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Abstract

Based on a recently proposed Toeplitz matrix-vector prodpproach, a subquadratic computational
complexity scheme is presented for multiplications in byjnextended finite fields using Type | and |l

optimal normal bases.
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. INTRODUCTION

Among different types of bases for representing element§ Bf2"), the normal basis has
received considerable attention because squaring in hdvases is simply a cyclic shift of
the coordinates of the element and, thus, it has found ajdits in computing multiplicative
inverses and exponentiations. One of the most importardramhs in the normal basis multipli-
cation is the discovery of the two types (Type | and Type Illpptimal normal bases (ONB) in
1987 [1]. When the Massey-Omura scheme [2] is applied, thegpcdational complexity (i.e., the
number of arithmetic operations in the ground fi€ld’(2)) of a GF'(2") multiplication using

an ONB isO(n?), while that using an arbitrary normal basis is usually greéttanO(n?).



For multiplication over extended binary fietd/'(2"), recently there have been considerable
efforts to develop practical algorithms with the computatil complexity less tha®(n?), see
for example [3], [4] and [5]. In [3], a subquadratic space pbterity multiplier for Type | ONB
is proposed. It relies on a permutation of the normal bagisthen recursive applications of the
Karatsuba algorithm. Recently, a new approach to subqtiadramplexity multiplications in
GF(2™) has been presented [4]. It takes advantage of the optimalifoenatrix-vector product
formulae, and can be used to design subquadratic space exitgphultipliers using various
bases, namely, polynomial, shifted polynomial, dual, viiealual and triangular basis. In this
work, we apply the Toeplitz matrix-vector product approtehesign subquadratic computational
complexity schemes for multiplications using both Type dah ONB. To the best of our
knowledge, this is the first subquadratic computational @emty scheme for Type 1l ONB
multiplication.

Below, we first summarize the asymptotic complexities of plite matrix-vector product
formulae forn = 2 andn = 3' (i > 0). Then, we present our multiplication schemes using

Type | and 1l ONB.

[1. ASYMPTOTIC COMPLEXITIES OF TOEPLITZ MATRIX-VECTOR PRODUCT

In this section, some basic noncommutative matrix-vectattiplication schemes and their
asymptotic space and gate delay complexities are intrab{#de A Toeplitz matrix is defined
as follows:

Definition 1: An n x n Toeplitz matrix is a matrixmy;), where0 < i,k < n — 1, with the
property thatm, ; = my_1,,—1, wherel <i k& <n —1.

Letn =2 (: > 0), T be ann x n Toeplitz matrix and” ann x 1 column vector. Then the

following noncommutative formula can be used to computeTibeplitz matrix-vector product



V [6]:

T T 1% Py+ P.
TV — 1 0 0 _ 0 2 7 (1)
Tg Tl ‘/1 P1+P2

whereTy, Ty andT; are (n/2) x (n/2) matrices and are individually in Toeplitz form, ang

andV; are(n/2) x 1 column vectorsPy = (1o +T11)Vh, PL = (11 + 1) Vo and Py = T1 (Vo + V4).
Similar to the caser = 2' (i > 0), we may have a three-way split of matrix and vector

V for n = 3' (i > 0), and obtain the following noncommutative formula which qurtes the

Toeplitz matrix-vector product’V' [6]:

TV=\|T Ty Ty il=| A+B+F |, 2)
Ty 15 T Va P+ Py + Ps

whereT; (0 <i < 4) are(n/3) x (n/3) Toeplitz matrices,

Py = (To+ T + T3) Vs, Py =T, (Vi + Va),
P = (T\ + T, + T3) V4, Py =Ty(Vo + V),
Py = (Ty + 15+ Ty) V, Py =T5(Vo + V1).

Formulae (1) and (2) may be used recursively to compute tleplite matrix-vector product
TV. Their complexities are summarized in Table | for bit paalimplementations, where
one AND and one XOR gate corresponds to one multiplicatiach @me addition overzF(2),

respectively, and’y, andTy are delays due to one AND and one XOR 2-input gate, respéctive

TABLE |

COMPLEXITIES OF TOEPLITZ MATRIX-VECTOR PRODUCT FOR, = b

b | #AND #XOR Gate delay
2| n'o823 | 5501828 —6n40.5 | (2logyn)Tx + Ta
3| nloest %nlog-* 6 _5n+ % (3logzn)Tx +Ta




[1l. NEW SUBQUADRATIC COMPLEXITY ONB MULTIPLIERS

We now apply the above Toeplitz matrix-vector product apploto design subquadratic
complexity multiplication scheme using Type | and Il ONB.idtwell known that an ONB of
GF(2™) over GF(2) exists if and only if the following conditions are met [1],][7

Theorem 1:Suppose:+ 1 is a prime and 2 is primitive i&Z,, ;. Then then nonunit (. + 1)th
roots of unity form a Type | ONB of7F'(2") over GF(2).

Theorem 2:Let 2n + 1 be a prime and assume that either

(1) 2 is primitive inZy, 1, Or

(2) 2n+ 1 =3 (mod 4) and 2 generates the quadratic residués,jn ;.

Thenz =y + y~! generates a Type Il ONB af'F'(2") over GF'(2), wherey is a primitive
(2n + 1)st root of unity inGF(22").

Although Theorems 1 and 2 require that+ 1 and 2n + 1 be prime numbers, respectively,
we note that there appears to be adequate number of optimmabhbases that are of practical
interest. For example, there are 430 values:of 2000 for which there exists an ONB [9].
We also note that there is no limitation anwhen applying the Toeplitz matrix-vector product
approach to design ONB multipliers. For example, if we wishuse formula (1) but 2 does
not dividen, i.e.,n is odd, we may first pad one zero at the end of ve&tpiand then extend
the Toeplitz matrix fromn x n to (n + 1) x (n + 1) by inserting zeroes at positiori8, n) and
(n,0). Finally, the Toeplitz matrix-vector product of size+ 1 is computed and the last bit of
the resulting(n + 1)-bit vector is discarded.

In some cryptosystems, Type | ONB are avoided for securigsoas [8]. For practical
purposes, e.gn < 2000, Type Il ONB are more abundant than Type | ONB [9]. Properties
of Type | and Il ONB can be found in various references, el,, [P], [10], [11], [12], [13],
[14], [15] and [16]. Based on some of these properties, belMmvpresent two subquadratic

computational complexity schemes for multiplicationsGid'(2") using Type | and |l ONB.



A. Formulation for Type | ONB

Let X = {z¥",2?",--. 2" '} be a Type | ONB ofGF(2") over GF(2). In the following,

we will also use symboK to denote the column vector = (22°, 22, --- 22" ")T. Since 2 is

a primitive root of primen + 1, we know that

{2021 ... v =112, ... n}. (3)
Therefore, X = {z!,2?,--- 2"} is also a basis off F(2") over GF(2). Similarly, we will use
symbol X to denote the column vectot = (x!, 22 --- 27,

Given a field element represented in the above two bases, ies A”X = 327" "d,2> and

a=ATX =>" a’, where A = (g, a1, -+, in_1)” and A = (a1, ag,- - - ,a,)7, it is easy to

obtain the following coordinate transformation formulg: [3
agi = Qy, (4)

where( <i < n — 1 and the subscrif’ is to be reduced modulo + 1. From (3) and (4), we
know thatA is a permutation ofd. Therefore, the basis conversion operation betw&eand
X may be performed in VLSI without using any logic gates. Now wee basisX to design a
subquadratic complexity multiplication scheme.

Similar to a, define field elemenk with respect to basi. Then the multiplicatiorub may

be performed as follows.
ab = i a;x'b = (2'b, 2%b, - -+, 2"b) A
=1
= XT(Zy,--,Z,) A
= XT7A, (5)

where Z; (1 < i < n) is the column vector corresponding to the coordinates d&d #ement

x'b with respect to basis(, and Z is ann x n matrix. Using the identity:"*! = 1 = Z;;l a7,



we obtain the following explicit expression of;:

n+1

Z; = xizn:bjxj Zb it = Z by_;x*
j=1

k=i+1
n+1
— Z bk Z.’L’ —'— Z bk Z'I
k=i+1 k=n-+1
= Z bk il _'_Zbk—l—n—l—l zx
k=i+1
= (Z b1z + Z bip—iw > +bn+1—izxj- (6)
k=i+1 7j=1
From (6), we have the following decomposition of matéx= 7, + Z:
0 bp by -+ b3 by b bn1 bpo -0 ba by
bl 0 bn b4 b3 bn bn—l bn—2 b2 bl
by by 0 - by by b bn1 bpo -0 ba by
Z: . . . . . _l— . . . . .
bn—Z bn—S bn—4 e 0 bn bn bn—l bn—? bZ bl
bn—l bn—2 bn—3 bl 0 bn bn—l bn—2 b2 bl

Therefore, matrix-vector produgtA may be computed vid A = 7, A+ 7, A. Clearly, computing
Z,A requires onlyn. multiplications andn — 1 additions over the ground fiel&F'(2). The
Toeplitz matrix-vector product; A may be computed via recursively applying formulae (1) and
(2), whose complexities are summarized in Table I. The AND XOR gates complexities of
the resulting multiplication scheme are summations of theesponding complexities of; A
and Z, A, which are summarized in the upper half of Table IIl presémtear the end of Section
[1.B.

In order to obtain a tradeoff between AND, XOR gates and timmenmexities, a hybrid
structure was adopted in [3], i.e., the Karatsuba algorithas first applied until, = 4, then
a direct parallel multiplication algorithm was used to cangpthe product of two polynomials

of degree 3. This idea is also applicable for the matrix-megroduct approach, i.e., we may



compute the matrix-vector product of size= 4 using the formula

I3 1o T 1o Vo LiVo+ToVi+ TiVa + ToVs
Ty 13 T Th Vi | | T+ T3Vi+1hVa+ThVs
T Ty T3 1Ty Va - TsVo +TiVi + T3V + To Vs
Te 15 Ty T3 V3 TeVo +T5Vi + ThVa + T5V3

In Table II, AND, XOR gates and time complexities of the abdwérid structure are com-
pared. Although the AND gate complexity of the proposed sahés slightly higher than that

of [3], its time and XOR gate complexities are lower than tho$ [3].

TABLE I

COMPARISON OFCOMPLEXITIES OF THEHYBRID STRUCTURE FORn = 2° (i > 2)

Scheme #AND #XOR Gate delay
[3] %Gnl"g? 3 I—gnlogZ 5 _6n (3logom —2)T'x +Ta
Proposed 1—967110332 S4+n %nlog? 5 _4n—05 | (2loggn — 1)Tx +Ta

B. Formulation for Type 1l ONB

Following the notations in Theorem 2, l&f = {z",22"--- 22" '} be a Type Il ONB of

GF(2") over GF(2). In the following we will also use symbak to denote the column vector

X = (@22, 2 )7 Leta; =y +y~ (0 < i < n). From [14], we can write that
20 21 27L71
{J}' y Ly, X }:{1’1,372,"',37”}. (7)
Therefore, X = {x1, 25, -+ ,z,} IS also a basis off F'(2") over GF'(2). Similarly, we will use
symbol X to denote the column vectoY = (xy,zy,- -, x,)7.

Given a field element represented in the above two bases, ies ATX = Z?:‘OI a;x?

anda = ATX = Y7 a;x;, Where A = (g, a1, ,a,1)" and A = (ay,ag,-- - ,a,)7, the

coordinate transformation formula between these two bisgwen as follows [14]:

QAs(2i) = fLi, (8)



where(0 < i < n — 1 ands(j) is defined as the unique integer such thaf s(j) < n and
j=s(j) (mod2n + 1) or j = —s(j) (mod 2n + 1).

From (7) and (8), we know thatl is a permutation ofd. Therefore, the basis conversion
operation betweeX and X may be performed in VLSI without using any logic gates. Simil
to the case of Type | ONB, we may computk via a matrix-vector producZ A using basis

X. The matrixZ can be decomposed as the summation of two matrices/i.e..Z; + Z, [15]

[16]:
by b3 by ©bpr by by
b3 by b b, b,  bna
by by bg by  bpo1 bnoo
7 = : +
bno1 by, by, - by by b3
by, by bpg - by b3 by
bp, bn1 byo --- b3 by by
0 by by -+ bu3 b9 by
by 0 by -+ bug by_3 by_o
by b 0 - bys buag b3z
bn3z bya bys -+ 0 by by
bp—o bn_3 by --- by 0 by
bn1 buno by3z -+ by b 0

Here, 7, is a Hankel matrix, i.e., entries &t j) and(:—1, 7+ 1) are equal. In order to compute
the Hankel matrix-vector product; A, we may first exchange columis; and H,,_;_; for 0 <

i < n/2, and reverse the column vectdr= (a;, as, - - - ,a,)’. Then perform the Toeplitz matrix-

vector product. Therefore, two Toeplitz matrix-vector giuots are used to obtain the matrix-
vector productZ A. The complexities of the resulting multiplication schermme aummarized in

the lower half of Table III.



TABLE 11l

COMPLEXITIES OF SUBQUADRATICONB MULTIPLIERS FORN = b’

ONB | b #AND #XOR Gate delay

Type | 2 | n'°%23 £ n | 5501823 —4n — 0.5 | (2logyn + 1)Tx +Ta

| 3| nlossb L p %nlog?’ 6 _3n— % (3loggn+1)T'x +Ta

Type | 2 | 2n'°e2? 11n'°823 —12n +1 | (2logyn + 1)Tx 4+ Ta

Il 3 2nloes 6 %nlogﬁ 5 _10n + % (3loggn+1)T'x +Ta

IV. CONCLUSIONS

Taking advantage of the simple conversion relationship3inand (7), for which no logic
gates is required to perform the basis conversions, we haasepted a multiplication scheme
of subquadratic computational complexity using ONB. Hogrewt is still an open problem to

design subquadratic computational complexity multiglma scheme for general normal bases.
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