning of a corresponding multiplication or division instruction

to the next dependent instruction over2.5 × 109 executions using random operands.
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Fig. 1. Timing of Division Methods on Pentium 4 @ 3.2GHz

presented more detailed research on the three reduction methods in [28].

III. M ODULAR MULTIPLICATION USING LOW-WEIGHT POLYNOMIAL FORM INTEGERS

In [9], Solinas has proposed generalized Mersenne numbers (GMNs) for efficient modular

multiplication. A GMN is expressed as a low-weight polynomial f(t), wheret is a power of 2,

and f(t) is a small-degree polynomial. An LWPFI is also expressed as apolynomialf(t), but

t is not necessarily restricted to a power of 2, and the coefficients off(t) are limited to0 and

±1. Even though allowing only 0 and±1 for the coefficients off(t) leaves3l possible choices

for f(t), allowing any integer fort gives far more choices of integers than does GMN.

Definition 1 (LWPFI) For a positive integert, let f(t) = tl−fl−1t
l−1−fl−2t

l−2−· · ·−f1t−f0 be

a monic polynomial of degreel. We call a positive integerp = f(t) a low-weight polynomial

form integer (LWPFI) if fi ∈ {−1, 0, 1}, l ≥ 2 and t > 2(22l+1 − 1)(2l − 1) ≈ 23l+2.

In Definition 1, the valuel = 1 is excluded so that LWPFIs are different from the usual

form of integers, and the reason for having the conditiont > 2(22l+1 − 1)(2l − 1) is explained

in Section III-B. In practice, the conditiont > 2(22l+1 − 1)(2l − 1) is easily satisfied. For

cryptographically useful values ofp = f(t), the degreel of f(t) is a very small integer (l =



10

2, 3, 4, . . .) and t is a large integer (at leastt > 2w, wherew is the processor’s word length in

bits).

When computing modular arithmetic using LWPFI moduli, operands must be expressed in

degreel− 1 polynomial form. For an integerx ∈ Zp=f(t), we use the following special form of

redundant signed-digit representation,

x(t) = (xl−1 · · ·x1x0)SD−(t,ψ), (2)

where|xi| ≤ ψ = (t+ 2l+1 − 2) and

x ≡ xl−1t
l−1 + · · ·+ x1t+ x0 (mod p = f(t)). (3)

For anyx ∈ Zp, suchxi’s for i = 0, . . . , l − 1 exist. For simplicity, we say a representation

of an integerx is in SD-(t, ψ) form if it is in the above form. Note that we have chosen a

slightly wider range|xi| ≤ (t+ 2l+1− 2) than |xi| < t, which is used in traditional signed-digit

redundant representation [29]. The use of this wider range makes it possible to simplify our

modular multiplication method using LWPFI moduli described later in this section. Given two

input values in SD-(t, ψ) form, our modular multiplication method computes an outputalso in

SD-(t, ψ) form.

Converting an integer inZf(t) into an SD-(t, ψ) form requires no more thanl − 1 integer

divisions by t, where l = deg f(t). Usually this requirement is not an issue in cryptographic

applications since, when the modular multiplication algorithm based on LWPFI moduli is used

in exponentiation, conversions between the usual representation and an SD-(t, ψ) form is not

significant compared to the entire exponentiation.

Let x, y ∈ Zp=f(t) be represented in SD-(t, ψ) form as follows:

x(t) = (xl−1 · · ·x1x0)SD−(t,ψ),

y(t) = (yl−1 · · · y1y0)SD−(t,ψ).
(4)

In the following, we show an efficient way to perform modular multiplication of these two

integers modulo an LWPFIp = f(t); that is,x(t) · y(t) mod f(t). We call the proposed scheme

the LWPFI modular multiplication.

The LWPFI modular multiplication is performed in two steps:

1) POLY-MULT-REDC: computêz(t) = x(t) · y(t) mod f(t).
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2) COEF-REDC: reduce coefficients ofẑ(t), such that the resulting polynomial has coeffi-

cients that are at mostψ in magnitude.

A. POLY-MULT-REDC: Multiplication inZ[t]/f(t)

Algorithm 4. Polynomial Multiplication & Reduction (POLY-MULT-REDC)

INPUT: x(t) andy(t) in SD-(t, ψ) form

OUTPUT: ẑ(t) = x(t) · y(t) mod f(t).

1) z(t) = (z2l−2 · · · z1z0)SD−(t,∗) = x(t) · y(t).

2) For i from 2l− 2 down to l do the following:

2.1 z(t) = z(t) + zi · (fl−1fl−2 · · · f0)SD−(t,∗) · t
i−l.

3) ẑ(t) = (zl−1 · · · z1, z0)SD−(t,∗).

4) Returnẑ(t).

Algorithm 4 is the most simple and general way to perform the POLY-MULT-REDC step.

Step 1 is a multiplication of twol-term polynomials and can be computed in many different

ways, requiring different amount of computation as discussed in Section V-A. Step 2 performs

a polynomial reduction of a degree-(2l − 2) polynomial byf(t). Note that it is only a general

polynomial reduction method that works for anyf(t). For specificf(t)’s, one may find better

ways to do this step.

Even though polynomial multiplication and polynomial reduction are separated in Algorithm 4,

one can choose to combine them for better performance. In Section IV, we show how Algorithm 4

can be optimized by combining polynomial multiplication and polynomial reduction.

Proposition 1 Suppose that the magnitude of the coefficients inx(t) and y(t) are bounded by a

positive integerψ. Then the coefficients of̂z(t) computed by Algorithm 4 are at most(2l− 1)ψ2

in magnitude.

Proof: Let z(t) = x(t) · y(t). It is easily seen that|zi| ≤ (i + 1)ψ2 for i = 0, . . . , l − 1

and |zi| ≤ (2l− 1− i)ψ2 for i = l, . . . , 2l− 2. The magnitude of the coefficients in̂z(t) = z(t)

mod f(t) is maximum when all the coefficientsfi’s of f(t) are either 1 or -1. In both cases,

the maximum value of|ẑi| is computed as(2l − 2l−i−1)ψ2. Therefore,|ẑi| ≤ (2l − 1)ψ2 for all

i = 0, . . . , l − 1.
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B. COEF-REDC: Coefficient Reduction

After POLY-MULT-REDC is completed, we obtain a degree(l − 1) polynomial ẑ(t). As

shown in Proposition 1, the bit lengths ofẑi’s could be more than twice as long as that oft. The

coefficientsẑi’s must be reduced so that the result can be used as input to subsequent modular

multiplications. Algorithm 5 shows an efficient way to reduce the coefficients of̂z(t), where we

used⌊·⌉ to denote truncation toward zero, andu rem v to denoteu− v · ⌊u/v⌉.

Algorithm 5. Coefficient Reduction (COEF-REDC)

INPUT: ẑ(t) = (ẑl−1 · · · ẑ1ẑ0)t, where|ẑi| ≤ (2l − 1)ψ2 for all i = 0, . . . , l − 1.

OUTPUT: z′(t) = (z′l−1 · · · z
′
1z

′
0)SD−(t,ψ).

1) z′l ← 0, z′(t)← ẑ(t).

2) a← ⌊z′l−1/t⌉, z
′
l−1 ← z′l−1 rem t.

3) z′(t)← z′(t) + a · (fl−1fl−2 · · · f0)SD−(t,∗).

4) For i from 0 to l − 1, do the following:

4.1 zi,1 ← ⌊z
′
i/t⌉ andzi,0 ← z′i rem t.

4.2 z′i ← zi,0, z′i+1 ← z′i+1 + zi,1.

5) z′(t)← z′(t) + z′l · (fl−1fl−2 · · · f0)SD−(t,∗).

6) Returnz′(t).

Below we show that Algorithm 5 results in SD-(t, ψ) form output.

Proposition 2 Suppose that the coefficients ofẑ(t) satisfy|ẑi| ≤ (2l−1)ψ2, whereψ = t+2l+1−2.

Given this inputẑ(t), Algorithm 5 outputsz′(t), whose coefficients are no greater thanψ in

magnitude.

Proof: Let θ = 2l+1 − 2. Then it follows that

(2l − 1)(θ2 + 4θ + 2) = 2(2l − 1)(22l+1 − 1) < t, (5)

due to Definition 1. We use (5) throughout this proof.

In step 2, since|z′l−1| ≤ (2l − 1)(t+ θ)2, it is easy to see that

|a| ≤ ⌊(2l − 1)(t+ θ)2/t⌉ = (2l − 1)(t+ 2θ), (∵ (2l − 1)θ2 < t) (6)

where⌊·⌉ is a truncation toward zero. After step 3,

|z′i| ≤ (2l − 1)[(t+ θ)2 + t+ 2θ] for i = 0, . . . , l − 2,

|z′l−1| ≤ (2l − 1)(t+ 2θ) + t− 1.
(7)
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In step 4, the maximum values ofz′i,1 are determined as follows:

|z′0,1| ≤

∣

∣

∣

∣

⌊

(2l − 1)[(t+ θ)2 + t+ 2θ]

t

⌉
∣

∣

∣

∣

≤ (2l − 1)(t+ 2θ + 1), (8)

since(2l − 1)(θ2 + 2θ) < t. We consider three cases wherel = 2, l = 3 and l > 3.

1) Case 1: ifl = 2,

|z′2| = |z
′
1,1| =

∣

∣

∣

∣

⌊

z′1 + z′0,1
t

⌉
∣

∣

∣

∣

≤

∣

∣

∣

∣

⌊

(2l − 1)(t+ 2θ + t+ 2θ + 1) + t− 1

t

⌉
∣

∣

∣

∣

≤ (2l+1 − 1).

(∵ (2l − 1)(4θ + 1)− 1 < t)

(9)

2) Case 2: ifl = 3,

|z′1,1| ≤

∣

∣

∣

∣

⌊

(2l − 1)[(t+ θ)2 + t+ 2θ + t+ 2θ + 1]

t

⌉
∣

∣

∣

∣

≤(2l − 1)(t+ 2θ + 2),

|z′3| = |z
′
2,1| ≤

∣

∣

∣

∣

⌊

(2l − 1)(t+ 2θ + t+ 2θ + 2) + t− 1

t

⌉
∣

∣

∣

∣

≤(2l+1 − 1).

(10)

3) Case 3: ifl > 3,

|z′1,1| ≤

∣

∣

∣

∣

⌊

(2l − 1)[(t+ θ)2 + t+ 2θ + t+ 2θ + 1]

t

⌉
∣

∣

∣

∣

≤(2l − 1)(t+ 2θ + 2),

|z′2,1| ≤

∣

∣

∣

∣

⌊

(2l − 1)[(t+ θ)2 + t+ 2θ + t+ 2θ + 2]

t

⌉
∣

∣

∣

∣

≤(2l − 1)(t+ 2θ + 2),

...

|z′l| = |z
′
l−1,1| ≤

∣

∣

∣

∣

⌊

(2l − 1)(t+ 2θ + t+ 2θ + 2) + t− 1

t

⌉
∣

∣

∣

∣

≤(2l+1 − 1).

(11)

Hence, |z′l| ≤ (2l+1 − 1) after step 4 of Algorithm 5 for alll ≥ 2. Since |z′i| ≤ t − 1 for

i = 0, . . . , l − 1 after step 4, the magnitudes of|z′i|’s for 0 ≤ i < l will be no greater than

ψ = t + 2l+1 − 2 after the execution of step 5. Therefore, the output of Algorithm 5 is in

SD-(t, ψ) form.

Algorithm 5 is much like the modular reduction algorithm using pseudo-Mersenne num-

bers [23]. However, Algorithm 5 is quite different from it since Algorithm 5 does not require a

“while” loop, the reason being that the output of Algorithm 5is reduced only to the point where

the output meets the conditions for SD-(t, ψ) form. This feature makes Algorithm 5 behave in a

completely deterministic way, that is, its performance is not random or input-value dependent.
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IV. OPTIMIZATION OF POLY-MULT-REDC STEP

In this section, we show that the POLY-MULT-REDC step can be implemented efficiently for

some specificf(t)’s by combining polynomial multiplication and polynomial reduction byf(t).

We provide optimalf(t)’s for implementing the POLY-MULT-REDC step forl = 2 and 3. It

will be shown in Section V that larger values ofl lead to a better asymptotic bound; however,

they introduce more overheads. We consider only small-degreef(t)’s that are useful in practice.

It is straightforward however to extend this idea to larger degrees off(t).

The combining methods shown in this section are more efficient than the multiply-then-reduce

method described in Algorithm 4. Forl = 2, the combining method’s performance is almost

as good as that of polynomial multiplication only. Moreover, polynomial squaring inZ[t]/f(t)

when l = 2 is asymptotically faster than polynomial multiplication for somef(t)’s. For l = 3,

somef(t)’s make it possible that combined polynomial multiplication and polynomial reduction

can be performed using the same number of operations as for polynomial multiplication only.

The methods shown in this section are to optimize Algorithm 4for l = 2 and3. The resulting

output of the following methods will be identical to that of Algorithm 4 for the same input.

Thus, the polynomials computed by the following methods will meet the input condition of

Algorithm 5 too, provided that the inputx(t) andy(t) in this section are also in SD-(t, ψ) form.

However, computations in Algorithm 4 and the methods in thissection do not depend on the

fact that the input is in SD-(t, ψ).

We only consider irreduciblef(t)’s. Reduciblef(t)’s are guaranteed to generate composite

numbers that are, in most cases, not useful for cryptography. When f(t) is reducible there

are better ways to perform polynomial multiplications inZ[t]/f(t). In particular, forf(t) =
∏k

i=1 fi(t), wherefi(t)’s are irreducible factors off(t), the minimum number of multiplications

required to compute a polynomial multiplication inZ[t]/f(t) is 2 · deg f(t)− k [30].

A. Case 1:l = 2

We use KOA for 2-term polynomial multiplication. We consider two degree-2 polynomials

x(t) = (x1x0)SD−(t,ψ) and y(t) = (y1y0)SD−(t,ψ). KOA computesx(t) · y(t) using only three

multiplications.

x(t) · y(t) = x1y1t
2 + ((x0 + x1)(y0 + y1)− x1y1 − x0y0)t+ x0y0. (12)
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After polynomial reduction byf(t), we have the following formula for polynomial multiplication

and squaring inZ[t]/f(t).

x(t) · y(t) ≡ ((x0 + x1)(y0 + y1) + (f1 − 1)x1y1 − x0y0)t+ f0x1y1 + x0y0 (mod f(t)). (13)

x(t)2 ≡ ((x0 + x1)
2 + (f1 − 1)x2

1 − x
2
0)t+ f0x

2
1 + x2

0 (mod f(t)). (14)

Or, we can obtain alternative formulae by using the following version of KOA due to Knuth [5]:

x(t) · y(t) = x1y1t
2 + (x1y1 + x0y0 − (x0 − x1)(y0 − y1))t+ x0y0. (15)

The following formulae are obtained by taking modulof(t) of (15).

x(t) · y(t) ≡ ((f1 + 1)x1y1 + x0y0 − (x0 − x1)(y0 − y1))t+ f0x1y1 + x0y0 (mod f(t)). (16)

x(t)2 ≡ ((f1 + 1)x2
1 + x2

0 − (x0 − x1)
2)t+ f0x

2
1 + x2

0 (mod f(t)). (17)

Note that (13) and (14) are good whenf1 = 1 and (16) and (17) are good whenf1 = −1.

Interestingly, whenf0 = −1, we can simplify (14) and (17) as follows:

x(t)2 ≡ x1(f1x1 + 2x0)t+ (x0 − x1)(x0 + x1) (mod f(t)). (18)

Formula (18) needs only two multiplications. Long integer squaring is usually faster than long

integer multiplication. As long as integer squaring takes no less than 2/3 of multiplication

time, (18) is faster than (14) and (17).

We find thatf(t) = t2± t+1 andf(t) = t2 +1 are the most attractive choices forl = 2. Note

thatf1 = 0 reduces one addition in (18), butf1 = ±1 reduces one double length addition in (13)

and (16), respectively. However, modular multiplicationsoccur less frequently than modular

squaring in exponentiation algorithms. For example, the binary exponentiation algorithm requires

twice more modular squarings than modular multiplicationson average. So, bothf(t) = t2±t+1

andf(t) = t2 +1 result in the same speed up. For exponentiation methods thatuse less number

of multiplications than the binary algorithm,f(t) = t2 + 1 is preferred.
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B. Case 2:l = 3

For 3-term polynomials, the following 3-way method requires six multiplications [31] as

follows:

x(t) · y(t) = D2 · t
4

+ (D2 +D1 −D5) · t
3

+ (D2 +D1 +D0 −D4) · t
2

+ (D1 +D0 −D3) · t

+D0,

(19)

where
D0 = x0y0, D3 = (x0 − x1)(y0 − y1),

D1 = x1y1, D4 = (x0 − x2)(y0 − y2),

D2 = x2y2, D5 = (x1 − x2)(y1 − y2).

(20)

After polynomial reduction, we have the following result:

x(t) · y(t) (mod f(t))

≡ ([f2(f2 + 1) + (f1 + 1)] ·D2 + (f2 + 1) ·D1 +D0 − f2 ·D5 −D4) · t
2

+ ([f1(f2 + 1) + f0] ·D2 + (f1 + 1) ·D1 +D0 − f1 ·D5 −D3) · t

+ (f0(f2 + 1) ·D2 + f0 ·D1 +D0 − f0 ·D5).

(21)

Among all combinations of(f2, f1, f0) that makef(t) irreducible,(f2, f1, f0) = (−1,−1, 1) and

(0,−1, 1) put (21) into the simplest form.

For f(t) = t3 + t2 + t− 1,

x(t) · y(t) (mod f(t))

≡ (D0 −D4 +D5) · t
2 + (D0 +D2 −D3 +D5) · t+ (D0 +D1 −D5).

(22)

For f(t) = t3 + t− 1,

x(t) · y(t) (mod f(t))

≡ (D0 +D1 −D4) · t
2 + (D0 −D3 +D5) · t+ (D0 +D1 +D2 −D5).

(23)

It is interesting to observe that the computational cost of each of (22) and (23) is exactly the

same as that of (19).
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V. ANALYSIS OF LWPFI MODULAR MULTIPLICATION

In this section, the performance of LWPFI modular multiplication described in Section III

is analyzed. In our analysis, we usen to denote the bit length used fort + 2l+2 − 2; that is,

t+2l+2−2 < 2n. In practice,t will be quite larger than2l+2−2, hence botht andψ = t+2l+1−2

are almost alwaysn-bit integers. We useτ to denote the number of non-zerofi’s in f(t). The

following notations are used in our analysis of Algorithms 4and 5.

• Tm(u): time needed for multiplying twou-bit integers.

• Ta(u): time needed for adding/subtractingu-bit integers.

• Td(u, v): time needed for dividing au-bit integer by av-bit integer.

We will use an assumption that adding au-bit integer to av-bit integer takesTa(min(u, v))

time. This is a reasonable assumption for most software implementations. A carry at the top

most bit-position of the shorter integer may occur when adding two integers and it may increase

the computation time slightly. However, the carry occurs with probability≈ 1/2 when adding

two random integers and the probability that the carry will propagate more than one word is

only 1/2w, wherew is the bit size of a computer word.

A. POLY-MULT-REDC step

POLY-MULT-REDC takes two polynomials in SD-(t, ψ) form as input; that is, the coefficients

of the two input polynomials are at mostψ < t+ 2l+2 − 2 < 2n in magnitude.

There are many different ways to perform POLY-MULT-REDC step. Algorithm 4 is the

most straightforward and general approach. If the schoolbook method is used for polynomial

multiplication in step 1,l2 multiplications and(l − 1)2 additions are required. The polynomial

reduction, step 2, requiresτ(l − 1) additions.

Clearly, the multiplications among coefficients are alln-bit wide. For integer additions, the bit

lengths of operands are not the same. However, regardless ofthe method used for polynomial

multiplication and polynomial reduction, the outputẑ(t) of Algorithm 4 will have coefficients

that are at most(2l − 1)ψ2 in magnitude, which is at most an(l + 2n)-bit integer. Hence, for

simplicity, we assume that all the integer additions are(l + 2n) bits wide. As a result, we have

the upper bound for the running time of Algorithm 4 as follows:

T (POLY-MULT-REDC) ≤ l2 · Tm(n) + (l + τ − 1)(l − 1) · Ta(l + 2n). (24)
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TABLE III

MODULAR MULTIPLICATION AND SQUARING COST IN Z[t]/f(t) FOR ALL IRREDUCIBLEDEGREE-2 f(t)’ S

f(t) Multiplication modulof(t) Squaring modulof(t)

t2 + 1 3M + 3A + 2a 2M + 2a + h

t2 + t + 1 3M + 2A + 2a 2M + 3a + h

t2 − t + 1 3M + 2A + 2a 2M + 3a + h

t2 + t − 1 3M + 2A + 2a 3S + 2A + a

t2 − t − 1 3M + 2A + 2a 3S + 2A + a

Instead of the schoolbook method, other methods can be used for the multiplication of twol-

term polynomials in POLY-MULT-REDC step. For example, at the expense of some overheads,

KOA or KOA-like formulae [32] can reduce the factorl2 associated withTm(n) in (24) toM(l),

whereM(l)’s for some smalll’s are given as follows:

M(2) = 3, M(3) = 6, M(5) = 13, M(6) = 17, M(7) = 22. (25)

Alternatively, one can use the Toom-Cook multiplication method [33]–[35] which requires only

(2l + 1) multiplications at the expense of much more overheads, including exact divisions by

fixed integers.

The number of additions and subtractions in (24) can be reduced by combining polynomial

multiplication and polynomial reduction as shown in Section IV. There are only five irreducible

f(t)’s for l = 2 and we list all of them in Table III. The table also shows required cost for

polynomial multiplication and squaring inZ[t]/f(t), where the notationsM , S, A, a and h

respectively mean multiplication, squaring,(2n + l)-bit addition, n-bit addition and bit-shift.

For l = 3, there are twelve irreduciblef(t)’s. The best performance is obtained whenf(t) =

t3 + t2 + t−1 or f(t) = t3 + t−1 is used. In these cases, the running time of the POLY-MULT-

REDC step is6Tm(n) + 6Ta(n) + 6Ta(2n + l). This computational cost is exactly the same as

that for performing one 3-way multiplication as shown in (19).

In terms of the number of single-precision multiplications, there is little difference between

multiplying two ln-bit long integers and multiplying twol-term polynomials whose coefficients

aren-bits long. In fact, polynomial multiplication has a littleless overhead since coefficients do

not have to overlap, unlike the long integer multiplication. However, if implemented in software,
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polynomial multiplication could be slower because microprocessors can deal only with units

of data called word. For example, a 160-bit integer needs fivewords on 32-bit architecture,

while the same integer in SD-(t, ψ) form with l = 2 needs three 2-word coefficients, each filled

with 80 bits, assumingt + 2l+1 − 2 < 280. Multiplying two 160-bit integers require only 15

multiplications using 2-way and 3-way KOA. However, multiplying two integers in SD-(t, ψ)

form requires 18 multiplications using the same KOA methods.

B. COEFF-REDC step

Figure 2 shows how Algorithm 5, i.e. COEFF-REDC step, is performed; some input and

intermediate values are labeled with circled numbers. We first determine the maximum possible

bit lengths of these values. Note thatẑ(t) = (ẑl−1 · · · ẑ0)SD−(t,∗) is the output of Algorithm 4;

that is, |ẑi| ≤ (2l − 1)ψ2 for i = 0, . . . , l − 1.

① It is clear thatẑi’s are at most(2n+ l) bits long.

② |a| ≤ (2l − 1)(t+ 2l+2 − 4) is at most(n + l) bits long.

③ |z′l−1| < (2l − 1)(t + 2l+2 − 4) + t − 1 is at most(n + l) bits long, since|z′l−1| <

(2l − 1)(2n − 1) + 2n − 1 < 2l+n.

④ |z′i| ≤ (2l−1)((t+2l+1−2)2+t+2l+2−4) for i < l−1 are at most(2n+ l) bits long. Note

thatt+2l+1−2 < 2n andt+2l+2−4 < 2n. It follows that|z′i| < (2l−1)((2n−1)2+2n−1) =

(2l − 1)(22n − 2n) < 2l+2n.

⑤ |z′i,1| ≤ (2l − 1)(t+ 2l+2 − 2) for i 6= l − 1 is at most(l + n) bits long.

⑥ |z′l| ≤ (2l+1 − 1) is at most(l + 1) bits long.

⑦ |z′i| ≤ (t+ 2l+1 − 2) is at mostn bits long.

Note that we used the detailed calculations that have been already done in the proof of Propo-

sition 2. Now it is easy to analyze Algorithm 5 using the aboveresults.

• Step 2: one integer division for dividing a(2n+ l)-bit integer by ann-bit integer is needed;

that is,Td(2n+ l, n).

• Step 3:τ additions of(2n + l)-bit integers and(n+ l)-bit integers; that is,τ · Ta(n+ l).

• Step 4.1: fori = 0, . . . , l − 2, a total of (l − 1) integer divisions for dividing(2n + l)-bit

integer by ann-bit integer are required. Fori = l− 1, this division can be done by(l+ 1)

subtractions of up to(l+ n)-bit integers from an(l+ n)-bit integer. Thus, for step 4.1, the

cost is(l − 1) · Td(2n+ l, n) + (l + 1) · Ta(l + n).
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Fig. 2. Coefficient Reduction

• Step 4.2: fori = 0, . . . l−3, a total of(l−2) additions of(2n+ l)-bit and(n+ l)-bit integers

are required. Fori = l−2, an addition of two(n+l)-bit integers is performed. Fori = l−1,

no operation is required sincez′l = 0. Thus, the cost of step 4.1 is(l − 1) · Ta(n + l).

• Step 5:τ additions of an(l+1)-bit integer ton-bit integers are performed; that is,τ ·Ta(l+1).

In total, Algorithm 5 requires the following amount of time for reducing coefficients:

T (COEFFREDC) = l · Td(2n+ l, n) + (2l + τ) · Ta(n+ l) + τ · Ta(l + 1). (26)
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With regard to the time complexity related to the long integer division in (26), i.e.,l ·Td(2n+

l, n), note that the division algorithms, CAID and GBAID, shown inSection II takeO(n2) time

for one division, wheren is the modulus size in bits. Hence,l executions of such algorithms for

n-bit modulus takeO(ln2) time. The overhead terms in (26),(2l+ τ) · Ta(n+ l) + τ · Ta(l+ 1),

takeO(nl) time.

C. Putting It Together

The main computational cost of an LWPFI modular multiplication is due to the following

three, where L1 and L2 are performed in POLY-MULT-REDC step and L3 is in COEFF-REDC

step.

L1: polynomial multiplication (e.g., using KOA)

L2: polynomial reduction

L3: coefficient reduction (e.g., using GBAID)

On the other hand, the main computational cost of a usual modular multiplication is due to the

following two:

U1: integer multiplication (e.g., using KOA)

U2: modular reduction (e.g., using MAIR)

If L1 and U1 use the same algorithm (e.g., KOA), then they incur an equal amount of compu-

tation.

For an(nl)-bit modulus, assuming that GBAID is used for L3, the combined cost of L2 and

L3 is

τ(l − 1) · Ta(l + 2n) + l · Td(2n+ l, n) + (2l + τ) · Ta(n + l) + τ · Ta(l + 1), (27)

which isO(ln2) time. On the other hand, U2 using MAIR requiresO(l2n2) time. Therefore, the

LWPFI modular multiplication has better asymptotic behavior than the usual modular multiplica-

tion. For example, the number of multiplication instructions required in GBAID for(2n+ l)-bit

dividend andn-bit divisor is expressed as follows:

#MGBAID =











uv + 3u− v2 − 2v + 1 if u ≤ 2v,

(u2 + 5u)/2− uv + v2 − v + 1 if u > 2v,
(28)
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whereu = ⌈(2n+l)/w⌉, v = ⌈n/w⌉, andw is the word length of a target architecture in bits. For

n = 512 andl = 2, the COEFF-REDC step requires only680 = 2·340 multiplication instructions,

whereas MAIR for a similar size (i.e.,1024-bit) modulus requires1056 multiplications.

Based on the above discussion, we see that the main advantageof LWPFI modular multi-

plication compared to usual modular multiplication is not due to the POLY-MULT-REDC step.

Rather, the main performance gain for using LWPFI modular multiplication comes from the

reduced complexity in the COEFF-REDC step.

D. Comments

The reduced complexity of LWPFI modular multiplication does not come for free. In fact,

LWPFI modular multiplication introduces overhead mainly resulting from additions and sub-

tractions. Such overhead due to additions and subtractionsneeds to be carefully considered. On

some microprocessors, the time difference between multiplication and addition/subtraction is

relatively not that significant. For example, on Pentium 4 3.2GHz processor (Family 7, Model

4), the latency of multiplication instruction (mul) is 11 clock cycles, and that of add-with-

carry (adc) and subtract-with-borrow (sbb) instructions, the most frequently used ones for

long integer additions and subtractions, is 10 clock cycles[36]. On the other hand, on Freescale

ColdFire 5307, timing ratio of multiplication to addition is 5 when operands are in registers,

and the ratio is only 2 when the operands are in memory [37].

In addition, overheads may result from factors pertaining to the implementation environment,

and can potentially affect the performance of the modular multiplication algorithms. For example,

for software implementation using general purpose processors, these factors would include the

size and the number of the registers, cache size and speed, features of the data-path including

pipe-lining, multiple execution units, etc. A detailed analysis of the effect of such factors on the

performance of the modular multiplication algorithms is not simple. However, to give a good

indication on how the LWPFI based algorithm compares with its counterparts we will consider

timing results based on actual implementations. This is presented in the following section.

VI. I MPLEMENTATION RESULTS AND PRACTICAL CONSIDERATIONS

In this section, first we present timing results of modular multiplications. Then we discuss

some general practical considerations for LWPFIs.
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TABLE IV

FUNCTIONS USED FORIMPLEMENTING LWPFI MODULAR MULTIPLICATIONS

Long Integer Operation GMP

Multiplication mpz mul()

Addition mpz add(), mpz add ui()

Subtraction mpz sub(), mpz sub ui()

Bit-Shift mpz mul 2exp()

A. Our Platform and Software Routines

We have implemented LWPFI modular multiplications based onf(t) = t2 + 1 and f(t) =

t3 + t − 1, and an LWPFI modular squaring based onf(t) = t2 + 1. Our implementation

uses GNU multiple precision (GMP) library v4.1.4 (http://www.swox.com/gmp). We

implemented GBAID, which is not provided in GMP, using the C programming language.

Since our implementation of GBAID uses only the C programming language, we have disabled

all assembly routines in GMP library. We used Microsoft Visual Studio 2005 to compile all

programs, and performed timing measurements on Intel Pentium 4 3.20GHz (Family 7, Model

4). To compile GMP with Visual Studio, we used Visual Studio project file for GMP v4.1.4

downloaded fromhttp://fp.gladman.plus.com/computing/gmp4win.htm.

Our implementation of LWPFI modular multiplication is based on high level functions of

GMP library. Table IV lists GMP functions that we used for implementing LWPFI modular

multiplications. We used our GBAID routine for divisions inCOEFF-REDC step, since our

GBAID routine is much faster than the division function in GMP (mpz tdiv r()). The timing

results shown in this section could be improved by using low level functions (mpn *() functions)

that have less redundancy than high level functions.

Our GBAID routine turned out to be faster than MAIR routines in GMP. Thus, we have

written our own MAIR routine using the same coding style and optimization that we used when

writing GBAID. Our MAIR performs better than our GBAID for all input lengths. The timing

results in the following subsection are based on our own Montgomery reduction routine, not on

redc() in GMP library.
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TABLE V

DETAILED ANALYSIS OF LWPFI MODULAR MULTIPLICATION (n = log
2
p)

T (POLY-MULT-REDC) = T1 + T2

f(t) T1 T2

f(t) = t2 + 1 3 · Tm(n/2) 2 · Ta(n + 2) + 2 · Ta(n/2)

f(t) = t3 + t − 1 6 · Tm(n/3) 6 · Ta(2n/3 + 2) + 6 · Ta(n/3)

T (COEFF-REDC) = T3 + T4

f(t) T3 T4

f(t) = t2 + 1 2 · TB(n + 2, n) 5 · Ta(n/2 + 2) + Ta(3)

f(t) = t3 + t − 1 3 · TB(2n/3 + 3, n) 8 · Ta(n/3 + 3) + 2 · Ta(4)

B. Component-wise Breakdown of Timing

Table V shows detailed analyses of LWPFI modular multiplication methods for the twof(t)’s

that we used in our implementation. The notationsTm(n), Ta(n) andTB(u, v) respectively refer

to the running time for long integer multiplication of twon-bit integers, long integer addition

of two n-bit integers and GBAID foru-bit dividend andv-bit divisor. T (POLY-MULT-REDC)

and T (COEFF-REDC) refer to the time required for POLY-MULT-REDC and COEFF-REDC

steps, respectively.

We experimentally measuredT1, T2, T3 andT4, as defined in Table V, for varying bit sizes

of p and plotted the results in Figures 3 and 4. In the figures, we use Ti(l) to denoteTi for the

l-th degreef(t) in Table V. In Figure 4,TM(u, v) denotes the timing for Montgomery reduction

when the input integer isu bits long and the modulus isv bits long. In Figure 4, we present

TB(2n, n) to show how much amount of time COEFF-REDC saves by breaking up a full (2nl)-

bit by (nl)-bit division into l short divisions for(2n+ l)-bit dividend andn-bit divisor and some

overheads. TheTM(u, v) is shown as a reference timing of the best modular reduction algorithm

considered in this paper.

In Figures 3 and 4, we see that the overheads resulting from additions/subtractions (T2’s and

T4’s) are not significant in both POLY-MULT-REDC and COEFF-REDC steps. Especially in

Figure 4, the overhead timings,T4(i) for i = 2 and3, are very small compared to the reduction

timings and they both are plotted close to thex-axis of the graph. The figures confirm our

analytical conclusion in Section V that the efficient modular multiplication using LWPFI moduli
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Fig. 3. Timing Results for POLY-MULT-REDC step on Pentium 4 @3.2GHz
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Fig. 4. Timing Results for COEFF-REDC step on Pentium 4 @ 3.2GHz

is not due to the POLY-MULT-REDC step where KOA has been used,but due to the COEFF-

REDC step.

Note that GMP’smpz mul() routine switches from classical algorithm to KOA when the

operand size is more than 32 words long (i.e., 1024 bits forw = 32), and hence there is are sudden
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changes inTm(n) wheneverlog2 p = 1024 · 2i for i ≥ 0. The performance of POLY-MULT-

REDC for l = 2 is very close to that ofmpz mul() (Tm(n) in Figure 3) for log2 p ≥ 1024,

since they both have the same asymptotic speed-up due to KOA.However, the timing results of

POLY-MULT-REDC for l = 3 shows sudden changes in timing wheneverlog2 p = 3 · 1024 · 2i

for i ≥ 0, but it does not become similar toTm(n), since the 3-way KOA presented in (19) does

not lead to the same asymptotic speed-up as the original 2-way KOA.

C. Overall Timing Results and Comparisons

Figures 5 shows timing results of our implementations of thefollowing three modular multi-

plication methods:

1) “LWPFI mul.” where KOA is used for polynomial multiplication and GBAID is used

for COEFF-REDC (as discussed in this article). For this method, we show three plots

corresponding tof(t) = t2 + 1, f(t) = t3 + t− 1 andf(t) = t4 − t2 − 1 as well.

2) “Mul. + MAIR” where KOA is used for long integer multiplications andMAIR is for

modular reduction.

3) “Mul. + GBAID” where KOA is used for long integer multiplications and GBAID is for

modular reduction.

In method 3), instead of GBAID, one can use the original Barrett reduction algorithm, which does

not generate a quotient as output, However, as discussed in Section II, the difference between the

computational costs of these two schemes is negligible. Also note that in method 3), the divisor

of GBAID is the modulus (say(nl) bits long). On the other hand, for the same size moduli, the

size of the divisor in the GBAID used in method 1) isn bits only. However, in method 1), the

GBAID routine is usedl times, whereas in method 3), the GBAID is used only once for each

modular multiplication.

Figure 6 shows timing results for modular squaring operations using the same three methods,

and in the case of LWPFI, only one graph forl = 2 is shown.

We clearly observe in the figures that LWPFI modular multiplications become more efficient

than GBAID and MAIR based modular multiplications as the modulus size increases. We also

observe that the asymptotic behavior of LWPFI modular multiplication improves asl increases,

and that the LWPFI squaring forl = 2 indeed performs better than modular squaring methods

using GBAID and MAIR.
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Fig. 5. Modular Multiplication Algorithms on Pentium 4 @ 3.2GHz
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Fig. 6. Modular Squaring Algorithms on Pentium 4 @ 3.2GHz

D. Practical Considerations

• General implementation is possible using LWPFI proposed inthis work. For a given bit

length, we can find many useful moduli by varying the value oft, even for a fixedf(t).

On the other hand, the most limiting part of GMNs proposed in [9] is that there can be
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only one GMN for a given bit length and a polynomialf(t). This fact makes generalized

implementation infeasible, and each GMN requires a dedicated implementation. This is not

a problem in ECC and HECC, since it is the usual practice to setup domain parameters for

use by many users in such cryptosystems. There are even pre-defined sets of recommended

parameters for ECC [15], [16]. However, in RSA cryptosystems, every user has to generate

his or her own parameters, and in XTR cryptosystems [2], every user is advised to do so.

Hence, these cryptosystems do not benefit from the fast modular multiplication that GMNs

provide.

• LWPFI modular multiplication makes it easy for parallel implementation. In POLY-MULT-

REDC, KOA involves several multiple-precision multiplications. These multiplications are

independent of each other and they can be computed in a parallel manner. For example,

if l = deg (f(t)) is 3, then six multiplications (D0 throughD5 in (19)) can be computed

by two, three or six processors or multipliers simultaneously. Moreover, l divisions by t

in coefficient reduction step can be parallelized, even though not explicitly shown in this

paper.

• Cryptographic computations usually require operations involving large operands. However,

implementing operations which deal with very long operand sizes is challenging in re-

stricted environments, such as smart cards and certain embedded systems. LWPFI modular

multiplications make it possible to reduce the operand sizes by 1/l, wherel = deg (f(t)).

• There are security concerns when moduli take a special form.Mersenne numbers are avoided

in cryptosystems, since they are easier to be factored usingthe special number field sieve

(SNFS) [13], [14]. A similar technique known as special function field sieve (SFFS) can

be used for solving discrete logarithm problems based on special form of moduli [38].

However, SNFS and SFFS are applicable only to integers of theform p = bs − c, where

b andc are very small (e.g., Fermat’s numbers, Mersenne numbers,etc.). SNFS and SFFS

are not applicable to LWPFI, since LWPFI moduli are not in such a form of integers i.e.,

p = tl−(fl−1t
l−1+· · ·+f0) in which t and(fl−1t

l−1+· · ·+f0) are both very large. However,

currently there is no guarantee that cryptographic applications are secure when LWPFI is

used. It is an open question whether LWPFI makes factoring and discrete logarithm easier.
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VII. ENHANCING THE LWPFI MODULAR MULTIPLICATION

In this section, we show some methods for enhancing LWPFI modular multiplication.

A. Using Pseudo-Mersenne Numbers fort (t = 2k − c)

If t is chosen to be a pseudo-Mersenne number, such thatt = 2k − c for somek and smallc,

the performance of the LWPFI modular multiplication can be further improved. For a pseudo-

Mersenne numbert, there exists an efficient modular reduction algorithm due to Crandall [8].

The original Crandall’s algorithm is used only for computing the remainder. Algorithm 6 shows

the modified Crandall’s algorithm which also computes the quotient.

Algorithm 6. Modified Crandall’s Algorithm

INPUT: positive integersx ≥ t and t = 2k − c.

OUTPUT: q andr, such thatx = q · t+ r and0 ≤ r < t.
1) q0 ← ⌊x/2

k⌋, r0 ← x mod 2k

2) q ← q0, r ← r0, i← 0.

3) While qi > 0 do:

3.1 qi+1 ← ⌊qi · c/2
k⌋, ri+1 ← qi · c mod 2k.

3.2 i← i+ 1, q ← q + qi, r← r + ri.

4) While r ≥ t, do: r ← r − t, q ← q + 1.

5) Returnq andr.

The correctness of Algorithm 6 can be easily derived from theone shown in [23] for the

original Crandall’s algorithm. The main difference between the original Crandall’s algorithm

and Algorithm 6 is that Algorithm 6 accumulatesqi’s also, while original Crandall’s algorithm

accumulates onlyri’s.

The multiplication by a constantc is required only twice if the size ofc is at most half the

size of t. In general, ifl = (s − 2)k/(s − 1) where l is the bit length ofc, then step 3.1 is

executeds times [23].

B. Using LWPFI fort

When LWPFIs are used fort, coefficient reduction could be done trivially. We show that

dividing an integer in SD-(t, ψ) form by an LWPFI can be done very efficiently. Supposef(t)

is a monic polynomial of degreel:

f(t) = tl − fl−1t
l−1 − · · · − f1t− f0. (29)
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Let x(t) be a degree2l − 2 polynomial:

x(t) = x2l−2t
2l−2 + · · ·+ x1t+ x0. (30)

Define a polynomialq(t) of degreel − 2 such that

q(t) = ql−2t
l−2 + · · ·+ q1t+ q0,

qi = xl+i +
l−2
∑

j=i+1

qjfj+1..
(31)

Then it follows thatq(t) satisfies the following:

x(t) = q(t)f(t) + r(t) (deg (r(t)) < deg (f(t))). (32)

Therefore, we have a formula for the quotient polynomialq(t). The formula forr(t) can be

easily obtained by a similar method as shown in Section III-A. Since the quotient polynomial

q(t) can be obtained while computing the remainder polynomialr(t), the above method requires

at mostτ(l − 1) additions/subtractions, whereτ is the number of non-zerofi’s in f(t).

C. Generatingp = f(t) of Any Bit Length

Given the definition in Section III, we see that the bit lengthof an LWPFI can be only about a

multiple of l = deg (f(t)). We can remove this constraint by introducing theextended low-weight

polynomial form numbers (ELWPFIs). ELWPFIs are almost the same as LWPFIs, except that

f(t) is not necessarily a monic polynomial; for examplef(t) = flt
l − fl−1t

l−1 − · · · − f1t− f0,

wherefl > 1 andfi ∈ {0,±1} for i < l.

With appropriately chosenfl, we can generate moduli of any bit length. For example, if we

chooseh-bit integer forfl and a third degree polynomialf(t), we can generatep’s that are about

(ln + h) bits long, wheren is the bit length oft.

However, a polynomial reduction by an ELWPFI is not simple since the reduction formula

involves many divisions byfl. Even thoughfl is chosen to be a power of2, the dividends

are not necessarily divisible byfl. This issue can be resolved easily by using the following

representation:

x(t) ≡ xl−1(flt)
l−1 + · · ·+ x1(flt) + x0 (mod f(t)). (33)

Then it becomes straightforward to check that a polynomial reduction by non-monic polynomial

f(t) will not have divisions byfl. Note that the introduction offl > 1 will result in constant
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multiplications byfl when performing LWPFI modular multiplication. Therefore,fl must be

either a very small integer or a power of 2 to avoid actual multiplication instructions in the

computation of LWPFI modular multiplication.

VIII. C ONCLUSIONS

In this paper we have considered low-weight polynomial formintegers (LWPFIs) to devise an

efficient modular multiplication method. LWPFI is a family of integers expressed in polynomial

form p = f(t), and they further generalize Mersenne numbers by allowing any integer for

t. Our analysis shows that LWPFI modular multiplication has better asymptotic behavior than

other general modular reduction methods. Our implementation results show that LWPFI modular

multiplication is faster than Montgomery reduction for moduli of large sizes. We have shown

techniques that can speed up LWPFI modular multiplication.GMN or pseudo-Mersenne number

based modular multiplication would be faster than LWPFI based one, however there are not that

many GMNs and pseudo-Mersenne numbers. LWPFI has its advantage that the implementation

does not have to be specific to a single modulus and that LWPFI provides a considerably large

choices of moduli. Hence, one may consider LWPFI as a trade-off between general integer and

other special type of moduli such as GMNs and pseudo-Mersenne numbers.
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APPENDIX A

PROOF FOR THEGENERALIZED BARRETT ALGORITHM FOR INTEGER DIVISION

Proposition 3 Computation ofq in step 1 of Algorithm 3 is not exact. The error inq is at most

1, if b ≥ u− v.
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Proof: For simplicity, we letk = u−v, γ = (γk · · · γ1γ0)b = (xu−1 · · ·xvxv−1)b = ⌊x/bv−1⌋.

Note thatµ is also at mostk + 1 = u − v + 1 words long, sinceµ = ⌊bu/m⌋ wherem is v

words long. Letq′ = ⌊γµ/bu−v+1⌋ be the value computed by the following full multiplication:

q′ =
⌊γ · µ

bk+1

⌋

=

⌊

∑

i+j γiµjb
i+j

bk+1

⌋

. (34)

The computation ofq in step 1 of Algorithm 3 is done by the following partial multiplication:

q =

⌊

∑

k−1≤i+j γiµjb
i+j−k+1

b2

⌋

. (35)

Observe thatq′ andq have a common part:

q′ =

⌊

∑

i+j≤k γiµjb
i+j +

∑

k+1≤i+j γiµjb
i+j

bk+1

⌋

=
∑

k+1≤i+j

γiµjb
i+j−k−1 +

⌊

∑

i+j≤k γiµjb
i+j

bk+1

⌋

q =

⌊

∑

k−1≤i+j≤k γiµjb
i+j−k+1 +

∑

k+1≤i+j γiµjb
i+j−k+1

b2

⌋

=
∑

k+1≤i+j

γiµjb
i+j−k−1 +

⌊

∑

k−1≤i+j≤k γiµjb
i+j−k+1

b2

⌋

.

(36)

Let ǫ be the difference betweenq′ andq, i.e., ǫ = q′ − q.

ǫ =

⌊

∑

i+j≤k γiµjb
i+j

bk+1

⌋

−

⌊

∑

k−1≤i+j≤k γiµjb
i+j−k+1

b2

⌋

=

⌊

∑

k−1≤i+j≤k γiµjb
i+j +

∑

i+j≤k−2 γiµjb
i+j

bk+1

⌋

−

⌊

∑

k−1≤i+j≤k γiµjb
i+j−k+1

b2

⌋

=

⌊

∑

k−1≤i+j≤k γiµjb
i+j−k+1

b2
+

∑

i+j≤k−2 γiµjb
i+j

bk+1

⌋

−

⌊

∑

k−1≤i+j≤k γiµjb
i+j−k+1

b2

⌋

≤

⌊

∑

i+j≤k−2 γiµjb
i+j

bk+1

⌋

+ 1.

(∵ ⌊A+B⌋ ≤ ⌊A⌋+ ⌊B⌋+ 1)

(37)

Sinceγi, µj < b,
⌊

∑

i+j≤k−2 γiµjb
i+j

bk+1

⌋

<

⌊

∑

i+j≤k−2 b
i+j

bk−1

⌋

. (38)
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Then we can see that forb ≥ k,

∑

i+j≤k−2

bi+j = (k − 1)bk−2 + (k − 2)bk−3 + · · ·+ 2b+ 1 < bk−1. (39)

Therefore,
⌊

∑

i+j≤k−2 γiµjb
i+j

bk+1

⌋

= 0, (40)

and

ǫ ≤ 1. (41)
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