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Abstract

Elliptic curve cryptosystems have become increasingly popular due to their efficiency

and the small size of the keys they use. Particularly, the anomalous curves introduced

by Koblitz allow a complex representation of the keys, denoted τNAF, that make the

computations over these curves more efficient. In this report, we propose an efficient

method for randomizing a τNAF to produce different equivalent representations of the

same key to the same complex base τ . We prove that the average Hamming density of

the resulting representations is 0.5. We identify the pattern of the τNAFs yielding the

maximum number of representations and the formula governing this number. We also

present deterministic methods to compute the average and the exact number of possible

representations of a τNAF.

1 Introduction

Elliptic curve cryptosystems (ECCs) have become increasingly popular due to the efficiency of

their computations and the small size of their keys compared to RSA and discrete logarithm-

based systems. They rely on the hardness of solving the discrete logarithm problem (DLP)

in the additive group of points on the elliptic curve E defined over a finite field Fq. The core

and most costly operation in ECCs is the scalar multiplication, i.e., computing the point kP
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where P is a point on the curve and k is an integer that is usually the secret. This operation

is basically performed using the binary algorithms [10], which are also called double-and-add

algorithms when used with additive groups. This operation can be performed more efficiently

on Koblitz curves than on other curves.

Koblitz curves [11] are elliptic curves defined over F2. Their advantageous characteristic is

the Frobenius mapping which can be exploited to replace the point doubling operation with

a simple squaring of the underlying field elements, i.e., the point coordinates [16]. Hence,

the point multiplication algorithm can be executed in a much shorter time. This technique is

generally not as efficient when using an arbitrary endomorphism. In order to use this mapping

efficiently, Solinas [16] has shown how to represent the scalar k in a number system of base

τ , where τ is a complex number representing the squaring map. His representation also is

characterized by being a non-adjacent form where no two adjacent symbols are non-zeros, in

order to minimize the number of point additions. A brief background on this representation is

presented in Section 2. In Section 3, we present our experimental results on an open problem

proposed by Solinas. This problem questions the uniform distribution of points resulting from

multiplying a randomly chosen τ -adic NAF by an input point.

In Section 4, we present an efficient algorithm that takes as input the τ -adic NAF (τNAF)

representation and produces a random τ -adic representation for the same scalar value. The

symbols of the randomized τ -adic representation are output one at a time from right to left

which allows the execution of the right-to-left scalar multiplication along with the randomization

algorithm without the need to store the new representation. The model of our algorithm has

enabled us to derive a number of interesting results with regard to τ -adic representations that

we present subsequently. The characteristics of τNAFs that have the maximum number of

representations and formulas describing that number are presented in Section 5. The average

Hamming density of the representations is derived in Section 6. Deterministic methods for

determining both the average and the exact number of representations of τNAFs of a certain

length are presented in Section 7. Finally, Section 8 contains the conclusion and future work.

2 Koblitz Curves and the τ-adic Representation

Koblitz curves [11]—originally named anomalous binary curves—are the curves Ea, a ∈ {0, 1},
defined over F2

Ea : y2 + xy = x3 + ax2 + 1 (1)

Ea(F2m) is the group of F2m-rational points on Ea. Let µ = (−1)1−a, that is µ ∈ {−1, 1}.
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The order of the group is computed as

#Ea(F2m) = 2m + 1 − Vm, (2)

where {Vh} is the Lucas sequence defined by

V0 = 2, V1 = µ and Vh+1 = µVh − 2Vh−1 for h ≥ 1.

The value of m is chosen to be a prime number so that #Ea(F2m) = f · r is very nearly

prime, that is r > 2 is prime and f = 3 − µ.

The main advantage of Koblitz curves when used in public-key cryptography is that scalar

multiplication of the points in the main subgroup, the group of order r, can be performed

without the use of point doubling operations. This is due to the following property. Since these

curves are defined over F2m , then if P = (x, y) is a point on Ea, then the point (x2, y2) is on

the curve, as well. That is the Frobenius (squaring, in this case) endomorphism τ : Ea(F2m) →
Ea(F2m) defined by

(x, y) 7→ (x2, y2), O 7→ O

is well defined. It can also be verified by point addition on Ea that

(x4, y4) + 2(x, y) = µ · (x2, y2).

Hence, the squaring map can be considered as a multiplication by the complex number τ

satisfying

τ 2 + 2 = µτ, (3)

that is

τ =
1

2
(µ +

√
−7).

The norm of τ is 2. Thus, it is beneficial to represent the key k as an element of the ring Z[τ ],

i.e.,

k =
l−1
∑

i=0

κiτ
i (4)

for some l. We can therefore carry the scalar multiplication kP of a point P on Ea more

efficiently by replacing the doubling operation in the double-an-add algorithm by the squaring

map.

In [16], Solinas has shown how to represent k as in (4) in its τ -adic non adjacent form

(τNAF) where κi ∈ {−1, 0, 1} and κiκi+1 = 0 for i ≥ 0—abusing the notation, we will refer to

κi as a signed bit or sbit. However, this results in l ≈ 2m. Therefore, he proposed a reduced
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τ -adic non adjacent form (RTNAF) for k where k is reduced modulo δ = (τm − 1)/(τ − 1),

hence l = m + a. He has proven that in a τNAF representation the number of 0s is 2
3

on

average. He also mentioned that 1 and -1 are equally likely on average.

3 τNAFs of length m + a and their Distribution

To obtain a key represented in a reduced τNAF, we can choose an integer n ∈ [1, r − 1], and

apply Solinas’ method to produce its RTNAF. Alternatively, as Solinas suggests [16], we can

directly choose a τNAF of length m + a as follows: the first sbit is generated according to the

following probability distribution

κi =















0 Pr(0) = 1/2

1 Pr(1) = 1/4

1 Pr(1) = 1/4.

(5)

We follow each 1 or 1 with a 0, and after each 0 the subsequent sbit is generated according to

the distribution in (5).

This method can be verified as follows. We can consider the sequence of sbits in a random

τNAF as a Markov chain of three states, namely 0, 1 and 1. We have the limiting probabilities

as follows [16]

π0 = 2/3 and π1 = π1 = 1/6. (6)

Also, from the properties of the NAF representation, we know that a 1 or a 1 must be followed

by a 0. Hence we have the following transition probabilities

P10 = P10 = 1 and P11 = P11 = P11 = P11 = 0. (7)

It remains to determine P00, P01 and P01, which we can calculate by solving the equation

πP = π, (8)

where π = (π0 π1 π1) and P is the transition matrix

P =









P00 P01 P01

1 0 0

1 0 0









(9)

We obtain a unique solution to (8) which is

P00 = 1/2 and P01 = P01 = 1/4. (10)
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The sequence obtained by this method is selected from the set of all τNAFs of length

m + a. As stated by Solinas [16], their number is the integer closest to 2m+a+2/3, whereas

the order of the main subgroup is r ≈ 2m−2+a. That is the average number of sequences that,

when multiplied by a given point P , would lead to the same point in the main subgroup is

16/3. The deviation from this average is an open problem. We have calculated this deviation

experimentally for E1 over small fields as follows.

We have generated all τNAFs of length m + a for small m. We have then reduced each of

them modulo δ, and stored how many times each of the r lattice point λ0 + λ1τ (λi ∈ Z) in V ,

which is the region spanned by the elements of Z[τ ]/δZ[τ ], is mapped. The mean and standard

deviation of the distribution of the number of mappings for E1(F2m) for small m are shown in

Table 1.

Table 1: The mean and standard deviation of the number of times the lattice points of the
region V were mapped by all τNAFs of length m + 1.

m 7 11 17 19 23
r 71 991 65587 262543 4196903

mean 4.803 5.511 5.329 5.325 5.330
standard
deviation

0.721 0.734 0.523 0.502 0.482

As we can see from Table 1, the deviation is small and is decreasing starting from m = 11.

Also, in our experiments the number of times a lattice point was mapped was at most 8.

4 Randomizing the τ-adic Representation of an Integer

Now, having the key represented as a τNAF, we will present a randomization algorithm to

obtain a different τ -adic representation of the key. The technique used in this algorithm is

similar to the one used by Ha and Moon [7] to randomize the binary representation of the key.

The difference is in the state representation which is similar to the one used in [4].

The algorithm can be implemented as a look-up table as in Table 2 for the curve E1. The

sbit sequence of the key is scanned from the least significant end to the most significant end.

The current state si is the combination of the current sbit κi and the carry sbits (c2i
c1i

c0i
)τ .

Based on the next sbit κi+1 and the random decision bit ri, the output sbit di and the next

state si+1 are determined. Depending on whether κ0 is 1, 0 or 1 the first state S0 will be s4,

s12 or s20 respectively where the carry sbits are initialized to 0. Note that only the states in

Table 2 are reachable, that is, not all combinations of the carry sbits occur in the algorithm.
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We will illustrate the calculation of the carry sbits and the state transitions using the

following example. Let k = (100101)τ . Then, κ0 = 1 and c20
= c10

= c00
= 0 (S0 = s4). If

r0 = 0, d0 = κ0 = 1, the carry sbits don’t change and the next state S1 = s12. Otherwise,

d0 = 1. To change the value of κ0 from 1 to 1, we should add (−2)τ to the remaining sbits of

k. For the curve E1, −2 = τ 2 − τ = (110)τ . This makes the carry sbits c21
= 0, c11

= 1, c01
= 1,

and the next state S1 = s14.

The output sbit di is determined by κi+c0i
. If the latter is 0, then di = 0, and the carry sbits

are adjusted accordingly, e.g., as in the states s2 and s3 in Table 2. Otherwise, if κi + c0i
= ±1,

then if r = 0, then di = κi + c0i
, else di = −(κi + c0i

) and a ±(11)τ is added to (c2i
c1i

)τ .

Note that the output di is determined along with the next state Si+1. In other words, when

the algorithm is in state Si, the last sbit that was sent to the output is di−1.

Table 2: State transition table for the randomized τ -audic representa-

tion for the curve E1.

State Input Output
Next

state

Si κi c2i
c1i

c0i
κi+1 ri di c2i+1

c1i+1
c0i+1 Si+1

s1 1 0 1 0 0 0 1 0 0 1 s11

0 1 1 1 0 0 s16

s2 1 0 1 1 0 × 0 0 0 1 s11

s3 1 0 0 1 0 × 0 0 1 1 s14

s4 1 0 0 0 0 0 1 0 0 0 s12

0 1 1 0 1 1 s14

s5 1 0 0 1 0 × 0 0 0 0 s12

s6 1 0 1 1 0 × 0 0 1 0 s15

s7 1 0 1 0 0 0 1 0 0 1 s13

0 1 1 0 1 0 s15

s8 0 1 0 0 1 × 0 0 1 0 s1

0 × 0 0 1 0 s9

1 × 0 0 1 0 s17

s9 0 0 1 0 1 × 0 0 0 1 s3

0 × 0 0 0 1 s11

1 × 0 0 0 1 s19

s10 0 0 1 1 1 0 1 0 0 1 s3
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Si κi c2i
c1i

c0i
κi+1 ri di c2i+1

c1i+1
c0i+1 Si+1

1 1 1 0 1 0 s1

0 0 1 0 0 1 s11

0 1 1 0 1 0 s9

1 0 1 0 0 1 s19

1 1 1 0 1 0 s17

s11 0 0 0 1 1 0 1 0 0 0 s4

1 1 1 0 1 1 s6

0 0 1 0 0 0 s12

0 1 1 0 1 1 s14

1 0 1 0 0 0 s20

1 1 1 0 1 1 s22

s12 0 0 0 0 1 × 0 0 0 0 s4

0 × 0 0 0 0 s12

1 × 0 0 0 0 s20

s13 0 0 0 1 1 0 1 0 0 0 s4

1 1 1 0 1 1 s2

0 0 1 0 0 0 s12

0 1 1 0 1 1 s10

1 0 1 0 0 0 s20

1 1 1 0 1 1 s18

s14 0 0 1 1 1 0 1 0 0 1 s5

1 1 1 0 1 0 s7

0 0 1 0 0 1 s13

0 1 1 0 1 0 s15

1 0 1 0 0 1 s21

1 1 1 0 1 0 s23

s15 0 0 1 0 1 × 0 0 0 1 s5

0 × 0 0 0 1 s13

1 × 0 0 0 1 s21

s16 0 1 0 0 1 × 0 0 1 0 s7

0 × 0 0 1 0 s15

1 × 0 0 1 0 s23

s17 1 0 1 0 0 0 1 0 0 1 s11

0 1 1 0 1 0 s9

s18 1 0 1 1 0 × 0 0 1 0 s9

s19 1 0 0 1 0 × 0 0 0 0 s12

s20 1 0 0 0 0 0 1 0 0 0 s12
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Si κi c2i
c1i

c0i
κi+1 ri di c2i+1

c1i+1
c0i+1 Si+1

0 1 1 0 1 1 s10

s21 1 0 0 1 0 × 0 0 1 1 s10

s22 1 0 1 1 0 × 0 0 0 1 s13

s23 1 0 1 0 0 0 1 0 0 1 s13

0 1 1 1 0 0 s8

The algorithm keeps scanning the l sbits of the input τ -adic NAF, starting from the least

significant end, moving from a state to another according to the look-up table. When the most

significant sbit κl−1 is reached, the algorithm is in state Sl−1, with the last output bit dl−2.

To exit the algorithm from the state Sl−1, the value of the current sbit κl−1 should be

added to the carry (c2l−1
c1l−1

c0l−1
)τ and sent to the output. We can see from Table 2 that,

for all states, the result of this addition cannot exceed three sbits. Hence, the output τ -adic

representation can be of length at most l + 2. This exit step is equivalent to prepending at

most three 0s to the τNAF and continuing the algorithm as before with all subsequent random

decisions ri = 0. The algorithm then stops when the state s12 is reached, since in this state

κi = c2i
= c1i

= c0i
= 0. As with adding the carry to the current sbit, it can be verified from

Table 2 that the paths from all states to s12 are at most three transitions long. We will refer

to those paths as exit paths. However, from some states, there exist two exit paths that satisfy

this length restriction. For example, if Sl−1 = s4, then Sl = s12 and dl−1 = 1. Alternatively,

Sl = s14, Sl+1 = s13, and Sl+2 = s12, with the respective output dl−1 = 1, dl = 1, dl+1 = 1. The

alternate exit paths apply also to the states s7, s10, s11, s13, s14, s17 and s20.

The same randomization technique can be applied to the τ -adic representation of integers

when the points are on the curve E0. In this case, 2 = −τ 2 − τ = (110)τ , which will produce

different carry sbits than for the curve E1, and hence different states. Those states and the

transitions between them are listed in Table 3. We have included the representations of the

τNAFs of length 1 ≤ l ≤ 6 on the curve E0 in Appendix A.
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Table 3: State transition table for the randomized τ -audic representa-

tion for the curve E0.

State Input Output
Next

state

Si κi c2i
c1i

c0i
κi+1 ri di c2i+1

c1i+1
c0i+1 Si+1

s1 1 0 1 1 0 × 0 0 1 0 s14

s2 1 0 1 0 0 0 1 0 0 1 s11

0 1 1 0 1 0 s14

s3 1 0 0 1 0 × 0 0 1 1 s15

s4 1 0 0 0 0 0 1 0 0 0 s12

0 1 1 0 1 1 s15

s5 1 0 0 1 0 × 0 0 0 0 s12

s6 1 0 1 0 0 0 1 0 0 1 s13

0 1 1 1 0 0 s8

s7 1 0 1 1 0 × 0 0 0 1 s13

s8 0 1 0 0 1 × 0 0 1 0 s2

0 × 0 0 1 0 s10

1 × 0 0 1 0 s18

s9 0 0 1 1 1 0 1 0 0 1 s3

1 1 1 0 1 0 s6

0 0 1 0 0 1 s11

0 1 1 0 1 0 s14

1 0 1 0 0 1 s19

1 1 1 0 1 0 s22

s10 0 0 1 0 1 × 0 0 0 1 s3

0 × 0 0 0 1 s11

1 × 0 0 0 1 s19

s11 0 0 0 1 1 0 1 0 0 0 s4

1 1 1 0 1 1 s7

0 0 1 0 0 0 s12

0 1 1 0 1 1 s15

1 0 1 0 0 0 s20

1 1 1 0 1 1 s23

s12 0 0 0 0 1 × 0 0 0 0 s4

0 × 0 0 0 0 s12
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Si κi c2i
c1i

c0i
κi+1 ri di c2i+1

c1i+1
c0i+1 Si+1

1 × 0 0 0 0 s20

s13 0 0 0 1 1 0 1 0 0 0 s4

1 1 1 0 1 1 s1

0 0 1 0 0 0 s12

0 1 1 0 1 1 s9

1 0 1 0 0 0 s20

1 1 1 0 1 1 s17

s14 0 0 1 0 1 × 0 0 0 1 s5

0 × 0 0 0 1 s13

1 × 0 0 0 1 s21

s15 0 0 1 1 1 0 1 0 0 1 s5

1 1 1 0 1 0 s2

0 0 1 0 0 1 s13

0 1 1 0 1 0 s10

1 0 1 0 0 1 s21

1 1 1 0 1 0 s18

s16 0 1 0 0 1 × 0 0 1 0 s6

0 × 0 0 1 0 s14

1 × 0 0 1 0 s22

s17 1 0 1 1 0 × 0 0 1 1 s11

s18 1 0 1 0 0 0 1 0 0 1 s11

0 1 1 1 0 0 s16

s19 1 0 0 1 0 × 0 0 0 0 s12

s20 1 0 0 0 0 0 1 0 0 0 s12

0 1 1 0 1 1 s9

s21 1 0 0 1 0 × 0 0 1 1 s9

s22 1 0 1 0 0 0 1 0 0 1 s13

0 1 1 0 1 0 s10

s23 1 0 1 1 0 × 0 0 1 0 s10

For this curve, the states that have two exit paths are s2, s4, s9, s11, s13, s15, s20 and s22.
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5 τNAF with the maximum number of representations

Let k be a τNAF of length l sbits and λ(k, l) be the number of τ -adic representations of that

key. Note that those representations are of length at most l+2 as in Section 4. In the following,

we will focus our discussion on “positive” keys, i.e., those having κl−1 = κl−2 = . . . = κi = 0

and κi−1 = 1 for some 0 < i ≤ l. Since −k is obtained from k by interchanging the 1s

with the 1s, in the same way the representations of −k can be obtained from those of k,

hence, λ(k, l) = λ(−k, l). Let kmax,l be the key of length l that has the maximum number of

representations among other keys of the same length (cf. Table 10 in Appendix A). Also, let

α(k, l) be the number of representations of k that are of length at most l sbits. Then, we can

prove the following theorem.

Theorem 1 Let l ≥ 1 and w = ⌊ l−1
2
⌋. For l odd, kmax,l = τ 2w +

∑w−1
i=0 (−1)w−1−iτ 2i. For l even,

kmax,l =
∑w

i=0(−1)w−iτ 2i. And for any τNAF k of length up to l + 3, α(k, l + 2) ≤ λ(kmax,l, l).

Moreover, for l ≥ 3, λ(kmax,l, l) = λ(kmax,l−1, l − 1) + λ(kmax,l−2, l − 2).

In order to prove the theorem, we will need the following lemmas.

Lemma 1 If k is divisible by τ e then λ(k, l) = λ( k
τe , l − e).

Proof. Looking at Table 2 and Table 3, we find that random decisions are made at the states

where κi + c0i
= ±1. In this case, there are two possible transitions emerging from these

states, that is there are two possible paths that can be followed, each yielding a family of

representations where the sbit di is either 1 or 1.

When the least significant sbit(s) (LSSB(s)) is (are) 0, the algorithm enters state s12 and

does not exit this state until the first 1 or 1 is encountered. Until then, there are no new

representations that are formed, and the least significant 0s are sent to the output as they are.

Any other representation formed thereafter will have the same number of least significant 0s as

k.

In other words, if k is divisible by τ e, so are its representations. That is, they will all have

e least significant 0s. Therefore, the possible representations for k when represented in l sbits

will be the same representations for k
τe when represented in l − e sbits with e 0s appended to

each of the latters. �

Lemma 2 If k is a τNAF of length l and k ≡ (−1)b (mod τ) where b ∈ {0, 1}, then the τNAF

of k + (−1)b is of length at most l + 3.
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Proof. To convert a number in a τ -adic form into a τNAF, we can use the transformations

given by Gordon [6] for the curve E1. The following transformations (and their negatives) are

the equivalent for the curve E0.

τ + 1 → −τ 2 − 1 (11 → 101), (11)

τ − 1 → −τ 3 + 1 (11 → 1001), (12)

2 → τ 3 + τ (2 → 1010). (13)

Now, consider the following cases for the least significant sbits of k ≡ 1 (mod τ) when 1 is

added, where the transformation (13) is used after the addition. Other cases are recursions

of the following ones. The subscript τ was removed since it applies to all of the following

representations.

(. . . 1001) + 1 = (. . . 0010),

(. . . 1001) + 1 = (. . . 2010),

(. . . 0101) + 1 = (. . . 1110) = (. . . 0010), using (11)

(. . . 10101) + 1 = (. . . 11110) = (. . . 01010), using -(12) (i.e., the negative of (12))

(. . . 10101) + 1 = (. . . 11110) = (. . . 21010), using -(12)

(. . . 100101) + 1 = (. . . 101110) = (. . . 111010) = (. . . 001010), using -(12) and (11)

(. . . 100101) + 1 = . . . = (201010), using -(12) and (11).

When any of the transformations (11) to (13) is used, the resulting carry will either cancel an

existing sbit, be added to a 0 or result in a 2 or -2. We can see from the above cases that the

absolute result of adding a carry to an sbit will not exceed 2. Thus, the resulting τNAF of

k + 1 is at most 3 sbits longer than k. The same argument applies to k ≡ −1 (mod τ). �

Lemma 3 For any τNAF k ≡ (−1)b (mod τ) of length l, where b ∈ {0, 1}, we have

λ(k, l) = λ(
k − (−1)b

τ 2
, l − 2) + α(

k + (−1)b

τ
, l + 1).

Proof. We will consider here the case of k ≡ 1 (mod τ) but the same arguments apply for

k ≡ −1 (mod τ). Again, note that λ(k, l) is the number of representations of k that are of

length at most l + 2. Since k mod τ 6= 0, this is also true for the τ -adic representations of

k. That is, their least significant sbit (LSSB) will be either 1 or 1. For those representations

that have 1 as the LSSB, if this 1 is replaced with 0, they will become representations of k− 1.

Since k is a τNAF, then k − 1 is a τNAF divisible by τ 2. From Lemma 1, we know that the

number of representations of k − 1 is λ(k − 1, l) = λ(k−1
τ2 , l − 2) and that those representations

will have their 2 LSSBs equal to 00. Therefore, they can all be used as representations of k by

replacing the least significant 0 with 1.
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On the other hand, for those representations that have 1 as their LSSB, if this 1 is replaced

with 0, they will become representations of k + 1. Since 2 = (110)τ for the curve E1 and

2 = (110)τ for the curve E0, we can see that k + 1 ≡ 0 (mod τ), hence all the representations

of k + 1 have 0 as their LSSB. Those representations that are of length l + 2, with their least

significant 0 replaced with 1, are counted among the λ(k, l) representations of k and their

number is α(k + 1, l + 2) = α(k+(−1)b

τ
, l + 1). �

The following lemmas are carried on E0 but they have corresponding lemmas on E1.

Lemma 4 For l odd and w = l−1
2

, if k = τ 2w +
∑w−1

i=0 (−1)w−1−iτ 2i, then
∑w−1

i=0 (−1)w−iτ 2i+1 + (−1)w is among the representations of k. In other words,
k−(−1)w

τ
= k+(−1)w−1

τ
=
∑w−1

i=0 (−1)w−iτ 2i.

Proof. Without loss of generality, let w be odd, then k = (1 0 1 0 1 0 . . . 1 0 1 0 1)τ . When

the least significant 1 is replaced by 1, 2 = (110)τ is added to k. Hence,

k = (1 0 1 0 1 0 . . . 1 0 2 1 1)τ

= (1 0 1 0 1 0 . . . 2 1 0 1 1)τ

= . . .

= (1 0 1 0 2 1 . . . 0 1 0 1 1)τ

= (1 0 2 1 0 1 . . . 0 1 0 1 1)τ

= (0 1 0 1 0 1 . . . 0 1 0 1 1)τ . �

Lemma 5 For l even and w = ⌊ l−1
2
⌋ = l

2
− 1, if k =

∑w
i=0(−1)w−iτ 2i, then τ 2w+3 + τ 2w+1 +

∑w−1
i=0 (−1)w−1−iτ 2i+1 +(−1)w−1 is among the representations of k. In other words, k−(−1)w−1

τ
=

k+(−1)w

τ
= τ 2w+2 + τ 2w +

∑w−1
i=0 (−1)w−1−iτ 2i

Proof. Without loss of generality, let w be odd. Then, k is of the form (0 1 0 1 0 . . . 1 0 1)τ .

As before, the least significant 1 can be replaced by 1 and −2 = (110)τ added to k. Hence, we

obtain the following

k = (0 1 0 1 0 . . . 2 1 1)τ

= . . .

= (0 1 0 2 1 . . . 0 1 1)τ

= (0 2 1 0 1 . . . 0 1 1)τ

= (1 1 0 1 0 1 . . . 0 1 1)τ

=(1 0 1 0 1 0 1 . . . 0 1 1)τ . �
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Lemma 6 Let k be τNAF of length l with κl−1 = 1 (1). Then, the representations of k that

are of length l + 2 will have dl+1 = 1 (1), where di are the sbits output from the algorithm as

in Table 3. Moreover, if dl−1 = 1 in any of the representations of k, then the length of this

representation is l + 2.

Considering Table 3, when the most significant sbit κl−1 = 1 is read, the algorithm will be

in one of the states s17 to s23. Representations that are of length l + 2 are resulting from those

states that have exit paths consisting of three transitions as solemn paths (s21 and s23) or as

alternate paths (s20 and s22). It can be easily checked from the table that the last output sbit

in all such paths is 1. It can also be checked that dl−1 = 1 only on the alternate exit paths

from s20 and s22, hence the second part of the lemma is proven. The same arguments applies

for κl−1 = 1. �

Now we employ the previous lemmas to prove Theorem 1 by induction.

Proof. From the algorithm using Table 3, we can verify the following (cf. Tables 4 to 6 in

Appendix A):

• λ((1)τ , 1) = 2, those two representations are (1)τ , (111)τ . kmax,1 = 1.

• λ((1)τ , 2) = 3, those representations are (1)τ , (111)τ , (1011). From Lemma 1, we have

λ((10)τ , 2) = λ((1)τ , 1) = 2. So, kmax,2 = 1.

• λ((101)τ , 3) = 5. kmax,3 = 101. The 5 representations are (101)τ , (11101)τ , (11)τ , (1111)τ ,

(10111)τ . The first 2 representations are the same representations of (100)τ for l = 3,

with 1 as the least significant sbit instead of 0. From Lemma 1, we have λ((100)τ , 3) =

λ((1)τ , 1) = 2. The remaining 3 representations are the same representations of (1)τ for

l = 2 shifted left by τ with 1 added. Note that the representations of 1 are the negative

of the representations of 1. Hence, λ((101)τ , 3) = λ((1)τ , 2) + λ((1)τ , 1).

• For all τNAFs k of length up to l + 3 = 6, α(k, 5) ≤ λ(kmax,3, 3). It is also true that

α(k, 3) ≤ λ(kmax,1, 1) and α(k, 4) ≤ λ(kmax,2, 2), not only for τNAFs of lengths up to 4

and 5, respectively but also for those up to length 6.

We see that Theorem 1 is true for l = 1, 2 and 3. Now assume that it is true up to some

length l − 1.

From Lemma 1, kmax,l ≡ (−1)b (mod τ), for b ∈ {0, 1}. From Lemma 3, we know that

λ(kmax,l, l) = λ(
kmax,l − (−1)b

τ 2
, l − 2) + α(

kmax,l + (−1)b

τ
, l + 1),

where at least one of the following conditions is true:
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• kmax,l−(−1)b

τ2 = kmax,l−2.

• α(
kmax,l+(−1)b

τ
, l+1) = λ(kmax,l−1, l−1), since, from Lemma 2,

kmax,l+(−1)b

τ
will be of length

at most l + 2 and we assume that for any τNAF k of length up to l + 2, α(k, l + 1) ≤
λ(kmax,l−1, l − 1) is true.

If there exists a τNAF k of length l for which both conditions are simultaneously true, then

this k is kmax,l.

Let l be odd and k of length l be equal to τ 2w +
∑w−1

i=0 (−1)w−1−iτ 2i where w = l−1
2

, that

is k ≡ (−1)w−1 (mod τ). Then, we have k−(−1)w−1

τ2 = τ 2(w−1) +
∑w−2

i=0 (−1)w−2−iτ 2i = kmax,l−2.

Also, from Lemma 4, we have k+(−1)w−1

τ
=
∑w−1

i=0 (−1)w−iτ 2i = −kmax,l−1. Since α(−kmax,l−1, l+

1) = λ(−kmax,l−1, l − 1) = λ(kmax,l−1, l − 1), then k = kmax,l.

Now, let l be even and k of length l be equal to
∑w

i=0(−1)w−iτ 2i where w = ⌊ l−1
2
⌋ = l

2
− 1,

that is k ≡ (−1)w (mod τ). Then, we have k−(−1)w

τ2 =
∑w−1

i=0 (−1)w−1−iτ 2i = kmax,l−2. Also,

from Lemma 5, k+(−1)w

τ
= τ 2w+2 + τ 2w +

∑w−1
i=0 (−1)w−1−iτ 2i = τ 2w+2 + kmax,l−1. According to

Lemma 6, the representations of kmax,l−1 that are of length l + 1 have their most significant

term equal to −τ 2w+2. Therefore, all the representations of τ 2w+2 + kmax,l−1 will be of length

at most l + 1 and can be used as representations for k by shifting them to the left and adding

(−1)w−1. Hence α(τ 2w+2 + kmax,l−1, l + 1) = λ(kmax,l−1, l − 1), and k = kmax,l.

Now, we want to prove that for all τNAFs k of length up to l + 3, α(k, l + 2) ≤ λ(kmax,l, l).

We have already assumed that for any τNAF k of length up to l+2, α(k, l+1) ≤ λ(kmax,l−1, l−
1) < λ(kmax,l, l) is true. Now, let k be a τNAF of length l+3. If k ≡ 0 (mod τ), from Lemma 1

we have,

α(k, l + 2) = α(
k

τ
, l + 1)

≤ λ(kmax,l−1, l − 1), by assumption

< λ(kmax,l, l).

Otherwise, if k ≡ (−1)b (mod τ), then some of the representations of k will have 1 as their

LSSB and the others will have 1. Without loss of generality, let b = 0. From Lemma 3, the

representations that end with 1 and are of length l + 2, are those of k−1
τ2 that are of length l

with an appended 01. Hence, their number is α(k−1
τ2 , l) ≤ λ(kmax,l−2, l− 2). On the other hand,

the representations of k that end with 1 and are of length l + 2 are those of k+1
τ

that are of

length l + 1 with an appended 1. Their number is α(k+1
τ

, l + 1) ≤ λ(kmax,l−1, l − 1). Note that
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k−1
τ2 and k+1

τ
are τNAFs of length l + 1 and l + 2, respectively. Hence, we have

α(k, l + 2) = α(
k − 1

τ 2
, l) + α(

k + 1

τ
, l + 1)

≤ λ(kmax,l−2, l − 2) + λ(kmax,l−1, l − 1)

= λ(kmax,l, l). �

It is important to notice that the recurrence relation of λ(kmax,l, l) in Theorem 1 is identical

to the recurrence we obtained for the maximum number of binary signed digit (BSD) represen-

tations of an integer [3, Lemma 6]. Since the values λ(kmax,1, 1) = 2 and λ(kmax,2, 2) = 3 agree

with the values of δ(kmax,n, n) for n = 1, 2 in the BSD system, then the formula we obtained

for δ(kmax,n, n) in directly applicable to the τ -adic representation system. That is, for l even,

let m = l
2
, then we have

λ(kmax,l, l) = 3m − (m − 1)3m−2 +

(

m−3
∑

i1=1

i1

)

3m−4

−
(

m−5
∑

i1=1

i1
∑

i2=1

i2

)

3m−6 +

(

m−7
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

i3

)

3m−8 − · · · .

(14)

And for l odd, with m = l−1
2

, we have

λ(kmax,l, l) = 2 · 3m −
[

3m−1 + 2(m − 1)3m−2
]

+

[

(m − 2)3m−3 + 2

(

m−3
∑

i1=1

i1

)

3m−4

]

−
[(

m−4
∑

i2=1

i2

)

3m−5 + 2

(

m−5
∑

i1=1

i1
∑

i2=1

i2

)

3m−6

]

+

[(

m−6
∑

i2=1

i2
∑

i3=1

i3

)

3m−7 + 2

(

m−7
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

i3

)

3m−8

]

− · · ·

(15)

From (14) and (15), we conclude that λ(kmax,l, l) is O(3⌊
l
2
⌋).

6 Average Hamming Density of the Representations

We assume that the τNAF k has been randomly chosen among all τNAFs of length m+a as was

suggested by Solinas [16]. Since the decision bit ri is also randomly chosen, the transition from

a state Si to the next state Si+1 does not depend on the previous states Si−1, Si−2, . . .. Thus,
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this process is a finite Markov chain. Also it is irreducible, since every state is reachable from

every other state in a finite number of steps. And it is ergodic, as it has recurrent aperiodic

states1. Therefore, the limiting probabilities of all states can be calculated using (8).

We can write the transition matrix for the states of Table 2 as follows

T =































































































0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 1

2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
2 0 1

2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
2 0 1

2 0 0 0 0 0 0 0 0
1
4 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 1
4 0 0 0 0 0 0

0 0 1
4 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 1
4 0 0 0 0

1
8 0 1

8 0 0 0 0 0 1
4 0 1

4 0 0 0 0 0 1
8 0 1

8 0 0 0 0

0 0 0 1
8 0 1

8 0 0 0 0 0 1
4 0 1

4 0 0 0 0 0 1
8 0 1

8 0

0 0 0 1
4 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 1
4 0 0 0

0 1
8 0 1

8 0 0 0 0 0 1
4 0 1

4 0 0 0 0 0 1
8 0 1

8 0 0 0

0 0 0 0 1
8 0 1

8 0 0 0 0 0 1
4 0 1

4 0 0 0 0 0 1
8 0 1

8

0 0 0 0 1
4 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 1
4 0 0

0 0 0 0 0 0 1
4 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 1
4

0 0 0 0 0 0 0 0 1
2 0 1

2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
2 0 1

2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
2 0 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0































































































.

Let η = (η0 . . . η22) be the vector of limiting probabilities of the states of Table 2. We can

calculate the values in that vector by solving the following equations for Markov chains

ηT = η,

22
∑

j=0

ηj = 1.
(16)

1A state is said to be recurrent if it will be revisited an infinite number of times in an infinite run of the

process. A state is said to be aperiodic if it has a period 1, where the period of a state is the greatest common

divisor of the number of times a chain, starting from that state, has a nonzero probability of returning to it.
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This yields the following

η = (
13

1152
,

1

144
,

43

2304
,

107

1152
,

43

2304
,

1

144
,

13

1152
,

13

2304
,

9

256
,

91

1152
,

1

18
,

91

288
,

1

18
,

91

1152
,

9

256
,

13

2304
,

13

1152
,

1

144
,

43

2304
,

107

1152
,

43

2304
,

1

144
,

13

1152
)

The average Hamming density of the randomized representation can be obtained by sum-

ming the limiting probabilities of the states that have as output di = 1 or 1.

Pr(di = 1 or di = 1) = η0 + η3 + η6 + η9 + η10 + η12 + η13 + η16 + η19 + η22

= 0.5

Similarly, the transition matrix for the states of Table 3, which is for curve E0, can be

formed. By solving (16) for the matrix obtained, the vector of limiting probabilities is found

to be

η = (
1

144
,

13

1152
,

43

2304
,

107

1152
,

43

2304
,

13

1152
,

1

144
,

13

2304
,

91

1152
,

9

256
,

1

18
,

91

288
,

1

18
,

9

256
,

91

1152
,

13

2304
,

1

144
,

13

1152
,

43

2304
,

107

1152
,

43

2304
,

13

1152
,

1

144

Hence, we have

Pr(di = 1 or di = 1) = η1 + η3 + η5 + η8 + η10 + η12 + η14 + η17 + η19 + η21

= 0.5

We can see that for both curves the average Hamming density for the randomized represen-

tation is 0.5.

7 Average and Exact Number of Representations

In this section, we first show how to obtain the average number of representations for a τNAF

of length l by finding the total number of representations for all τNAFs of length l and dividing

it by the number of those τNAFs. Then, we show how the exact number of representations for

a τNAFcan also be found.

7.1 Number of τNAFs of length l

We first prove that the number of τNAFs of length l is the integer closest to 2l+2/3 as was

stated by Solinas [16]. That is

2l+2 − 1

3
=

l
2
∑

i=0

22i, for l even, (17)
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and

2l+2 + 1

3
=

l+1

2
∑

i=0

22i+1 + 1, for l odd. (18)

The number of non adjacent sequences of length l is the number of ways of placing i non-zero

symbols in l + 1 − i possible positions, such that no two non-zero symbols are adjacent, where

0 ≤ i ≤ ⌈ l
2
⌉. Each of the i nonzero symbols can be 1 or -1, yielding 2i choices for their values.

Hence, the number of sequences can be expressed as

⌈l/2⌉
∑

i=0

(

l + 1 − i

i

)

2i. (19)

Now we will prove by induction that (19) is equivalent to (17) and (18). It can be easily

verified that this is the case for l = 0 and 1. Now assume that it is true up to some l = t − 1

where t is even. We will use the following identity [9]

(

a + 1

e

)

=

(

a

e − 1

)

+

(

a

e

)

, (20)

for any real number a and integer e, where by definition

(

a

e

)

= 0 for e < 0. (21)

If a is an integer,
(

a

e

)

= 0 for e > a. (22)

We have

t/2
∑

i=0

(

t + 1 − i

i

)

2i =

t/2
∑

i=0

(

t − i

i − 1

)

2i +

t/2
∑

i=0

(

t − i

i

)

2i. (23)

The second term of (23) evaluates to

⌈ t−1

2
⌉

∑

i=0

(

(t − 1) + 1 − i

i

)

2i =
2t+1 + 1

3
(24)

by using (18).

As for the first term of (23), let j = i − 1. Note that the first term of the summation is 0
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from (21). Hence, the summation becomes

t/2
∑

j=0

(

t − j − 1

j

)

2j+1 = 2

t−2

2
+1

∑

j=0

(

(t − 2) + 1 − j

j

)

2j

= 2





t−2

2
∑

j=0

(

(t − 2) + 1 − j

j

)

2j +

( t
2
− 1
t
2

)

2
t
2





= 2 [
2t − 1

3
+ 0]

=
2t+1 − 2

3
, (25)

using (17) and (22).

The sum of (25) and (24) yields

t/2
∑

i=0

(

t + 1 − i

i

)

2i =
2t+2 − 1

3
. (26)

The proof can be similarly carried for t odd. �

7.2 Number of Possible representations for All τNAFs of length l

In the following we will consider the representations of τNAFs on the curve E1, though the

procedure we followed applies to those on the curve E0. The states of the algorithm in Table 2,

together with an initial state s0 form a nondeterministic finite automaton (NFA) Γ with alpha-

bet {1, 0, 1}. Three directed edges labeled 1, 0 and 1 begin at s0 and end at s4, s12 and s20,

respectively. Γ accepts the language described by the regular expression (ε|1|1)(0|01|01)∗(000).

This regular expression represents non-adjacent forms when scanned from the least significant

end. Three zeros are prepended in order to ensure that the final state s12 is reached for any

input NAF string as was explained in Section 4.

Since an NFA is a directed graph, it can be described by an adjacency matrix M = (mij)

for 0 ≤ i, j ≤ 23, such that mij = 1 if there is a directed edge from vertex i to vertex j in Γ

and 0 otherwise. The number of directed paths of length l from vertex i to vertex j is the ij-th

entry of the matrix M l.

We can also define an adjacency matrix for each input symbol. For example, M0 has a 1 in

the ij-th entry if there is a directed edge labelled 0 from vertex i to vertex j. Note that since

in the automaton considered, starting at some vertex i, there is only one edge labeled with just

one of the input symbols that ends at state j, for 0 ≤ i, j ≤ 23, and there are no edges labeled
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with the empty string ε, we have

M = M1 + M0 + M1.

Therefore, in order to find all possible paths in Γ for input NAF strings of length l with

three prepended 0s, we compute

M lM3
0 (27)

and retrieve its (0,12)th entry. By computing this entry for the different values of l recommended

by NIST [12] (163, 233, 283, 409, 571) using MAPLE, we have deduced that it is the integer

closest to

1.304812 · 3l. (28)

Hence, from (17), (18) and (28), the average number of representations of a τNAF of length

l in the range [163, 571] is the integer closest to

0.9786

(

3

2

)l

. (29)

The matrix multiplication in (27) can be performed by MAPLE in 0.41 seconds for l = 163

and in 0.83 seconds for l = 571.

7.3 Exact number of representations for a τNAF

The use of adjacency matrices can also be extended to find the number of paths corresponding

to a specific input string. That is for a τNAF k = (κl−1, . . . , κ1, κ1)τ , the number of possible

representations is

Mκ0
Mκ1

· · ·Mκl−1
M3

0 (30)

We have included the adjacency matrices for the automaton corresponding to Table 2 in

Appendix B.

8 Conclusion and Future Work

In this report we have introduced a new method of randomizing the τ -adic representation of

a key in ECCs using Koblitz curves. The input to the randomization algorithm is a τNAF of

length m+a. The output of the algorithm is a random τ -adic sequence of the same value as the

input. The sbits of the resulting sequence are output one at a time from the least significant

to the most significant which allows the simultaneous execution of the scalar multiplication
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operations. The length of the random representation is at most m + a + 2. We have proved

that the average Hamming density of all representations for all τNAFs of the same length is

0.5.

We have also presented the pattern of τNAFs with maximum number of representations

and the formulas governing that number which show that is O(3⌊
l
2
⌋). By modeling our algo-

rithm as a nondeterministic finite automaton and by using adjacency matrices, we presented a

deterministic method to determine the average and the exact number of representations of a

τNAF, where the average number is very close to
(

3
2

)l
. It is interesting to note the similarity

of the results obtained here to those obtained for the BSD representation of integers [3].

Also of interest is to investigate how this randomization method and the associated prop-

erties of the representation can be carried to any complex radix with norm 2 or any arbitrary

norm. Note that this complex number should satisfy an equation such as (3), in order to be

able to recursively replace digits with larger absolute value than those in the digit set with the

latter ones during the randomization procedure.
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Appendix

A Examples

Examples of Representations

The following tables present the different representations of the “positive” τNAFs on the curve

E0 and their number.

Table 4: Representations of “positive” τNAFs of length 1.

τNAF k Representations λ(k, 1)

0 0 1

1 1, 111 2

Table 5: Representations of “positive” τNAFs of length 2.

τNAF k Representations λ(k, 2)

0 0 1

1 1, 111, 1011 3

10 10, 1110 2
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Table 6: Representations of “positive” τNAFs of length 3.

τNAF k Representations λ(k, 3)

0 0 1

1 1, 111, 11111, 1011 4

10 10, 1110, 10110 3

101 101, 11101, 11011, 1111 4

100 100, 11100 2

101 101, 11101, 11, 1111, 10111 5

Table 7: Representations of “positive” τNAFs of length 4.

τNAF k Representations λ(k, 4)

0 0 1

1 1, 111, 11111, 101111, 1011, 111011 6

10 10, 1110, 111110, 10110 4

101 101, 11101, 101101, 11011, 101011, 1111, 111111, 100111 8

100 100, 11100, 101100 3

101 101, 11101, 101101, 11, 1111, 111111, 10111 7

1010 1010, 111010, 110110, 11110 4

1001 1001, 111001, 1111, 111111, 10111, 11 6

1000 1000, 111000 2

1001 1001, 111001, 1111, 111111, 100111, 110011 6

1010 1010, 111010, 110, 11110, 101110 5
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Table 8: Representations of “positive” τNAFs of length 5.

τNAF k Representations λ(k, 5)

0 0 1

1 1, 111, 11111, 1111111, 101111, 1011, 111011, 1011011 8

10 10, 1110, 111110, 1011110, 10110, 1110110 6

101 101, 11101, 1111101, 101101, 11011, 1111011, 101011, 1111,

111111, 1011111, 100111

11

100 100, 11100, 1111100, 101100 4

101 101, 11101, 111101, 01101,11, 111, 111111, 011111, 10111, 110111 10

1010 1010, 111010, 1011010, 110110, 1010110, 11110, 1111110, 1001110 8

1001 1001, 111001, 1011001, 1111, 111111, 1011111, 10111, 1110111, 11 9

1000 1000, 111000, 1011000 3

1001 1001, 111001, 1011001, 1111, 111111, 1011111, 100111, 110011,

1010011

9

1010 1010, 111010, 1011010, 110, 11110, 1111110, 101110 7

10101 10101, 1110101, 1101101, 111101, 10011, 1110011, 11111, 1111111,

1001111, 1100111

10

10100 10100, 1110100, 1101100, 111100 4

10101 10101, 1110101, 1101101, 111101, 1101011, 111011, 11111,

1111111, 101111, 110111

10

10010 10010, 1110010, 11110, 1111110, 101110, 110 6

10001 10001, 1110001, 10111, 1110111, 1111, 111111, 1011111, 11011,

1111011, 1001011

10

10000 10000, 1110000 2

10001 10001, 1110001, 10111, 1110111, 1101111, 111111, 11011, 1111011,

101011

9

10010 10010, 1110010, 11110, 1111110, 1001110, 1100110 6

10101 10101, 1110101, 1101, 111101, 1011101, 1011, 111011, 1011011,

11111, 1111111, 1001111, 110111, 1010111

13

10100 10100, 1110100, 1100, 111100, 1011100 5

10101 10101, 1110101, 1101, 111101, 1011101, 10011, 1110011, 11111,

1111111, 101111, 111

11
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Table 9: Representations of “positive” τNAFs of length 6.

τNAF k Representations λ(k, 6)

0 0 1

1 1, 111, 11111, 1111111, 10111111, 101111, 11101111, 1011, 111011,

11111011, 1011011

11

10 10, 1110, 111110, 11111110, 1011110, 10110, 1110110, 10110110 8

101 101, 11101, 1111101, 10111101, 101101, 11101101, 11011, 1111011,

10111011, 101011, 11101011, 1111, 111111, 11111111, 1011111,

100111, 11100111

17

100 100, 11100, 1111100, 10111100, 101100, 11101100 6

101 101, 11101, 1111101, 10111101, 101101, 11101101, 11, 1111,

111111, 11111111, 1011111, 10111, 1110111, 10110111

14

1010 1010, 111010, 11111010, 1011010, 110110, 11110110, 1010110,

11110, 1111110, 10111110, 1001110

11

1001 1001, 111001, 11111001, 1011001, 1111, 111111, 11111111,

1011111, 10111, 1110111, 10110111, 11

12

1000 1000, 111000, 11111000, 1011000 4

1001 1001, 111001, 11111001, 1011001, 1111, 111111, 11111111,

1011111, 100111, 11100111, 110011, 11110011, 1010011

13

1010 1010, 111010, 11111010, 1011010, 110, 11110, 1111110, 10111110,

101110, 11101110

10

10101 10101, 1110101, 10110101, 1101101, 10101101, 111101, 11111101,

10011101, 10011, 1110011, 10110011, 11111, 1111111, 10111111,

1001111, 1100111, 10100111

17

10100 10100, 1110100, 10110100, 1101100, 10101100, 111100, 11111100,

10011100

8

10101 10101, 1110101, 10110101, 1101101, 10101101, 111101, 11111101,

10011101, 1101011, 10101011, 111011, 11111011, 10011011, 11111,

1111111, 10111111, 101111, 11101111, 110111, 11110111, 10010111

21

10010 10010, 1110010, 10110010, 11110, 1111110, 10111110, 101110,

11101110, 110

9

10001 10001, 1110001, 10110001, 10111, 1110111, 10110111, 1111,

111111, 11111111, 1011111, 11011, 1111011, 10111011, 1001011

14
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τNAF k Representations λ(k, 6)

10000 10000, 1110000, 10110000 3

10001 10001, 1110001, 10110001, 10111, 1110111, 10110111, 1101111,

10101111, 111111, 11111111, 10011111, 11011, 1111011, 10111011,

101011, 11101011

16

10010 10010, 1110010, 10110010, 11110, 1111110, 10111110, 1001110,

1100110, 10100110

9

10101 10101, 1110101, 10110101, 1101, 111101, 11111101, 1011101, 1011,

111011, 11111011, 1011011, 11111, 1111111, 10111111, 1001111,

110111, 11110111, 1010111

18

10100 10100, 1110100, 10110100, 1100, 111100, 11111100, 1011100 7

10101 10101, 1110101, 10110101, 1101, 111101, 11111101, 1011101,

10011, 1110011, 10110011, 11111, 1111111, 10111111, 101111,

11101111, 111

16

101010 101010, 11101010, 11011010, 1111010, 100110, 11100110, 111110,

11111110, 10011110, 11001110

10

101001 101001, 11101001, 11011001, 1111001, 101111, 11101111,

11011111, 1111111, 11000111, 11010011, 1110011

11

101000 101000, 11101000, 11011000, 1111000 4

101001 101001, 11101001, 11011001, 1111001, 101111, 11101111,

11011111, 1111111, 110111, 11110111, 1010111, 100011, 11100011

13

101010 101010, 11101010, 11011010, 1111010, 11010110, 1110110, 111110,

11111110, 1011110, 1101110

10

100101 100101, 11100101, 111101, 11111101, 1011101, 1101, 100011,

11100011, 101111, 11101111, 11011111, 1111111, 110111,

11110111, 1010111

15

100100 100100, 11100100, 111100, 11111100, 1011100, 1100 6

100101 100101, 11100101, 111101, 11111101, 1011101, 1101, 111011,

11111011, 1011011, 1011, 101111, 11101111, 11111, 1111111,

10111111, 111

16

100010 100010, 11100010, 101110, 11101110, 11110, 1111110, 10111110,

110110, 11110110, 10010110

10

100001 100001, 11100001, 100111, 11100111, 111111, 11111111, 10011111,

11001111, 101011, 11101011, 11011011, 1111011

12
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τNAF k Representations λ(k, 6)

100000 100000, 11100000 2

100001 100001, 11100001, 100111, 11100111, 111111, 11111111, 1011111,

1111, 101011, 11101011, 11011, 1111011, 10111011

13

100010 100010, 11100010, 101110, 11101110, 11011110, 1111110, 110110,

11110110, 1010110

9

100101 100101, 11100101, 111101, 11111101, 10011101, 11001101, 111011,

11111011, 10011011, 11001011, 101111, 11101111, 11011111,

1111111, 11000111

15

100100 100100, 11100100, 111100, 11111100, 10011100, 11001100 6

100101 100101, 11100101, 111101, 11111101, 10011101, 11001101, 100011,

11100011, 101111, 11101111, 11111, 1111111, 10111111, 110111,

11110111, 10010111

16

101010 101010, 11101010, 11010, 1111010, 10111010, 10110, 1110110,

10110110, 111110, 11111110, 10011110, 1101110, 10101110

13

101001 101001, 11101001, 11001, 1111001, 10111001, 101111, 11101111,

11111, 1111111, 10111111, 110111, 11110111, 10010111, 100011,

11100011

15

101000 101000, 11101000, 11000, 1111000, 10111000 5

101001 101001, 11101001, 11001, 1111001, 10111001, 101111, 11101111,

11111, 1111111, 10111111, 111, 10011, 1110011, 10110011

14

101010 101010, 11101010, 11010, 1111010, 10111010, 100110, 11100110,

111110, 11111110, 1011110, 1110

11

Examples of kmax,l

Table 10 presents kmax,l and λ(kmax,l, l) for 1 ≤ l ≤ 13.

B Nondeterministic Finite Automata, Directed Graphs

and Adjacency Matrices

A nondeterministic finite automaton (NFA) Γ is a quintuple (Q, Σ, s0, F, δ) [8], where

• Q is a set of states,

• Σ is the alphabet (set) of input symbols,
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Table 10: ”Positive” τNAFs with maximum number of representations

l kmax,l λ(kmax,l, l)

1 1 2

2 1 3

3 101 5

4 101 8

5 10101 13

6 10101 21

7 1010101 34

8 1010101 55

9 101010101 89

10 101010101 144

11 10101010101 233

12 10101010101 377

13 1010101010101 610

• s0 ∈ Q is the initial state,

• F ⊂ Q is the set of final (or accepting) states,

• δ : Q × Σ → P(Q) is the transition function, where P(Q) is the powerset of Q, that is,

the set of all subsets of Q (including the empty set).

Let X be a string over the alphabet Σ, and ε be the empty string. Γ accepts the string X

if there exist both a representation of X of the form x1x2 . . . xl, xi ∈ (Σ∪ {ε}), and a sequence

of states s0, s1, . . . , sl, si ∈ Q, meeting the following conditions:

• s0 is the initial state,

• si ∈ δ(si−1, xi), for 1 ≤ i ≤ l and

• sl ∈ F . [1]

An NFA can be represented by a directed graph where the vertices are the states of the set

Q, and the directed edges are determined by the function δ. That is, a directed edge exists

starting at vertex si and ending at vertex sj iff sj ∈ δ(si, x), for any x ∈ Σ, and this edge will be

labeled as x. The concatenation of directed edges encountered when Γ is reading an accepted

string form a directed path.

To each directed graph, we can associate the adjacency matrix, M = (mij) for 0 ≤ i, j ≤ |Q|,
such that mij = 1 if there is a directed edge from vertex si to vertex sj in Γ and 0 otherwise.

From the definition of matrix multiplication and the concatenation of paths, the lth power of
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M , i.e., M l has the number of paths of length l from vertex si to vertex sj as its ijth entry.

This is obviously true for l = 1. Next observe that any path of length l from vertex si to vertex

sj decomposes into the initial path of length l − 1 starting at si (to some intermediate vertex)

followed by a path of length 1 ending at sj, these paths are counted for all possible intermediate

vertices by the sum of the vector product of the ith row of M l−1 with the jth column of M

[13, 14, 17].

Moreover, to an NFA Γ, we can associate an adjacency matrix, Mxi
, for each input symbol

xi ∈ Σ, 1 ≤ i ≤ |Σ|. Hence the number of directed paths possibly traversed when Γ reads an

accepted string X = x1x2 . . . xl can be found as the 0lth entry of the product [2, 13]

Mx1
Mx2

· · ·Mxl
.

The following are the adjacency matrices corresponding to the automaton of Table 2.

M =

































































0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
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M1 =

































































0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

































































M0 =

































































0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
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M1 =

































































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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