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Abstract

Based on Toeplitz matrix-vector products and coordinaediormation techniques, we present
a new scheme for subquadratic space complexity parallefigtichtion in GF(2™) using the shifted
polynomial basis. Both the space complexity and the asytiepgate delay of the proposed multiplier
are better than those of the best existing subquadratiesmanplexity parallel multipliers. For example,
with n being a power of 2 and 3, the space complexity is about 8% a#@iditer, while the asymptotic
gate delay is about 33% and 25% better, respectively. Anattieantage of the proposed matrix-vector
product approach is that it can also be used to design sukafimdpace complexity polynomial,
dual, weakly dual and triangular basis parallel multigiefo the best of our knowledge, this is the
first time that subquadratic space complexity parallel iplidtrs are proposed for dual, weakly dual and
triangular bases. A recursive design algorithm is also gsed for efficient construction of the proposed
subquadratic space complexity multipliers. This desigyoathm can be modified for the construction

of most of the subquadratic space complexity multipliemvgously reported in the literature.
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. INTRODUCTION

When the extended binary field/'(2") is viewed as a vector space ov&F'(2), the elements
of the field are often represented with respect to a basis.tli®rpurpose of efficient field
arithmetic, a number of bases have been proposed in thatiiter for example, polynomial,
normal, dual, weakly dual, triangular and shifted polynaihthases. Between the two basic
field arithmetic operations, namely, addition and mulggtion, it is easier to implement the
former using these representations. Multiplication isemgmtly complex and the existing bit
parallel multipliers may be classified into the followingdwategories on the basis of the space
complexity, which is often measured in terms of the numbeR-@iput AND and XOR gates:
guadratic and subquadratic space complexity multipligtgltipliers of [5]-[19] belong to the
former category and those of [20]-[31] the latter categditye subquadratic space complexity
multiplier provides a practical solution for large valuesrodue to its low space complexity.
To this end, the polynomial version of the integer Karatsondtiplication algorithm [1] has
been widely used, e.g., [20]-[30]. These multipliers firetfprm a multiplication of two binary
polynomials, each of degree — 1 or less, and then a modulo reduction operation using the
field generating irreducible polynomial. For practical iggtions,n may not be an even integer.
In such cases, in order to apply the Karatsuba algorithm sslight modifications are often
made to the inputs, e.g., padding zeroes. The asymptocdgay of the Karatsuba algorithm
is (3logyn — 1)Tx + T4 for n = 2° (i > 1), whereT, and Tx are the delay of one 2-input
AND and XOR gates.

The Karatsuba algorithm based multiplier has a low asyngpsmace complexity, but its gate
delay is three times more than that of the existing fast frahultipliers [31]. In order to
reduce this delay, a hybrid structure has been develope@4h Although this method does

not improve the asymptotic gate delay, it is effective fomsofinite fields, e.g.GF(2%%).



The Winograd short convolution algorithm may be viewed asaegalization of the original
Karatsuba-based algorithm [2], [31] and [32]. For= 3’ (i > 0), the algorithm improves the
asymptotic gate delay of the Karatsuba algorithm in [20§ eesults in an asymptotic gate delay
of (4logyn — 1)Tx + Ty =~ (2.52logy,n — 1)T'x + T4. But the asymptotic space complexity of
this method is slightly worse than that of the Karatsubatasultiplier.

In summary, all the above subquadratic space compleXi#(2") parallel multipliers are
based on the improved polynomial multiplication algorigynand will be referred to as the
polynomial-based multipliers in the following.

In this article, we follow a different approach using To&plnatrix-vector products and pro-
pose a new scheme for the subquadratic space compiexit™) parallel multiplier. Our scheme
takes advantage of a shifted polynomial basis (SPB) andeapfile coordinate transformation
technique of [3] and [4]. The end result is that not only thacgpcomplexity of the new multiplier
is lower than that of the existingplynomial-based multipliers, e.g., [20] and [31], its asymptotic
gate delay is also better, in fact considerably better, thahof theseolynomial-based designs.
Another advantage of the proposed matrix-vector produgtageh is that it can also be used to
design subquadratic space complexity parallel multipliesing polynomial, dual, weakly dual
or triangular basis.

Because of lack of apparent regularity, hardware impleatents of subquadratic space com-
plexity parallel multipliers requires considerable efforFor largen, efficient design of sub-
guadratic space complexity multipliers is often based aungve application of the divide-
and-conquer technique, and is not straightforward. Theeefa systematic design approach is
desirable. In this article, a recursive design algorithmalso proposed for an efficient con-
struction of the proposed subquadratic space complexityiphiars. We have implemented the
algorithm using ANSI C. The program generates a set of exdmolean equations involving

only assignment, AND and XOR operations. Therefore, it essentially prosidelower level



of abstraction, e.g., the gate level description as in VHDId &erilog. The proposed design
algorithm may also be modified for the construction tlaéynomial-based subquadratic space
complexity multipliers.

The remainder of this article is organized as follows: Intiecll, we consider asymptotic
complexities for computing Toeplitz matrix-vector protludased on two and three-way splits.
The proposed multipliers are presented in Section Ill. Térursive algorithm for the efficient
construction of the proposed subquadratic space complexittiplier is introduced in Section

IV. Finally, concluding remarks are made in Section V.

[I. ASYMPTOTIC COMPLEXITIES OFTOEPLITZ MATRIX-VECTOR PRODUCT

In this section, some basic noncommutative matrix-vectattiplication schemes and their
asymptotic space and gate delay complexities are presdtimdents of the matrix are iIRF'(2).
These schemes will be used to design the proposed parallgpien in the next section.

Definition 1: An n x n Toeplitz matrix is a matrixmy;), where0 < i,k < n — 1, with the
property thatmy, ; = my_1,_1, wherel <i k <n—1.

Remark 1. An n x n Toeplitz matrix is determined by th#n — 1 elements of the first row

and the first column, and adding twox n Toeplitz matrices requirex: — 1 addition operations.

A. Two-way Split om = 2¢ (i > 0)

Assume thatl" is ann x n Toeplitz matrix and” ann x 1 column vector. MatrixI" and

vector V' can be split as follows:

T, T Vi
T = ) andv = ",
T, T Vi

where Ty, 77 and T, are (n/2) x (n/2) matrices and are individually in Toeplitz form, ang

andV; are(n/2) x 1 column vectors.



Now the following noncommutative formula can be used to cotaphe Toeplitz matrix-vector
productTV [2]:
T Ty Vo Py + P»

TV = = Q)
T, T Vi P+ P

where Py = (To + 1)W1, P = (T1 + T,)Vy and P, = T1(Vy + V4). Please note that the addition
and subtraction are the same in fields of characteristic @& important implication of (1) is
that the product of am x n Toeplitz matrix and am x 1 vector is primarily reduced tohree
products of matrix and vector of sizés/2) x (n/2) and (n/2) x 1.

Remark 2: A straightforward matrix addition to obtaif + 77 and7; + 75 requires a total of
2(n — 1) XOR gates. Owing to the special structure of the Toeplitzrmasome terms may be
reused in computind;, + 77 and7; +15. Suppose that we have obtained the summatipAT;.
Then we only need to compute the first columnigf+ 75, since the last:/2 — 1 elements in
the first row of 77 + 75 also appear in the first column @f + 77. Therefore, a total o3n/2 — 1
XOR gates are required to computg+ 77 andT; + Ts.

Let symbolsS and D stand for “Space” and “Delay”, respectively. We will us¥’(n),
S7(n), D¢ (n) and Dy (n) to denote the number of multiplication and addition opersj the
time delays introduced by multiplication and addition gg®ms for the case of = * (i > 0),
respectively. The following recurrence relations, whi@sctibe the algorithm complexities, can

be established when this formula is used recursively to ecaelpV in the case of = 2°.

S2®(2) =3, D§(2) =1,

S5 (n) = 385 (n/2); D3 (n) = D3 (n/2);
859(2) =5, and DSB(2) =2,

S5 (n) =389 (n/2) + 3n — 1; DS(n) = D (n/2) + 2.

In order to obtain the explicit complexities of the aboveureence relations, we need the

following lemmas. Proofs of these lemmas are simple and ivenghere.



Lemma 1:Let a,b and: be positive integers. Let = ', a # b, anda # 1. The solution to
the recurrence relations
Rl = e,
R, =aRy,;, +cn +d,

be (at — ") N d(a"—1)
a—2>b a—1
Lemma 2:Let b andi be positive integers, and = b’. The solution to the recurrence relations

R, = ad'e +

Rl = 07
R, = Rn/b + d7
is R,, = di = dlog, n.

Now it is easy to obtain the following complexity results foomputing7'V" in the case of

n=2"(:>0):
[ SF(n) = nw?,
S5 (n) = 5.5n1°%23 — 6n + 0.5,
D (n) =1,
| DY (n) =2logyn

B. Three-way Split on = 3' (i > 0)
As stated earlier, assume tHéatis ann x n Toeplitz matrix andl” ann x 1 column vector.
Similar to the caser = 2' (i > 0), we may have a three-way split of matfix and vectorV/,

and obtain the following honcommutative formula which cargs the Toeplitz matrix-vector

productTV [2]:

Ty, TV T Vo Po+ Py + Py
TV=\|T Th Th Vi =| A+PB+F |,

whereT; (0 <i < 4) are(n/3) x (n/3) Toeplitz matrices,
Py = (To + Ty + T3) V4,
Py = (Th + Ty + T3) V1, (2)
Py = (T + T5 + Ty) Vo,



and
P3 = Tl(‘/l + ‘/2)7

Py =Ty(Vo + Va),
Ps = T3(Vo + V1).

Based on Remark 1, additions of matrices in (2) may requiraasy a%‘(%” —1) XOR gates.
However, by reusing repeated terms, the number of XOR gated®e considerably reduced. To
this effect, we state the following lemma.

Lemma 3:Matrix additions(7y + 11 + 13), (11 + 1> + 13) and (T3 + 15 + T}) in (2) can be
performed using a total dfn — 1 two-input XOR gates.

Proof: Let n = 3m and the first row and the first column of Toeplitz matfix be

(t3m—1,t3m—2, "+ ,to) and (tzm_1,t3m, - ,tem—2)", respectively. There is a one-to-one corre-

spondence between Toeplitz matfixand polynomialZ?Z"bo‘2 t;z'. Adding twon x n Toeplitz

matrices requires the same number of XOR gates as addingotinesponding polynomials
of degree2n — 2. Therefore, we have the following polynomials correspagdio Toeplitz

matricesTy, Ty, To, T5 and Ty: go = S0 2 tial, qi = Soom 2 tism®y o = Soom 2 tisom,

g3 =" tiamat and gy = 3.0 ¢y, 4mat, respectively. Now we can write
m—2
Qo+ q1+q = Z (ts + [tmai + tomed)) T + (o1 + [tom—1 + tzm_1]) 2™
=0
2m—2
+ Z ([tl + tm+i] + t2m+i>$2; (3)
m—2
G +q+q3 = Z{tm—l—i + tomei + tamai 0+ ([tom—1 + t3m_1] + tam_1)z™ "
i=0
2m—2
+ Z (tmti + [t2mti + tamsi]) 2" (4)
m—2
G2+ q3+q = Z{t2m+i + t3mri + tamai } 0+ (t3me1 + tam—1 + tsmo1)T™ "
=0
2m—2
+ Z ([tomss + tamepa) + tamyi) 2" (5)

=m



In (3), (4) and (5), reuses of terms occur in the following fozses:

1) term [ta, 1 + tam-1] IN go + q1 + g2 also appears ig; + g2 + gs;

2) in go+q1+q2, summationst,,, ; + toyis) (0 <@ <m—2) and[t; + t,,1] (m <i < 2m—2)
are the same;

3) summations{t,,; + tomsi + tameit (0 < 7 < m —2)in ¢ + ¢ + g3 are the same as
summationst; + t,1; + tomei) (m <i<2m—2)in g+ ¢ + ¢o;

4) summations{ta,, i + tamyi + tamri} (0 < @ < m —2)in ¢ + g3 + g4 are the same as
summationst,,; + tomyi + tames) (M <i < 2m —2)in ¢ + g2 + ¢s;

5) summationsta,, ;i + tamyi] (m <i < 2m—2) appear in bothy; + ¢ + g3 andgs + g3 + ¢a.

Thus,q + ¢1 + ¢2, ¢1 + ¢2 + g3 andgs + g3 + ¢4 can be computed usirgp — 1 XOR gates.[]

This lemma is useful in determining the space complexityhef matrix-vector product’V'.
In order to determine the gate delay, we can consider anyeoftiftee summation terms on the

right hand side of (2), i.e.,
Py+ P+ Ps = [T + T3+ Ty)Vo| + [To(Vo + Vo) + T5(Vo + V1) .

Forn = 3, it is easy to see that computing the terms in the square &éisckquires a gate
delay of Ty + 2Tx. Therefore,P, + P, + Ps may be obtained with a gate delay 6f + 37.
When this result and Lemma 3 are used recursively to compiitethe following recurrence

relations, which describe the algorithm complexities, banestablished:

S5(3) =6, Dy (3) =1,

S5 (n) = 685 (n/3); D5 (n) = D5 (n/3);

S5 (3) = 14, and DY (3) = 3,

85 (n) =685 (n/3) + 5n — 1; DY (n) = DS (n/3) + 3.

After solving these recurrence relations, we obtain thieowahg complexities for computing



TV in the case ofv = 3" (i > 0):

(

S§B n) = %nlog?ﬁ 5n + %,
DY (n) =1,
DY (n) = 3logyn

[1l. NEW SUBQUADRATIC MULTIPLIERS

In this section, we will use the above scheme of Toeplitz atector product to design
subquadratic space complexity multipliers. For repréagnélements of the field7F'(2"), we
first consider a shifted polynomial basis, which can be vibag a generalization of the standard
polynomial basis. Let: be a root off (uv) andGF(2") = GF(2)[u]/(f(u)). A shifted polynomial
basis (SPB) of7F'(2") over GF'(2) is defined as follows [19]:

Definition 2: Let v be an integer and the ordered 8ét= {z|0 < i < n—1} be a polynomial
basis of GF'(2™) over GF(2). The ordered set "M := {2'*|0 <i < n—1} is called a shifted

polynomial basis with respect t&f.

A. Formulation Using SPB

Let X = (z7v,z " ... 2" *~1)T be the column vector of SPB basis elemens,=

(ap, a1, ,a,_1)" be the coordinate column vector of the field element z= 2?2—01 a; T,

and B, C and D are defined similarly. For hardware implementation @i &(2") SPB parallel
multiplier, one method is to form a binary x n matrix Z, which depends oh and f(u), and

then perform a matrix-vector product. Namely, the produetab may be computed as follows

n—1

i—v —v -1 n—v—1 T
c = E a;x"”" b= (7%, ,x7 b, b,xb, -+ 1 b)(ag,ar, -+ ,a,_1)
i=0

= XT(ZO7”' 7Zn—1)A

= XTZA, (6)
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where Z; is the coordinate column vector of~?b with respect to the SPB)(< i < n+ 1), and
Z is ann x n matrix.

From (6), we have the matrix-vector proddct= Z A. However,Z is not generally a Toeplitz
matrix. Therefore the subquadratic scheme presented irp&ous section cannot be used
directly. In [3] and [4] coordinate transformation techudés were proposed. Using this technique,
one may first transforn¥ into a Toeplitz matrix7', i.e., T = UZ, whereU is the transform

matrix. Then use the subquadratic scheme to compute thdiffoeyatrix-vector product
D =TA. @)

Finally, the result”' is obtained by
C=U"'D. (8)

In the following, we will apply this idea to an arbitrary idecible trinomialf (u) = u"+u*+1
(1 < k < n—1)and a special type of pentanomiaf$u) = u" + u**! 4+ u* + v ! +1
(1 < k < n—1), and present exact expressions(offor GF'(2") generated by these special
types of irreducible polynomials. Please note that for edcfical purposes, one may only need to
consider irreducible trinomials and pentanomials, sinideast one of the two types of irreducible
polynomials is known to exist for every values ofin the rangel < n < 10001. In fact,
there is no known value of. for which an irreducible polynomial of weightt < 6 does
not exist [33]. Also note that NIST has recommended five fifikdds of characteristic two
for the ECDSA (Elliptic Curve Digital Signature Algorithn@pplications:GF'(2163), GF(2233),
GF(2%3), GF(2'9) and GF(2°™), but no irreducible trinomials exist for three degrees,,viz
163, 283 and 571. For these three fields, we have found a jpdifn, k) for which f(u) =
u” 4+ uF !+ uF + wF~1 + 1 is irreducible [35]: (163, 67), (163, 69), (163, 71), (162)9(163,
94), (163, 96), (283, 24), (283, 133), (283, 150), (283, 28971, 104), (571, 230), (571, 341)

and (571, 467).
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We assume that the value ofis equal tok in the definition of SPB for irreducible trinomials
f(u) = u"+uF+1 (1 < k < n—1) and irreducible pentanomiaf§u) = u"+u ! +ur+ur=14+1

I<k<n-=1).

B. New SPB Multipliers for General Irreducible Trinomials

For irreducible trinomials, we have formed a simple transfation matrix to be used with
SPB. This matix is much simpler than what can be obtainedgughand [4] and is given as
follows

0 ]n—v n—uv
U — (n—v)x(n—v) ’ @)

IUX’U 0

where 1, is thewv x v identity matrix.
Lemma 4:Let f(u) = u" +u’+1 (1 <v <n—1) be an irreducible trinomial, and and
U be matrices defined in (6) and (9). Théh= U~ is a Toeplitz matrix.
Proof: Let g = 277"b = 31" gia’* (0 < j < n — 2). Thus thej-th column of Z in (6),
i.e., Z;, is the column vector consisting of the SPB coordinates @hehtg. Then columnZ;,,

is the coordinate column vector of element

n—1 n—2
rg = Y g =) g™ 4 (@t 4+ 1)
i=0 i=0
v—1 n—1
= gz '+ Zgi—lxz_v + (Go—1 + Gn-1)+ Z i1z
i=1 i=v+1

Let g andzg be the two elements affF'(2") whose SPB coordinates form columpsand
j + 1 of matrix 7', respectively. Because of premultiplication @fto 7, the lowern — v rows
(respectively, the upper rows) of Z become the uppet — v rows (respectively, the lower
rows) of the resultant matriX’ = UZ. Thus we can write
v—1 n—1
’g\ — (Z gixz—v> U4 (Z gixz—v> 7Y
=0 i=v
n—v—1 n—2v—1

= Z G2o—niT + Z G204’

i=n—2v i=—v
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and

g = |gh1T +Zgz_1x T 2"+ | (Gt F Gno1)+ Z Gioax ™" a7
i=1 i=v+1
n—v—1 n—2v—1
= 001@ ) g Y Gaemiai® + (Gt + Guo1)T
i=n—2v+1 i=—v+1
n—v—1 n—2v
= Z 920-n-1-iT'+ Z 920-14i%" + (Go—1 + gn-1)2"".
1=n—2v+1 i=—v+1

Careful comparison shows that elements:ag) and (i + 1, j + 1) of matrix " are the same
for the casdé) < i,j7 < n — 2. ThereforeT is a Toeplitz matrix. O]
Now we present an example to illustrate the above transfitomalet {z'=%|0 < i < 6} be

the SPB for the irreducible trinomial” + «* + 1. MatricesZ and T are as follows:

ay + ag as a9 ay agp ag as
as +ayp ag+ ag as a9 ay Qao Qg
ag +as as+a; a4+ Qo as ag ay Qo
Z=| ag+as ag+as as+ar as+ay as s aq ,
ai ag ag as ay asz + ag ag + as
as ay Qg Qg as ay as + ag
as 5] ay Qg Qe as Q4
and
ay Qg Qg as ay as + ag a9 + as
as a ap ag as ay as + ag
as Q2 aq Qo Qg as Q4
T = ay + ag as as aj ap Qg as
as + a1 ag + ag as ag ay Qo Qg
ag +az as+a; a4+ ag as a9 a ap
apg+as ag+as as+a; ag+ag as as a

It is clear that the transformation froti to 7" requires no logic gates, and the complexity to

form Z was presented in [19] as follows.
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Gate delay = 17;
n—1 2k #n,
n/2 2k =n.

XOR gates =

For U as given in (9), it is clear that' is obtained fromD = T'A with no additional logic
gates.

Table | compares the asymptotic complexity of proposed tcocsons with those of the
existing polynomial-based multipliers for the trinomialf (u) = u" +v* +1 (1 < k < [n/2]),
wheren = 2! or 3'. Since no irreducible binary trinomial exists for the cage, we will assume
that the multiplication operation is performed in the ri6g(2)[u]/(f(u)), where f(u) is a
trinomial andn = 2° (i > 2), so that the discussion of the asymptotic complexity is rimegal.
Please note that the gate delay value given in [20] and [31} isg, n)Tx + T4 for the case
n = 2'. But oneTx gate delay may be saved for the case- 2, since the gate delay for

computing expressions in the square brackets of
(alx + G,Q)(bl{lf + bo) = a1b1x2+([(a1 + ao)(b1 + bo)] —+ [Cl,lbl + aobo])l' + CI,QbO

is Ty + Tx. However, this does not improve the asymptotic gate delagesthe overlapping
occurs whem > 2. Similarly, oneTx gate delay may also be saved for the case ef 3.

We also note that for the case/2] < k < n, thepolynomial-based multipliers requires more
XOR gates and delays than values listed in the table since than two reduction operations

are performed [6].
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TABLE |

COMPAWSONSOFSOMESELECTEDSUBQUADRKHCMULﬂPUERSFOR::H.

b Multipliers #AND #XOR Gate delay
5 Karastuba [20]| n'°523 | 6n'°%2% —6n 4+ &k —1 (Blogom+ 1)T'x +Ta
Proposed nlog23 | 55pl0823 _5p 0.5 (2logyn + 1)Tx + Ta

Winograd [31] | n'*#26 | 8ploes® _16p 4 —1 | (4loggn+ 1)Tx + Ta

15

Proposed nlogsb | 2Zplogs6 _ 4y % (Blogom+ 1)T'x +Ta

C. New SPB Multipliers for Special Pentanomigls:) = u"+u* 1 +u¥+u’"1+1 (1 < v < n—1)

For this special type of pentanomials, we transfdfrimto Toeplitz matrixI” via the following
lemma.

Lemma 5:Let f(u) = u"+u* +u’+u’"1+1 (1 < v < n—1) be an irreducible pentanomial,
and Z be the matrix defined in (6). Let matrix

0 IW—MXW—M_%JW—MXW—M
Lysw + 3, 0

VXU

U=

where J,«, is av x v matrix with the single entry0,v — 1) = 1 and all remaining entries being
0. ThenT = UZ is a Toeplitz matrix.

Proof: Letg = 2/~"b = 327" giz"™" (0 < j < n — 2). Thus thej-th column of Z in (6),
i.e., Z;, is the column vector consisting of the SPB coordinates @hehtg. Then columnZ,.,

is the coordinate column vector of element

n—1 n—2
rg = g = gt 4 g (@ + a2 + 14 )
=0 =0
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Let g andzg be the two elements aff F'(2") whose SPB coordinates form columpsand

j + 1 of matrix T', respectively. Because of premultiplication @fto Z, we can write

g

n—1

(Go+ gn-1) + Y gix"‘“] z™"
1

1=v+

v—2

Zgﬂi_v + (go—1 + 90)93_1] "+
i=0

v—2

n—1
= (Go+ gn-1)r" + Z gir' ¥ + Z Gix ™t 4+ (go + gu—r)a" !
i=v+1 i=0

v—3

Gnr2 ™"+ g™ 4 (gua + Gnr + gn_l):c‘ll a"
1=0

n—2
+ (gv—l + Gn-1+ gn_g) —+ (gv —+ gn—l)l’ + Z gixi—v+1] 77

i=v+1

n—1 v—2
(gv_l + Gns +gn_1)x_v + (QU +gn_1)$_v+1+ Z gixi—2v+l + ZgﬂHn_%H-
i=v+1 i=0

Careful comparison shows that elementg:aj) and (i + 1,5 + 1) of matrix 7" are the same

for the caseé) < i,j7 < n — 2. ThereforeT is a Toeplitz matrix. O]

Row operations described in the above lemma are as follows.

(1) XOR row 0 to rowwv — 1;

(2) XOR rown — 1 to row v;

(3) place the lowern — v rows on the top of upper rows.

Therefore, instead of computing = (co,c1,- -+ ,cn1)? = Z(ag, a1, ,a,_1)T, we compute

D = (do,dy,- -+ ,dn_1)T =T(ag, a1, -+ ,a,_1)" first, where

(

Cy + Cp—1 ZZO)

Citv 1<i<n—v—1,
di:

Citv—n n—vé’ién—l

Cy—1 T Co 1=n—1.
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Then we obtain coordinates ¢f from D as follows and it requires only 2 XOR gates.

;

dn_v+i OSZSU—z,
dp—1+ dp—y 7::1)_17

C; =
dp—v1+dy i= v,

di_y v+1<i<n-—1.

\

Now we summarize explicit expressions of the first row and ftret column of matrix7

below. They are obtained by applying the above transfoonaton the coordinate expressions

of Z in [35].
= 0<i<v—1,
by + b1 1=,
- byt + bp_o+ by i=v+ 1,
boy—i + brtv—1-iTbnyv—i + bngori— v+2 <1< 2o,
brtv—1—i + bpgv—i + bpgos1—i + bngou—i 2v+1<i<n-—2,
by + byy1 + byyo + bopyr + bpy t=n-—1,

’b2v+i 0<i<n-—2v-—1,
boy—_nti n—2v<i1<n—uv—2,
bo + by—1 t=n—v-—1,

Tio=19q bo+bi+0b, t=n-—uv,
bav—n+i T bo—1-nti + by—nti + bup1-nti n—v+1<i<n-3,
bo + by—3 + by_o + by_1 + bay_2 t=n-—2,
bi + by—2 + by—1 + by + by t=mn—1.

\

Remark 3: Since some signals may be reused, a totadIaf delays and no more tha[rgnj

2-input XOR gates are required to compute all elements sf Theplitz matrix.

D. Comments

In the previous subsection we have considered a special dypeeducible pentanomials.
By carefully choosing other types of irreducible pentarasit is possible to reduce the space

and time complexities for generating the Toeplitz maffixand for obtaining the final product
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vector C'. For example, consider a very special class of pentanorofathe form f(u) =

u?® + w3 4+ u® +u® + 1 of degreen = 4s with s > 0 andv = 2s. Such ans-equally-spaced
pentanomial is irreducible if = 5° (: > 0) [11]. These equally-spaced irreducible pentanomials
are not that abundant, however they can reduce the spac@mnddmplexities for obtaining’

and C. For example, applying the following transformation matthe use of such an equally-
spaced irreducible pentanomial of degreeequires).75n XOR gates andT'x delay for7 and
0.5n XOR gates andTx delay forC

0 Taxg + Kaxz

T
Lyxg + Ky 0

2
where Ky is a g x § matrix with its entry at(i,i + ) = 1 for 0 < i < 4 —1 and all
remaining entries being 0.

Slightly different complexity results, namely75n XOR gates andT’x delay for7 and0.5n
XOR gates an®7'y delay forC, are obtained using the following transformation matrix.

0 0 Ise O
Ly

0 Ioyn 0 0
Iixg 0 Ipg 0

IV. ALGORITHM FOR DESIGNING SUBQUADRATIC SPACE COMPLEXITY PARALLEL GF'(2")

MULTIPLIERS

In order to design application-specific circuits, differéevels of abstraction may be used to
describe the hardware. Normally, a higher abstraction lenaides more flexibility, and a lower
one provides a better performance.

In Section Il, complexity results for Toeplitz matrix-vectproduct are given fob = 2 and
3. Let us denote these two primes@as= 2 andp, = 3. It is possible to find corresponding

complexities for other small primes, say =5,p, =7, , pw, by transposing the polynomial



18

multiplication algorithm in [34] or [25], [2]. Since we haveomplexity results for more than
one prime, the following two questions arise:

(1) If p;pj|n, wherel <i < j < w, and complexity results for both, andp, are available,
how to choose a sequence of these to obtain a lower compkotitgme?

(2) If none of thep;,'s (1 < i < w) are factors ofn, how can these complexity results be
applied?

We first discuss question (1). Let= p;p,t, and letQ(¢, p;, p;) denote the algorithm that first
applies the complexities correspondingptoand then those corresponding;ip

For the Toeplitz matrix-vector multiplication scheme, tKOR gate complexity of algorithm

Q(t,pj,p;) is described as follows:

(2t = 1)S) (p:) + pit - S,,% (pi) +

S5(ps) [ (2t = 1SN (py) +1- Sy 2 (py) + S5 (py) - S2(1)]

whereS®(t) denotes the number of addition operations required to coertbe Toeplitz matrix-
vector product of size, Slff_(pj) the number of multiplication operations corresponding to
pj» S} (p;) and S} ®(p;) the number of addition operations of submatrices and stibrgec
corresponding tq;, respectively (if the dimension of the submatrixlis< 1 then S; (p;) =
SMP(p;) + Sy ®(ps)). Since the above space complexity involves parameieasd p;, we now
make a comparison for the special casenof 6t. The XOR gate complexities of algorithms
Q(t,3,2) andQ(t,2,3) are 78t — 17+ 18 - S®(¢) and80t — 17 + 18 - S¥(¢), respectively. Since
both algorithms have the same AND gate complexities and delieys, algorithn()(¢, 3, 2) is
preferable.

There are two possible solutions to the second questionfifidtene is to pad two zeroes in
the Toeplitz matrix and one zero at the end of the vector, Bed apply the complexity results

for p1. = 2, po = 3, etc. The second one is to delete the first row and the lastroolof the
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Toeplitz matrix and the last element of the vector, and theplyathe complexity results for
p1 = 2, po = 3, etc. The deleted elements are processed separately.

Based on the above discussions, we now present a recurssigndagorithm for efficient
construction of the proposed subquadratic space comylaxittipliers. Toeplitz matrixI’ are
constructed first in the main program, then the recursivequores are invoked, which output a
set of explicit boolean equations. These expressionsuavohly assignment, AND and XOR
operations. For example,

T14][0j[0][0] = T3][2][0][0] & T(3][2][0][1] & T'[3][2][0][2]; and

C[9] = C19] @ T4][1][0][0] @ V4][1][0].

Therefore a lower level abstraction, e.g., the gate leveéfarilog HDL, is provided for the
design of the multiplier. In the following, only the recwsiprocedure for the Toeplitz matrix-
vector product§ = 2'(: > 0)) is presented. We note that the proposed design algorithyn ma
also be modified for the construction of thelynomial-based subquadratic space complexity
multipliers.

Algorithm A1l: Design algorithm for the subquadratic space complexitytipligrs.

Input: Values ofn andw.

Output: Program for computing = ab in GF(2").

{
Clear the output vectof';
Construct Toeplitz matrix’ from B;
Construct vectoV from A;
Toeplitzmvp(n, 0O, 0, 0);
Perform the coordinate transformation.
}

Subprogram: Toeplitzmvp(INTEGER: fsize, flvl, fblk_num, pos)
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{r

fsize: The size of the input vector.

flvl: The calling level.

fblk_num: The block number of the submatrix.

pos: The final position that this matrix-vector product will XO®.
*/

INTEGER: cblk_num = 0, clvl = flvl + 1; [/ local variables

IF (fsize = 1) THEN {
Print the sentenceC[pos| = C[pos| @ (M [flvl][fblk_num][0][0] @ V[ flvl][fblk_num][0])".
return;}
IF (0 = fsize mod 2) THEN
Il Print sentences for computing,
Print the sentence for computing each entry offcligéE X % submatrix7} + Ty; which
looks like
“Tlelvl][eblk_num][i][j] = T[fIol][folk_num][i][j]@T [ fIl][folk_num][i][j+ fsize/2]",
where( <i,j < fsize/2;
Print the sentence for computing each entry Ofaf-%é‘f x 1 subvectort;, which looks like
“Vlcll][eblk_num][i] = V[fll][fblk_num]|[i + fsize/2]", where0 < i < fsize/2;
Toeplitzmvp(f size/2, clvl, cblk_num, pos);
cblk_num++;

/l End of computingP,

/I Print sentences for computing
Print the sentence for computing each entry of i?gé? X % submatrix7; + T5;

Print the sentence for computing each entry of f—ligé? x 1 subvectorj;
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Toeplitzmvp(fsize/2, clul, cblk_num, pos + fsize/2);
cblk_num++;

/l End of computingP;

/I Print sentences for computing,

Print the sentence for computing each entry of i?gé? X % submatrix7;;

Print the sentence for computing each entry of f-ligé? x 1 subvectorV, + Vi;

Print sentences for operations “PUSH vecigron the stack”;

Print sentences for operations “Set veci@rto 07;

Toeplitzmvp(fsize/2, clvl, cblk_num, pos);

cblk_num=++;

Print sentences for operations “XOR to P, and F,”,

Please note that vectdt, is on the stack, and vectdr, is in the position ofF,.;

Print sentences for operations “POP modified vectpfrom the stack”;

/I End of computingP,

} ELSE {// Padding

Print sentences for padding zeroes after the last elemémbsiwix 7’s first row and first
column;

Print the sentence for padding a zero after the last elenfeveaor V;

Print the sentence “PUSH(pos + fsize]);”;

Toeplitzmvp(fsize + 1, flvl, folk_num, pos);

Print the sentence “PO®(pos + fsizel);”;

}
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V. CONCLUSIONS

A new scheme for the subquadratic space complexity panallgliplier has been presented.
Both the space complexity and the asymptotic gate delay efptioposed multiplier are lower
than those of the best existing subquadratic space conlearallel multipliers. For practical
applications, the hybrid structure developed in [24] magoadbe modified to reduce the gate
delay of the proposed multipliers at the cost of a slightease in the space complexity.

A recursive design algorithm has also been proposed foiiefticonstruction of the proposed
subqguadratic space complexity multipliers. It may be medifor the construction of the existing
polynomial-based subquadratic space complexity multipliers.

While there appears to be no scheme known to directly use¢ld&mown Karatsuba algorithm
to design the subquadratic space complexity dual, weakbl dnd triangular basis parallel
multipliers [3], [4], [17] and [18], the proposed matrixater product approach can be used for
these bases. Namely, far b € GF(2") let a be represented with respect to a polynomial basis
andb be by the dual, weakly dual or triangular basis of the polym@btnasis. Then the product
c = ab can be written as a matrix-vector produ¢t= H(ag,ai,--- ,a,_1)’, where H depends
on b and the field generating irreducible polynomial. Explicipeessions of entries off and
the complexity to computdd can be found in the above corresponding references. In these
casesH is not a Toeplitz matrix, but a Hankel matrix, i.e., entri¢giaj) and(i — 1,7+ 1) are
equal. We may first exchange columAs and H,,_;_; for 0 < i < n/2, and reverse the column
vector (ag, a1, - -+ ,a,_1)T. Then perform the Toeplitz matrix-vector product. An aitive is to
obtain the Hankel matrix-vector product formulae, whick ammilar to those in Section Il and
have the same asymptotic complexities. It is noted that modioate transformation is required
for these parallel multipliers, which use the polynomiasisao represent input and use the

corresponding dual, weakly dual, or triangular basis teesgnt the other inpétand the product
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We also note that although the proposed matrix-vector mrodpproach may be used to
design the subquadratic space complexity polynomialteshipolynomial, dual, weakly dual
and triangular basis parallel multipliers, the gate delathe SPB multiplier is always equal to
or lower than those of other multipliers. For example, if wansider the irreducible trinomial
f(u) = u™ +u"1 4+ 1, then generating matri¥’ requires2T’x gate delays for the SPB, but at
least(log, n)Tx for another bases.

Finally, although the results presented here are primé&oiyhardware implementations, our
Toeplitz matrix-vector product based approach can alsopfpdieal to implement a software

multiplier using general purpose processors.
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