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Abstract

Based on a recently proposed Toeplitz matrix-vector product approach, a subquadratic computational

complexity scheme is presented for multiplications in binary extended finite fields using Type I and II

optimal normal bases.
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I. INTRODUCTION

Among different types of bases for representing elements ofGF (2n), the normal basis has

received considerable attention because squaring in normal bases is simply a cyclic shift of

the coordinates of the element and, thus, it has found applications in computing multiplicative

inverses and exponentiations. One of the most important advances in the normal basis multipli-

cation is the discovery of the two types (Type I and Type II) ofoptimal normal bases (ONB) in

1987 [1]. The computational complexity (i.e., the number ofarithmetic operations in the ground
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field GF (2)) of a GF (2n) multiplication using an ONB isO(n2), while that using an arbitrary

normal basis is usually greater thanO(n2).

Recently, a new approach to subquadratic complexity multiplications in GF (2n) has been

presented [2]. It takes advantage of the optimal Toeplitz matrix-vector product formulae, and

can be used to design subquadratic space complexity multipliers using various bases, namely,

polynomial, shifted polynomial, dual, weakly dual and triangular basis. In this work, we apply

the Toeplitz matrix-vector product approach to design subquadratic computational complexity

scheme for multiplications using Type I and II ONB. To the best of our knowledge, this is the

first subquadratic scheme for normal basis multiplication.

Below, we first summarize the asymptotic complexities of Toeplitz matrix-vector product

formulae forn = 2i and n = 3i (i > 0). Then, we present our multiplication schemes using

Type I and II ONB.

II. A SYMPTOTIC COMPLEXITIES OFTOEPLITZ MATRIX -VECTOR PRODUCT

In this section, some basic noncommutative matrix-vector multiplication schemes and their

asymptotic space and gate delay complexities are introduced [2]. A Toeplitz matrix is defined

as follows:

Definition 1: An n × n Toeplitz matrix is a matrix(mk,i), where0 ≤ i, k ≤ n − 1, with the

property thatmk,i = mk−1,i−1, where1 ≤ i, k ≤ n − 1.

Let n = 2i (i > 0), T be ann × n Toeplitz matrix andV an n × 1 column vector. Then the

following noncommutative formula can be used to compute theToeplitz matrix-vector product

TV [3]:

TV =





T1 T0

T2 T1









V0

V1



 =





P0 + P2

P1 + P2



 , (1)

whereT0, T1 andT2 are (n/2) × (n/2) matrices and are individually in Toeplitz form, andV0

andV1 are(n/2)×1 column vectors,P0 = (T0 +T1)V1, P1 = (T1 +T2)V0 andP2 = T1(V0 +V1).
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Similar to the casen = 2i (i > 0), we may have a three-way split of matrixT and vector

V for n = 3i (i > 0), and obtain the following noncommutative formula which computes the

Toeplitz matrix-vector productTV [3]:

TV =











T2 T1 T0

T3 T2 T1

T4 T3 T2





















V0

V1

V2











=











P0 + P3 + P4

P1 + P3 + P5

P2 + P4 + P5











,

whereTi (0 ≤ i ≤ 4) are (n/3) × (n/3) Toeplitz matrices,


















P0 = (T0 + T1 + T2)V2,

P1 = (T1 + T2 + T3)V1,

P2 = (T2 + T3 + T4)V0,

(2)

and 

















P3 = T1(V1 + V2),

P4 = T2(V0 + V2),

P5 = T3(V0 + V1).

Formulae (1) and (2) may be used recursively to compute the Toeplitz matrix-vector product

TV . Their complexities are summarized in Table I for bit parallel implementations, where

one AND and one XOR gate corresponds to one multiplication and one addition overGF (2),

respectively, andTA andTX are delays due to one AND and one XOR 2-input gate, respectively.

TABLE I

COMPLEXITIES OFTOEPLITZ MATRIX-VECTOR PRODUCT FORn = bi

b #AND #XOR Gate delay

2 nlog2 3 5.5nlog2 3
− 6n + 0.5 (2 log2 n)TX + TA

3 nlog3 6 24

5
nlog3 6

− 5n + 1

5
(3 log2 n)TX + TA

III. N EW SUBQUADRATIC ONB MULTIPLIERS

We now apply the above Toeplitz matrix-vector product approach to design subquadratic

complexity multiplication scheme using Type I and II ONB. Itis well known that an ONB of

GF (2n) over GF (2) exists if and only if the following conditions are met [1], [4].
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Theorem 1:Supposen+1 is a prime and 2 is primitive inZn+1. Then then nonunit (n+1)th

roots of unity form a Type I ONB ofGF (2n) over GF (2).

Theorem 2:Let 2n + 1 be a prime and assume that either

(1) 2 is primitive inZ2n+1, or

(2) 2n + 1 ≡ 3 (mod 4) and 2 generates the quadratic residues inZ2n+1.

Thenx = y + y−1 generates a Type II ONB ofGF (2n) over GF (2), wherey is a primitive

(2n + 1)st root of unity inGF (22n).

In some cryptosystems, Type I ONB are avoided for security reasons. For practical purposes,

e.g.,n < 2000, Type II ONB are more abundant than Type I ONB [5]. Propertiesof Type I and

II ONB can be found in various references, e.g., [1], [5], [6], [7], [8], [9], [10], [11] and [12].

Based on some of these properties, below we present two subquadratic computational complexity

schemes for multiplications inGF (2n) using Type I and II ONB.

A. Formulation for Type I ONB

Let X̂ = {x20

, x21

, · · · , x2n−1

} be a Type I ONB ofGF (2n) over GF (2). In the following,

we will also use symbol̂X to denote the column vector̂X = (x20

, x21

, · · · , x2n−1

)T . Since 2 is

a primitive root of primen + 1, we know that

{20, 21, · · · , 2n−1} = {1, 2, · · · , n}. (3)

Therefore,X = {x1, x2, · · · , xn} is also a basis ofGF (2n) over GF (2). Similarly, we will use

symbolX to denote the column vectorX = (x1, x2, · · · , xn)T .

Given a field elementa represented in the above two bases, i.e.,a = ÂT X̂ =
∑n−1

i=0 âix
2i

and

a = AT X =
∑n

i=1 aix
i, whereÂ = (â0, â1, · · · , ân−1)

T andA = (a1, a2, · · · , an)T , it is easy to

obtain the following coordinate transformation formula:

a2i = âi, (4)
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where0 ≤ i ≤ n − 1 and the subscript2i is to be reduced modulon + 1. From (3) and (4), we

know thatA is a permutation ofÂ. Therefore, the basis conversion operation betweenX and

X̂ may be performed in VLSI without using any logic gates. Now weuse basisX to design a

subquadratic complexity multiplication scheme.

Similar to a, define field elementb with respect to basisX. Then the multiplicationab may

be performed as follows.

ab =
n
∑

i=1

aix
ib = (x1b, x2b, · · · , xnb)A

= XT (Z1, · · · , Zn) A

= XT ZA, (5)

whereZi (1 ≤ i ≤ n) is the column vector corresponding to the coordinates of field element

xib with respect to basisX, andZ is ann× n matrix. Using the identityxn+1 = 1 =
∑n

j=1 xj ,

we obtain the following explicit expression ofZi:

Zi = xi

n
∑

j=1

bjx
j =

n
∑

j=1

bjx
i+j =

n+i
∑

k=i+1

bk−ix
k

=

n
∑

k=i+1

bk−ix
k +

n+i
∑

k=n+1

bk−ix
k

=

n
∑

k=i+1

bk−ix
k +

i−1
∑

k=0

bk+n+1−ix
k

=

(

i−1
∑

k=1

bk+n+1−ix
k +

n
∑

k=i+1

bk−ix
k

)

+ bn+1−i

n
∑

j=1

xj . (6)

From (6), we have the following decomposition of matrixZ = Z1 + Z2:

Z =



























0 bn bn−1 · · · b3 b2

b1 0 bn · · · b4 b3

b2 b1 0 · · · b5 b4

...
...

...
. . .

...
...

bn−2 bn−3 bn−4 · · · 0 bn

bn−1 bn−2 bn−3 · · · b1 0



























+



























bn bn−1 bn−2 · · · b2 b1

bn bn−1 bn−2 · · · b2 b1

bn bn−1 bn−2 · · · b2 b1

...
...

...
. . .

...
...

bn bn−1 bn−2 · · · b2 b1

bn bn−1 bn−2 · · · b2 b1



























.
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Therefore, matrix-vector productZA may be computed viaZA = Z1A+Z2A. Clearly, computing

Z2A requires onlyn multiplications andn−1 additions over the ground fieldGF (2). The Toeplitz

matrix-vector productZ1A may be computed using the formulae in the previous section. The

complexities of the resulting multiplication scheme are summarized in the upper half of Table

II.

B. Formulation for Type II ONB

Following the notations in Theorem 2, let̂X = {x20

, x21

, · · · , x2n−1

} be a Type II ONB of

GF (2n) over GF (2). In the following we will also use symbol̂X to denote the column vector

X̂ = (x20

, x21

, · · · , x2n−1

)T . Let xi = yi + y−i (0 ≤ i ≤ n). From [10], we can write that

{x20

, x21

, · · · , x2n−1

} = {x1, x2, · · · , xn}. (7)

Therefore,X = {x1, x2, · · · , xn} is also a basis ofGF (2n) over GF (2). Similarly, we will use

symbolX to denote the column vectorX = (x1, x2, · · · , xn)T .

Given a field elementa represented in the above two bases, i.e.,a = ÂT X̂ =
∑n−1

i=0 âix
2i

and a = AT X =
∑n

i=1 aixi, where Â = (â0, â1, · · · , ân−1)
T and A = (a1, a2, · · · , an)T , the

coordinate transformation formula between these two basesis given as follows [10]:

as(2i) = âi, (8)

where0 ≤ i ≤ n − 1 and s(j) is defined as the unique integer such that0 ≤ s(j) ≤ n and

j ≡ s(j) (mod 2n + 1) or j ≡ −s(j) (mod 2n + 1).

From (7) and (8), we know thatA is a permutation ofÂ. Therefore, the basis conversion

operation betweenX andX̂ may be performed in VLSI without using any logic gates. Similar

to the case of Type I ONB, we may computeab via a matrix-vector productZA using basis

X. The matrixZ can be decomposed as the summation of two matrices i.e.,Z = Z1 + Z2 [11]
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[12]:

Z =

































b2 b3 b4 · · · bn−1 bn bn

b3 b4 b5 · · · bn bn bn−1

b4 b5 b6 · · · bn bn−1 bn−2

...
...

...
. . .

...
...

...

bn−1 bn bn · · · b5 b4 b3

bn bn bn−1 · · · b4 b3 b2

bn bn−1 bn−2 · · · b3 b2 b1

































+

































0 b1 b2 · · · bn−3 bn−2 bn−1

b1 0 b1 · · · bn−4 bn−3 bn−2

b2 b1 0 · · · bn−5 bn−4 bn−3

...
...

...
. . .

...
...

...

bn−3 bn−4 bn−5 · · · 0 b1 b2

bn−2 bn−3 bn−4 · · · b1 0 b1

bn−1 bn−2 bn−3 · · · b2 b1 0

































.

Here,Z1 is a Hankel matrix, i.e., entries at(i, j) and(i−1, j +1) are equal. In order to compute

the Hankel matrix-vector productZ1A, we may first exchange columnsHi andHn−1−i for 0 ≤

i < n/2, and reverse the column vectorA = (a1, a2, · · · , an)T . Then perform the Toeplitz matrix-

vector product. Therefore, two Toeplitz matrix-vector products are used to obtain the matrix-

vector productZA. The complexities of the resulting multiplication scheme are summarized in

the lower half of Table II.

IV. CONCLUSIONS

Taking advantage of the simple conversion relationship in (3) and (7), for which no logic

gates is required to perform the basis conversions, we have presented a multiplication scheme

of subquadratic computational complexity using ONB. However, it is still an open problem to

design subquadratic computational complexity multiplication scheme for general normal bases.
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TABLE II

COMPLEXITIES OF SUBQUADRATICONB MULTIPLIERS FORn = bi

ONB b #AND #XOR Gate delay

Type 2 nlog2 3 + n 5.5nlog2 3
− 4n − 0.5 (2 log2 n + 1)TX + TA

I 3 nlog3 6 + n 24

5
nlog3 6

− 3n −

4

5
(3 log2 n + 1)TX + TA

Type 2 2nlog2 3 11nlog2 3
− 12n + 1 (2 log2 n + 1)TX + TA

II 3 2nlog3 6 48

5
nlog3 6

− 10n + 2

5
(3 log2 n + 1)TX + TA
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