
1

Subquadratic Computational Complexity

Schemes for Extended Binary Field

Multiplication Using Optimal Normal Bases

H. Fan and M. A. Hasan

March 31, 2007

Abstract

Based on a recently proposed Toeplitz matrix-vector product approach, a subquadratic computational

complexity scheme is presented for multiplications in binary extended finite fields using Type I and II

optimal normal bases.

Index Terms

Finite field, subquadratic computational complexity multiplication, normal basis, optimal normal

basis.

I. INTRODUCTION

Among different types of bases for representing elements ofGF (2n), the normal basis has

received considerable attention because squaring in normal bases is simply a cyclic shift of

the coordinates of the element and, thus, it has found applications in computing multiplicative

inverses and exponentiations. One of the most important advances in the normal basis multipli-

cation is the discovery of the two types (Type I and Type II) ofoptimal normal bases (ONB) in

1987 [1]. When the Massey-Omura scheme [2] is applied, the computational complexity (i.e., the

number of arithmetic operations in the ground fieldGF (2)) of a GF (2n) multiplication using

an ONB isO(n2), while that using an arbitrary normal basis is usually greater thanO(n2).



2

For multiplication over extended binary fieldGF (2n), recently there have been considerable

efforts to develop practical algorithms with the computational complexity less thanO(n2), see

for example [3], [4] and [5]. In [3], a subquadratic space complexity multiplier for Type I ONB

is proposed. It relies on a permutation of the normal basis and then recursive applications of the

Karatsuba algorithm. Recently, a new approach to subquadratic complexity multiplications in

GF (2n) has been presented [4]. It takes advantage of the optimal Toeplitz matrix-vector product

formulae, and can be used to design subquadratic space complexity multipliers using various

bases, namely, polynomial, shifted polynomial, dual, weakly dual and triangular basis. In this

work, we apply the Toeplitz matrix-vector product approachto design subquadratic computational

complexity schemes for multiplications using both Type I and II ONB. To the best of our

knowledge, this is the first subquadratic computational complexity scheme for Type II ONB

multiplication.

Below, we first summarize the asymptotic complexities of Toeplitz matrix-vector product

formulae forn = 2i and n = 3i (i > 0). Then, we present our multiplication schemes using

Type I and II ONB.

II. A SYMPTOTIC COMPLEXITIES OFTOEPLITZ MATRIX -VECTOR PRODUCT

In this section, some basic noncommutative matrix-vector multiplication schemes and their

asymptotic space and gate delay complexities are introduced [4]. A Toeplitz matrix is defined

as follows:

Definition 1: An n × n Toeplitz matrix is a matrix(mk,i), where0 ≤ i, k ≤ n − 1, with the

property thatmk,i = mk−1,i−1, where1 ≤ i, k ≤ n − 1.

Let n = 2i (i > 0), T be ann × n Toeplitz matrix andV an n × 1 column vector. Then the

following noncommutative formula can be used to compute theToeplitz matrix-vector product



3

TV [6]:

TV =





T1 T0

T2 T1









V0

V1



 =





P0 + P2

P1 + P2



 , (1)

whereT0, T1 andT2 are (n/2) × (n/2) matrices and are individually in Toeplitz form, andV0

andV1 are(n/2)×1 column vectors,P0 = (T0 +T1)V1, P1 = (T1 +T2)V0 andP2 = T1(V0 +V1).

Similar to the casen = 2i (i > 0), we may have a three-way split of matrixT and vector

V for n = 3i (i > 0), and obtain the following noncommutative formula which computes the

Toeplitz matrix-vector productTV [6]:

TV =











T2 T1 T0

T3 T2 T1

T4 T3 T2





















V0

V1

V2











=











P0 + P3 + P4

P1 + P3 + P5

P2 + P4 + P5











, (2)

whereTi (0 ≤ i ≤ 4) are (n/3) × (n/3) Toeplitz matrices,

P0 = (T0 + T1 + T2)V2, P3 = T1(V1 + V2),

P1 = (T1 + T2 + T3)V1, P4 = T2(V0 + V2),

P2 = (T2 + T3 + T4)V0, P5 = T3(V0 + V1).

Formulae (1) and (2) may be used recursively to compute the Toeplitz matrix-vector product

TV . Their complexities are summarized in Table I for bit parallel implementations, where

one AND and one XOR gate corresponds to one multiplication and one addition overGF (2),

respectively, andTA andTX are delays due to one AND and one XOR 2-input gate, respectively.

TABLE I

COMPLEXITIES OFTOEPLITZ MATRIX-VECTOR PRODUCT FORn = bi

b #AND #XOR Gate delay

2 nlog2 3 5.5nlog2 3
− 6n + 0.5 (2 log2 n)TX + TA

3 nlog3 6 24

5
nlog3 6

− 5n + 1

5
(3 log3 n)TX + TA



4

III. N EW SUBQUADRATIC COMPLEXITY ONB MULTIPLIERS

We now apply the above Toeplitz matrix-vector product approach to design subquadratic

complexity multiplication scheme using Type I and II ONB. Itis well known that an ONB of

GF (2n) over GF (2) exists if and only if the following conditions are met [1], [7].

Theorem 1:Supposen+1 is a prime and 2 is primitive inZn+1. Then then nonunit (n+1)th

roots of unity form a Type I ONB ofGF (2n) over GF (2).

Theorem 2:Let 2n + 1 be a prime and assume that either

(1) 2 is primitive inZ2n+1, or

(2) 2n + 1 ≡ 3 (mod 4) and 2 generates the quadratic residues inZ2n+1.

Thenx = y + y−1 generates a Type II ONB ofGF (2n) over GF (2), wherey is a primitive

(2n + 1)st root of unity inGF (22n).

Although Theorems 1 and 2 require thatn + 1 and 2n + 1 be prime numbers, respectively,

we note that there appears to be adequate number of optimal normal bases that are of practical

interest. For example, there are 430 values ofn ≤ 2000 for which there exists an ONB [9].

We also note that there is no limitation onn when applying the Toeplitz matrix-vector product

approach to design ONB multipliers. For example, if we wish to use formula (1) but 2 does

not dividen, i.e., n is odd, we may first pad one zero at the end of vectorV , and then extend

the Toeplitz matrix fromn × n to (n + 1) × (n + 1) by inserting zeroes at positions(0, n) and

(n, 0). Finally, the Toeplitz matrix-vector product of sizen + 1 is computed and the last bit of

the resulting(n + 1)-bit vector is discarded.

In some cryptosystems, Type I ONB are avoided for security reasons [8]. For practical

purposes, e.g.,n < 2000, Type II ONB are more abundant than Type I ONB [9]. Properties

of Type I and II ONB can be found in various references, e.g., [1], [9], [10], [11], [12], [13],

[14], [15] and [16]. Based on some of these properties, belowwe present two subquadratic

computational complexity schemes for multiplications inGF (2n) using Type I and II ONB.



5

A. Formulation for Type I ONB

Let X̂ = {x20

, x21

, · · · , x2n−1

} be a Type I ONB ofGF (2n) over GF (2). In the following,

we will also use symbol̂X to denote the column vector̂X = (x20

, x21

, · · · , x2n−1

)T . Since 2 is

a primitive root of primen + 1, we know that

{20, 21, · · · , 2n−1} = {1, 2, · · · , n}. (3)

Therefore,X = {x1, x2, · · · , xn} is also a basis ofGF (2n) over GF (2). Similarly, we will use

symbolX to denote the column vectorX = (x1, x2, · · · , xn)T .

Given a field elementa represented in the above two bases, i.e.,a = ÂT X̂ =
∑n−1

i=0 âix
2i

and

a = AT X =
∑n

i=1 aix
i, whereÂ = (â0, â1, · · · , ân−1)

T andA = (a1, a2, · · · , an)T , it is easy to

obtain the following coordinate transformation formula [3]:

a2i = âi, (4)

where0 ≤ i ≤ n − 1 and the subscript2i is to be reduced modulon + 1. From (3) and (4), we

know thatA is a permutation ofÂ. Therefore, the basis conversion operation betweenX and

X̂ may be performed in VLSI without using any logic gates. Now weuse basisX to design a

subquadratic complexity multiplication scheme.

Similar to a, define field elementb with respect to basisX. Then the multiplicationab may

be performed as follows.

ab =

n
∑

i=1

aix
ib = (x1b, x2b, · · · , xnb)A

= XT (Z1, · · · , Zn) A

= XT ZA, (5)

whereZi (1 ≤ i ≤ n) is the column vector corresponding to the coordinates of field element

xib with respect to basisX, andZ is ann× n matrix. Using the identityxn+1 = 1 =
∑n

j=1 xj ,



6

we obtain the following explicit expression ofZi:

Zi = xi

n
∑

j=1

bjx
j =

n
∑

j=1

bjx
i+j =

n+i
∑

k=i+1

bk−ix
k

=
n
∑

k=i+1

bk−ix
k +

n+i
∑

k=n+1

bk−ix
k

=
n
∑

k=i+1

bk−ix
k +

i−1
∑

k=0

bk+n+1−ix
k

=

(

i−1
∑

k=1

bk+n+1−ix
k +

n
∑

k=i+1

bk−ix
k

)

+ bn+1−i

n
∑

j=1

xj . (6)

From (6), we have the following decomposition of matrixZ = Z1 + Z2:

Z =



























0 bn bn−1 · · · b3 b2

b1 0 bn · · · b4 b3

b2 b1 0 · · · b5 b4

...
...

...
. . .

...
...

bn−2 bn−3 bn−4 · · · 0 bn

bn−1 bn−2 bn−3 · · · b1 0



























+



























bn bn−1 bn−2 · · · b2 b1

bn bn−1 bn−2 · · · b2 b1

bn bn−1 bn−2 · · · b2 b1

...
...

...
. . .

...
...

bn bn−1 bn−2 · · · b2 b1

bn bn−1 bn−2 · · · b2 b1



























.

Therefore, matrix-vector productZA may be computed viaZA = Z1A+Z2A. Clearly, computing

Z2A requires onlyn multiplications andn − 1 additions over the ground fieldGF (2). The

Toeplitz matrix-vector productZ1A may be computed via recursively applying formulae (1) and

(2), whose complexities are summarized in Table I. The AND and XOR gates complexities of

the resulting multiplication scheme are summations of the corresponding complexities ofZ1A

andZ2A, which are summarized in the upper half of Table III presented near the end of Section

III.B.

In order to obtain a tradeoff between AND, XOR gates and time complexities, a hybrid

structure was adopted in [3], i.e., the Karatsuba algorithmwas first applied untiln = 4, then

a direct parallel multiplication algorithm was used to compute the product of two polynomials

of degree 3. This idea is also applicable for the matrix-vector product approach, i.e., we may



7

compute the matrix-vector product of sizen = 4 using the formula














T3 T2 T1 T0

T4 T3 T2 T1

T5 T4 T3 T2

T6 T5 T4 T3





























V0

V1

V2

V3















=















T3V0 + T2V1 + T1V2 + T0V3

T4V0 + T3V1 + T2V2 + T1V3

T5V0 + T4V1 + T3V2 + T2V3

T6V0 + T5V1 + T4V2 + T3V3















.

In Table II, AND, XOR gates and time complexities of the abovehybrid structure are com-

pared. Although the AND gate complexity of the proposed scheme is slightly higher than that

of [3], its time and XOR gate complexities are lower than those of [3].

TABLE II

COMPARISON OFCOMPLEXITIES OF THEHYBRID STRUCTURE FORn = 2i (i > 2)

Scheme #AND #XOR Gate delay

[3] 16

9
nlog2 3 78

18
nlog2 3

− 6n (3 log2 n − 2)TX + TA

Proposed 16

9
nlog2 3 + n 71

18
nlog2 3

− 4n − 0.5 (2 log2 n − 1)TX + TA

B. Formulation for Type II ONB

Following the notations in Theorem 2, let̂X = {x20

, x21

, · · · , x2n−1

} be a Type II ONB of

GF (2n) over GF (2). In the following we will also use symbol̂X to denote the column vector

X̂ = (x20

, x21

, · · · , x2n−1

)T . Let xi = yi + y−i (0 ≤ i ≤ n). From [14], we can write that

{x20

, x21

, · · · , x2n−1

} = {x1, x2, · · · , xn}. (7)

Therefore,X = {x1, x2, · · · , xn} is also a basis ofGF (2n) over GF (2). Similarly, we will use

symbolX to denote the column vectorX = (x1, x2, · · · , xn)T .

Given a field elementa represented in the above two bases, i.e.,a = ÂT X̂ =
∑n−1

i=0 âix
2i

and a = AT X =
∑n

i=1 aixi, where Â = (â0, â1, · · · , ân−1)
T and A = (a1, a2, · · · , an)T , the

coordinate transformation formula between these two basesis given as follows [14]:

as(2i) = âi, (8)



8

where0 ≤ i ≤ n − 1 and s(j) is defined as the unique integer such that0 ≤ s(j) ≤ n and

j ≡ s(j) (mod 2n + 1) or j ≡ −s(j) (mod 2n + 1).

From (7) and (8), we know thatA is a permutation ofÂ. Therefore, the basis conversion

operation betweenX andX̂ may be performed in VLSI without using any logic gates. Similar

to the case of Type I ONB, we may computeab via a matrix-vector productZA using basis

X. The matrixZ can be decomposed as the summation of two matrices i.e.,Z = Z1 + Z2 [15]

[16]:

Z =

































b2 b3 b4 · · · bn−1 bn bn

b3 b4 b5 · · · bn bn bn−1

b4 b5 b6 · · · bn bn−1 bn−2

...
...

...
. . .

...
...

...

bn−1 bn bn · · · b5 b4 b3

bn bn bn−1 · · · b4 b3 b2

bn bn−1 bn−2 · · · b3 b2 b1

































+

































0 b1 b2 · · · bn−3 bn−2 bn−1

b1 0 b1 · · · bn−4 bn−3 bn−2

b2 b1 0 · · · bn−5 bn−4 bn−3

...
...

...
. . .

...
...

...

bn−3 bn−4 bn−5 · · · 0 b1 b2

bn−2 bn−3 bn−4 · · · b1 0 b1

bn−1 bn−2 bn−3 · · · b2 b1 0

































.

Here,Z1 is a Hankel matrix, i.e., entries at(i, j) and(i−1, j +1) are equal. In order to compute

the Hankel matrix-vector productZ1A, we may first exchange columnsHi andHn−1−i for 0 ≤

i < n/2, and reverse the column vectorA = (a1, a2, · · · , an)T . Then perform the Toeplitz matrix-

vector product. Therefore, two Toeplitz matrix-vector products are used to obtain the matrix-

vector productZA. The complexities of the resulting multiplication scheme are summarized in

the lower half of Table III.



9

TABLE III

COMPLEXITIES OF SUBQUADRATICONB MULTIPLIERS FORn = bi

ONB b #AND #XOR Gate delay

Type 2 nlog2 3 + n 5.5nlog2 3
− 4n − 0.5 (2 log2 n + 1)TX + TA

I 3 nlog3 6 + n 24

5
nlog3 6

− 3n −

4

5
(3 log3 n + 1)TX + TA

Type 2 2nlog2 3 11nlog2 3
− 12n + 1 (2 log2 n + 1)TX + TA

II 3 2nlog3 6 48

5
nlog3 6

− 10n + 2

5
(3 log3 n + 1)TX + TA

IV. CONCLUSIONS

Taking advantage of the simple conversion relationship in (3) and (7), for which no logic

gates is required to perform the basis conversions, we have presented a multiplication scheme

of subquadratic computational complexity using ONB. However, it is still an open problem to

design subquadratic computational complexity multiplication scheme for general normal bases.

ACKNOWLEDGMENT

This research was supported by NSREC Discovery and Strategic grants awarded to Dr. Hasan.

REFERENCES

[1] R. Mullin, I. Onyszchuk, S.A. Vanstone, and R. Wilson, “Optimal Normal Bases inGF (pn),” Discrete Applied Math.,

vol. 22, pp. 149-161, 1988/1989.

[2] J.L. Massey and J.K. Omura, “Computational Method and Apparatus for Finite Field Arithmetic,” US Patent No. 4,587,627,

to OMNET Assoc., Sunnyvale CA, Washington, D.C.: Patent andTrademark Office, 1986.

[3] M. Leone, “A New Low Complexity Parallel Multiplier for aClass of Finite Fields,”Proc. Cryptographic Hardware and

Embedded Systems (CHES 2001), LNCS 2162, pp. 160-170, 2001.

[4] H. Fan and M. A. Hasan, “A New Approach to Subquadratic Space Complexity Parallel Multipliers for Extended Binary

Fields,” IEEE Transactions on Computers, vol. 56, no. 2, pp. 224-233, Feb. 2007.

[5] B. Sunar, “A Generalized Method for Constructing Subquadratic ComplexityGF (2k) Multipliers, ” IEEE Transactions

on Computers, vol. 53, no. 9, pp. 1097-1105, Sept. 2004.

[6] S. Winograd,Arithmetic Complexity of Computations, SIAM, 1980.

[7] S. Gao and Jr. H.W. Lenstra, “Optimal Normal Bases,”Design, Codes and Cryptography, vol. 2, pp. 315-323, 1992.



10

[8] A. Menezes, E. Teske, and A. Weng, “Weak Fields for ECC,”Proc. Topics in Cryptology CT-RSA 2004,, LNCS 2964, pp.

366-386, 2004.

[9] S. Gao, “Normal Bases over Finite Fields”, PhD thesis, University of Waterloo, 1993.

[10] M. A. Hasan, M. Z. Wang, and V. K. Bhargava, “Modular Construction of Low Complexity Parallel Multipliers for a Class

of Finite FieldsGF (2m),” IEEE Transactions on Computers, vol. 41, no. 8, pp. 962-971, Aug. 1992.

[11] M. A. Hasan, M. Z. Wang, and V. K. Bhargava, “A Modified Massey-Omura Parallel Multiplier for a Class of Finite

Fields,” IEEE Transactions on Computers, vol. 42, no. 10, pp. 1278-1280, Oct. 1993.

[12] H. Fan, “Simple multiplication algorithm for a class ofGF (2n),” IEE Electronics Letters, vol. 32, no.7, pp.636-637, 1996.

[13] C. K. Koc and B. Sunar, “Low-complexity Bit-parallel Canonical and Normal Basis Multipliers for a Class of Finite

Fields,” IEEE Transactions on Computers, vol. 47, no. 3, pp. 353-356, Mar. 1998.

[14] S. Gao and S. Vanstone, “On Orders of Optimal Normal Basis Generators,”Math. Computation, vol. 64, no. 2, pp.

1227-1233, 1995.

[15] B. Sunar and C. K. Koc, “An Efficient Optimal Normal BasisType II Multiplier,” IEEE Transactions on Computers, vol.

50, no. 1, pp. 83-87, Jan. 2001.

[16] C. Lee and C. Chang “Low-complexity Linear Array Multiplier for Normal Basis of Type-II,”Proc. IEEE International

Conf. Multimedia and Expo, pp. 1515-1518, 2004.


