
M4 Macros for Electric Circuit Diagrams in LATEX Documents
Dwight Aplevich

Contents, Version 10.8.4
1 Introduction . 1

2 Using the macros 2
2.1 Quick start 2

2.1.1 Using m4 2
2.1.2 Processing with dpic and

Tikz PGF or PSTricks . . . 3
2.1.3 Processing with gpic 4
2.1.4 Simplifications 4

2.2 Including the libraries 5

3 Pic essentials . 6
3.1 Manuals 6
3.2 The linear objects: line, arrow,

spline, arc 6
3.3 Positions 7
3.4 The planar objects: box, circle,

ellipse, and text 7
3.5 Compound objects 8
3.6 Other language facilities 8

4 Two-terminal circuit elements 9
4.1 Circuit and element basics 9
4.2 The two-terminal elements 10
4.3 Branch-current arrows 16
4.4 Labels 17

5 Placing two-terminal elements 17
5.1 Series and parallel circuits 19

6 Composite circuit elements 20
6.1 Semiconductors 28

7 Corners . 31

8 Looping . 32

9 Logic gates . 32
9.1 Automatic structures 36

10 Integrated circuits 38

11 Single-line diagrams 39
11.1 Two-terminal SLD elements 40
11.2 One-terminal and composite SLD

elements 41

12 Element and diagram scaling 42
12.1 Circuit scaling 42
12.2 Pic scaling 43

13 Writing macros 43
13.1 Macro arguments 47

14 Interaction with LATEX 48

15 PSTricks and other tricks 50
15.1 Tikz with pic 51

16 Web documents, pdf, and alternative
output formats 52

17 Developer’s notes 53

18 Bugs . 54

19 List of macros . 57

References . 106

1 Introduction
It appears that people who are unable to execute pretty pictures with pen and paper
find it gratifying to try with a computer [11].

This manual1 describes a method for drawing electric circuits and other diagrams in LATEX and
web documents. The diagrams are defined in the simple pic drawing language [9] augmented with
m4 macros [10, 3], and are processed by m4 and a pic processor to convert them to Tikz PGF,
PSTricks, other LATEX-compatible code, SVG, or other formats. In its basic usage, the method has
the advantages and disadvantages of TEX itself since it is macro-based and non-WYSIWYG, with

1This document is best displayed with a reader that shows bookmarks.

1

ordinary text input. The book from which the above quotation is taken correctly points out that
the payoff can be in quality of diagrams at the price of the time spent in drawing them.

A collection of basic components, most based on IEC and IEEE standards [7, 8], and conventions
for their internal structure are described. Macros such as these are only a starting point since it is
often convenient to customize elements or to package combinations of them for particular drawings
or contexts, a process for which m4 and pic are well suited.

2 Using the macros
This section describes the basic process of adding circuit diagrams to LATEX documents to produce
postscript or pdf files. On some operating systems, project management software with graphical
interfaces can automate the process, but the steps can also be performed by a script, makefile, or
for simple documents, by hand as described in Section 2.1.

The diagram source file is processed as illustrated in Figure 1. A configuration file is read by m4,
followed by the diagram source and library macros. The result is passed through a pic interpreter to
produce .tex output that can be inserted into a .tex document using the \input command.

.m4
diagram
source

configuration

.m4
library
macros

m4 pic
interpreter

.tex
files

LATEX
PDFlatex

etc.

.dvi
or

.pdf

Figure 1: Inclusion of figures and macros in the LATEX document.

The interpreter output contains Tikz PGF [17] commands, PSTricks [19] commands, basic LATEX
graphics, tpic specials, or other formats, depending on the chosen options. These variations are
described in Section 16.

There are two principal choices of pic interpreter. One is dpic, described later in this document.
A partial alternative is GNU gpic -t (sometimes simply named pic) [12] together with a printer driver
that understands tpic specials, typically dvips [15]. The dpic processor extends the pic language in
small but important ways; consequently, some of the macros and examples in this distribution work
fully only with dpic. Pic processors provide basic macro facilities, so some of the concepts applied
here do not require m4.

2.1 Quick start
Read this section to understand basic usage of m4 and macros, and look at the examples.pdf file
for cases that might be similar to yours. The contents of file quick.m4 and resulting diagram are
shown in Figure 2 to illustrate the language and the production of basic labeled circuits.

2.1.1 Using m4

The command
m4 filename . . .

causes m4 to search for the named files in the current directory and directories specified by
environmental variable M4PATH. Set M4PATH to the full name (i.e., the path) of the directory
containing libcct.m4 and the other circuit library .m4 files; otherwise invoke m4 as m4 -I installdir
where installdir is the path to the directory containing the library files. Now there are at least two
basic possibilities as follows, but be sure to read Section 2.1.4 for simplified use.

2

.PS # Pic input begins with .PS
cct_init # Read in macro definitions and set defaults
elen = 0.75 # Variables are allowed; default units are inches
Vs: source(up_ elen); llabel(-,v_s,+) # Name and label the source

resistor(right_ elen); rlabel(,R,) # Semicolon and line end are equivalent
dot
{ # Save the current position and direction

capacitor(down_ Vs.len); rlabel(+,v,-); llabel(,C,)
dot
} # Restore position and direction

line right_ elen*2/3
inductor(down_ Vs.len); rlabel(,L,); b_current(i)
line to (Vs,Here) # (Vs,Here) = (Vs.x,Here.y)

.PE # Pic input ends
−

vs

+ R
+

v
− C L

i

Figure 2: The file quick.m4 and resulting diagram. There are several ways of drawing the same picture;
for example, nodes can be defined (examples: Origin: (0,0) or Northwest: Origin+(0,elen_))
and circuit branches drawn between them; or absolute coordinates can be used (e.g., source(up_
from (0,0) to (0,0.75))). Element sizes can be varied and non-two-terminal elements included
as described in later sections (Figure 24).

2.1.2 Processing with dpic and Tikz PGF or PSTricks

If you are using dpic with Tikz PGF, put \usepackage{tikz} in the main LATEX source file header
and type the following commands or put them into a script or makefile:

m4 pgf.m4 quick.m4 > quick.pic
dpic -g quick.pic > quick.tex

To produce PSTricks code, the LATEX header should contain \usepackage{pstricks}. The com-
mands are modified to read pstricks.m4 and invoke the -p option of dpic as follows:

m4 pstricks.m4 quick.m4 > quick.pic
dpic -p quick.pic > quick.tex

A configuration file (pgf.m4 and pstricks.m4 in the above examples) is always the first file to
be given to m4. Put the following or its equivalent in the document body:

\begin{figure}[ht]
\centering
\input quick
\caption{Customized caption for the figure.}
\label{Symbolic_label}

\end{figure}

Then for Tikz PGF, Invoking PDFlatex on the source produces .pdf output directly. For PSTricks,
the commands “latex file; dvips file” produce file.ps, which can be printed or viewed using gsview,
for example. The essential line is \input quick whether or not the figure environment is used.

The effect of the second m4 command above is shown in Figure 3.

.pic
m4 Configuration file

pstricks.m4 libgen.m4

· · ·
define(‘cct_init’,...)
· · ·

Diagram source quick.m4

.PS
cct_init
· · ·

libcct.m4
· · ·

define(‘resistor’,...)
· · ·

Figure 3: The command m4 pstricks.m4 quick.m4 > quick.pic.

3

Configuration files pstricks.m4 and pgf.m4 cause library libgen.m4 to be read, thereby defining
the macro cct_init. The diagram source file is then read and the circuit-element macros in
libcct.m4 are defined during expansion of cct_init.

2.1.3 Processing with gpic

If your printer driver understands tpic specials and you are using gpic (on some systems the gpic
command is pic), the commands are

m4 gpic.m4 quick.m4 > quick.pic
gpic -t quick.pic > quick.tex

and the figure inclusion statements are as shown:

\begin{figure}[ht]
\input quick
\centerline{\box\graph}
\caption{Customized caption for the figure.}
\label{Symbolic_label}
\end{figure}

2.1.4 Simplifications

M4 must read a configuration file before any other files, either before reading the diagram source file
or at the beginning of it. There are several ways to control the process, as follows:

1. The macros can be processed by LATEX-specific project software and by graphic applications
such as Pycirkuit [13]. Alternatively when many files are to be processed, Unix “make,” which
is also available in PC and Mac versions, is a simple and powerful tool for automating the
required commands. On systems without such facilities, a scripting language can be used.

2. The m4 commands illustrated above can be shortened to
m4 quick.m4 > quick.pic

by inserting include(pstricks.m4) (assuming PSTricks processing) immediately after the
.PS line, the effect of which is shown in Figure 4. However, if you then want to use Tikz PGF,
the line must be changed to include(pgf.m4).

.pic
m4

Diagram source
.PS
include(pstricks.m4)
cct_init
· · ·

Configuration file

pstricks.m4 libgen.m4

· · ·
define(‘cct_init’,...)
· · ·

libcct.m4
· · ·

define(‘resistor’,...)
· · ·

Figure 4: The command m4 quick.m4 > quick.pic, with include(pstricks.m4) preceding cct_init.

3. In the absence of a need to examine the file quick.pic, the commands for producing the .tex
file can be reduced (provided the above inclusions have been made) to
m4 quick.m4 | dpic -p > quick.tex

4. You can put several diagrams into a single source file. Make each diagram the body of a LATEX
macro, as shown:
\newcommand{\diaA}{%
.PS
drawing commands

4

.PE
\box\graph }% \box\graph not required for dpic
\newcommand{\diaB}{%
.PS
drawing commands
.PE
\box\graph }% \box\graph not required for dpic
Produce a .tex file as usual, insert the .tex into the LATEX source, and invoke the macros
\diaA and \diaB at the appropriate places.

5. In some circumstances, it may be desirable to invoke m4 and dpic automatically from the
document. Define a macro \mtotex as shown in the following example:
\documentclass{article}
\usepackage{tikz} % or \usepackage{pstricks}
\newcommand\mtotex[2]{\immediate\write18{m4 #2.m4 | dpic -#1 > #2.tex}}%
\begin{document}
\mtotex{g}{FileA} % Generate FileA.tex
\input{FileA.tex} \par
\mtotex{g}{FileB} % Generate FileB.tex
\input{FileB.tex}
\end{document}

The first argument of \mtotex is a p for pstricks or g for pgf. Sources FileA.m4 and FileB.m4
must contain any required include statements, and the main document should be processed
using the latex or pdflatex option --shell-escape. If the M4PATH environment variable is
not set then insert -I installdir after m4 in the command definition, where installdir is the
absolute path to the installation directory. This method processes the picture source each
time LATEX is run, so for large documents containing many diagrams, the \mtotex lines could
be commented out after debugging the corresponding graphic. A derivative of this method
that allows the insertion of pic-produced code into a Tikz picture is described in Section 15.1.

6. It might be convenient for the source of small diagrams to be part of the document source text.
The filecontents environment of current LATEX allows this; older versions can employ a
now-obsolete package filecontents.sty. The following example for processing by pdflatex
--shell-escape first writes the m4 source to file sample.m4, invokes \mtotex on it, and reads
in the result:
\begin{filecontents}[overwrite,noheader,nosearch]{sample.m4}
include(pgf.m4)
.PS
cct_init
drawing commands . . .
.PE
\end{filecontents}
\mtotex{g}{sample}
\input{sample.tex}

2.2 Including the libraries
The configuration files for dpic are as follows, depending on the output format (see Section 16):
pstricks.m4, pgf.m4, mfpic.m4, mpost.m4, postscript.m4, psfrag.m4, svg.m4, gpic.m4,
or xfig.m4. The usual case for producing circuit diagrams is to read pgf.m4 or pstricks.m4 first
when dpic is the postprocessor or to set one of these as the default configuration file. For gpic, the
configuration file is gpic.m4.

5

At the top of each diagram source, put one or more initialization commands; that is, cct_init,
log_init, sfg_init, darrow_init, threeD_init, or, for diagrams not requiring specialized
macros, gen_init. As shown in Figures 3 and 4, each initialization command reads in the appropriate
macro library if it hasn’t already been read; for example, cct_init tests whether libcct.m4 has
been read and includes it if necessary.

The distribution includes a collection of pic utilities in the file dpictools.pic, which is loaded
automatically by macros that invoke the NeedDpicTools macro.

The file libSLD.m4 contains macros for drawing single-line power distribution diagrams. The
line include(libSLD.m4) loads the macros. A few of the distributed example files contain other
macros that can be pasted into diagram source files; see Flow.m4 or Buttons.m4, for example.

Also included in the distribution is a generous set of examples to show capabilities of the macros
and to act as a source of code if you wish to produce similar diagrams.

The libraries contain hints and explanations that might help in debugging or if you wish to
modify any of the macros. Macros are generally named using the obvious circuit element names
so that programming becomes something of an extension of the pic language. Some macro names
end in an underscore to reduce the chance of name clashes. These can be invoked in the diagram
source but there is no long-term guarantee that their names and functionality will remain unchanged.
Finally, macros intended only for internal use begin with the characters m4.

3 Pic essentials
Pic source is a sequence of lines in a text file. The first line of a diagram begins with .PS with
optional following arguments, and the last line is normally .PE. Lines outside of these pass through
the pic processor unchanged.

The visible objects can be divided conveniently into two classes, the linear objects line, arrow,
spline, arc, and the planar objects box, circle, ellipse.

The object move is linear but draws nothing. A compound object, or block, is planar and
consists of a pair of square brackets enclosing other objects, as described in Section 3.5.

Objects can be placed using absolute coordinates or, as is often better, relative to other objects.
Pic allows the definition of real-valued variables, which are alphameric names beginning with

lower-case letters, and computations using them. Objects or locations on the diagram can be given
symbolic names beginning with an upper-case letter.

3.1 Manuals
The classic pic manual [9] is still a good introduction to pic, but a more complete manual [14] can
be found in the GNU groff package, and both are available on the web [9, 14]. Reading either will
give you basic competence with pic in an hour. Explicit mention of *roff string and font constructs
in these manuals should be replaced by their equivalents in the LATEX context. The dpic manual [1]
includes a man-page lanuage summary in an appendix.

A web search will yield good discussions of “little languages”; for pic in particular, see Chapter 9
of [2]. Chapter 1 of reference [5] also contains a brief discussion of this and other languages.

3.2 The linear objects: line, arrow, spline, arc
A line can be drawn as follows:

line from position to position
where position is defined below or

line direction distance
where direction is one of up, down, left, right. When used with the m4 macros described here,
it is preferable to add an underscore: up_, down_, left_, right_. The distance is a number or
expression and the units are inches, but the assignment

scale = 25.4
has the effect of changing the units to millimetres, as described in Section 12.

Lines can also be drawn to any distance in any direction. The example,

6

line up_ 3/sqrt(2) right_ 3/sqrt(2) dashed
draws a line 3 units long from the current location, at a 45◦ angle above horizontal. Lines (and
other objects) can be specified as dotted, dashed, or invisible, as above.

The construction
line from A to B chop x

truncates the line at each end by x (which may be negative) or, if x is omitted, by the current circle
radius, a convenience when A and B are circular graph nodes, for example. Otherwise

line from A to B chop x chop y
truncates the line by x at the start and y at the end.

Any of the above means of specifying line direction and length will be called a linespec.
Lines can be concatenated to create multsegmented objects. For example, to draw a triangle:
line up_ sqrt(3) right_ 1 then down_ sqrt(3) right_ 1 then left_ 2

3.3 Positions
A position can be defined by a coordinate pair; e.g., 3,2.5, more generally using parentheses by
(expression, expression), as a sum or difference; e.g., position + (expression, expression), or by
the construction (position, position), the latter taking the x-coordinate from the first position
and the y-coordinate from the second. A position can be given a symbolic name beginning with
an upper-case letter, e.g. Top: (0.5,4.5). Such a definition does not affect the calculated figure
boundaries. The current position Here is always defined and is equal to (0, 0) at the beginning of a
diagram or block. The coordinates of a position are accessible, e.g. Top.x and Top.y can be used in
expressions. The center, start, and end of linear objects (and the defined points of other objects as
described below) are predefined positions, as shown in the following example, which also illustrates
how to refer to a previously drawn element if it has not been given a name:

line from last line.start to 2nd last arrow.end then to 3rd line.center
Objects can be named (using a name commencing with an upper-case letter), for example:
Bus23: line up right

after which, positions associated with the object can be referenced using the name; for example:
arc cw from Bus23.start to Bus23.end with .center at Bus23.center
An arc is drawn by specifying its rotation, starting point, end point, and center, but sensible

defaults are assumed if any of these are omitted. Note that
arc cw from Bus23.start to Bus23.end

does not define the arc uniquely; there are two arcs that satisfy this specification. This distribution
includes the m4 macros

arcr(position, radius, start radians, end radians, modifiers, ht)
arcd(position, radius, start degrees, end degrees, modifiers, ht)
arca(chord linespec, ccw|cw, radius, modifiers)

to draw uniquely defined arcs. If the fifth argument of arcr or arcd contains -> or <- then a
midpoint arrowhead of height specified by arg6 is added. For example,

arcd((1,-1),,0,-90,<- outlined "red") dotted
draws a red dotted arc with midpoint arrowhead, centre at (1, −1), and default radius. The example

arca(from (1,1) to (2,2),,1,->)
draws an acute angled arc with arrowhead on the chord defined by the first argument.

The linear objects can be given arrowheads at the start, end, or both ends, for example:
line dashed <- right 0.5
arc <-> height 0.06 width 0.03 ccw from Here to Here+(0.5,0) \

with .center at Here+(0.25,0)
spline -> right 0.5 then down 0.2 left 0.3 then right 0.4
The arrowheads on the arc above have had their shape adjusted using the height and width

parameters.

3.4 The planar objects: box, circle, ellipse, and text
Planar objects are drawn by specifying the width, height, and position, thus:

7

A: box ht 0.6 wid 0.8 at (1,1)
after which, in this example, the position A.center is defined, and can be referenced simply as A.
The compass points A.n, A.s, A.e, A.w, A.ne, A.se, A.sw, A.nw are automatically defined, as
are the dimensions A.height and A.width. Planar objects can also be placed by specifying the
location of a defined point; for example, two touching circles can be drawn as shown:

circle radius 0.2
circle diameter (last circle.width * 1.2) with .sw at last circle.ne
The planar objects can be filled with gray or colour. For example, either
box dashed fill_(expression) or box dashed outlined "color" shaded "color"

produces a dashed box. The first case has a gray fill determined by expression, with 0 corresponding
to black and 1 to white; the second case allows color outline and fill, the color strings depending
on the postprocessor. Postprocessor-compatible RGB color strings are produced by the macro
rgbstring(red fraction, green fraction, blue fraction); to produce an orange fill for example:

... shaded rgbstring(1, 0.645, 0)
Basic colours for lines and fills are provided by gpic and dpic, but more elaborate line and fill

styles or other effects can be incorporated, depending on the postprocessor, using
command "string"

where string is one or more postprocessor command lines.
Arbitrary text strings, typically meant to be typeset by LATEX, are delimited by double-quote

characters and occur in two ways. The first way is illustrated by
"\large Resonances of $C_{20}H_{42}$" wid x ht y at position

which writes the typeset result, like a box, at position and tells pic its size. The default size assumed
by pic is given by parameters textwid and textht if it is not specified as above. The exact typeset
size of formatted text can be obtained as described in Section 14. The second occurrence associates
one or more strings with an object, e.g., the following writes two words, one above the other, at the
centre of an ellipse:

ellipse "\bf Stop" "\bf here"
The C-like pic function sprintf("format string",numerical arguments) is equivalent to a string.
(Its implementation passes arguments singly to the C snprintf function).

3.5 Compound objects
A compound object is a group of statements enclosed in square brackets. Such an object, often
called a block, is placed by default as if it were a box, but it can also be placed by specifying the
final position of a defined point. A defined point is the center or compass corner of the bounding
box of the object or one of its internal objects. Consider the last line of the code fragment shown:

Ands: [right_
And1: AND_gate
And2: AND_gate at And1 - (0,And1.ht*3/2)
. . .

] with .And2.In1 at position
The two gate macros evaluate to compound objects containing Out, In1, and other locations. The

final positions of all objects inside the square brackets are determined in the last line by specifying
the position of In1 of gate And2. The compound block has been given the name Ands.

3.6 Other language facilities
All objects have default sizes, directions, and other characteristics, so part of the specification of an
object can sometimes be profitably omitted.

Another possibility for defining positions is
expression between position and position

which means
1st position + expression × (2nd position − 1st position)

and which can be abbreviated as
expression < position , position >

8

Care has to be used in processing the latter construction with m4, since the comma may have to be
put within quotes, ‘,’ to distinguish it from the m4 argument separator.

Positions can be calculated using expressions containing variables. The scope of a position is the
current block. Thus, for example,

theta = atan2(B.y-A.y,B.x-A.x)
line to Here+(3*cos(theta),3*sin(theta)).
Expressions are the usual algebraic combinations of primary quantities: constants, environmental

parameters such as scale, variables, horizontal or vertical coordinates of terms such as position.x
or position.y, dimensions of pic objects, e.g. last circle.rad. The elementary algebraic operators
are +, -, *, /, %, =, +=, -=, *=, /=, and %=, similar to the C language.

The logical operators ==, !=, <=, >=, >, and < apply to expressions and strings. A modest
selection of numerical functions is also provided: the single-argument functions sin, cos, log,
exp, sqrt, int, where log and exp are base-10, the two-argument functions atan2, max, min,
and the random-number generator rand(). Other functions are also provided using macros.

A pic manual should be consulted for details, more examples, and other facilities, such as the
branching facility

if expression then { anything } else { anything },
the looping facility

for variable = expression to expression by expression do { anything },
operating-system commands, pic macros, and external file inclusion.

4 Two-terminal circuit elements
There is a fundamental difference between the two-terminal elements, each of which is drawn along
an invisible straight-line segment, and other elements, which are generally compound objects in []
blocks as described in Section 3.5 and Section 6. The two-terminal element macros follow a set of
conventions described in this section, and other elements will be described in Section 6.

4.1 Circuit and element basics
A list of the library macros and their arguments is in Section 19. The arguments have default values,
so that only those that differ from defaults need be specified.

Figure 5 shows a resistor and serves as an example of pic commands. The first part of the source
file for this figure is on the left:

.PS
cct_init
linewid = 2.0
linethick_(2.0)

R1: resistor
last []R1.start R1.endR1.centre

elen_
dimen_

Figure 5: Resistor named R1, showing the size parameters, enclosing block, and predefined positions.

The lines of Figure 5 and the remaining source lines of the file are explained below:

• The first line after .PS invokes the macro cct_init that loads the library libcct.m4 and
initializes local variables needed by circuit-element macros.

• The sizes of circuit elements are proportional to the pic environmental variable linewid, so
redefining this variable changes element sizes. The element body is drawn in proportion to
dimen_, a macro that evaluates to linewid unless redefined, and the default element length
is elen_, which evaluates to dimen_*3/2 unless redefined. Setting linewid to 2.0 as in the
example means that the default element length becomes 2.0 × 3/2 = 3.0 in. For resistors, the
default length of the body is dimen_/2, and the width is dimen_/6. All of these values can
be customized. Element scaling and the use of SI units is discussed further in Section 12.

9

• The macro linethick_ sets the default thickness of subsequent lines (to 2.0 pt in the example).
Macro arguments are written within parentheses following the macro name, with no space
between the name and the opening parenthesis. Lines can be broken before macro arguments
because m4 and dpic ignore white space immediately preceding arguments. Otherwise, a long
line can be continued to the next by putting a backslash as the rightmost character.

• The two-terminal element macros expand to sequences of drawing commands that begin with
‘line invis linespec’, where linespec is the first argument of the macro if it is non-blank,
otherwise the line is drawn a distance elen_ in the current direction, which is to the right
by default. The invisible line is first drawn, then the element is drawn on top of it. The
element—rather, the initial invisible line—can be given a name, R1 in the example, so that
positions R1.start, R1.centre, and R1.end are automatically defined as shown.

• The element body is drawn in or overlaid by a block, which can be used to place labels around
the body. The block corresponds to an invisible rectangle with horizontal top and bottom
lines, regardless of the direction in which the element is drawn. A dotted box has been drawn
in the diagram to show the block boundaries.

• The last sub-element, identical to the first in two-terminal elements, is an invisible line that
can be referenced later to place labels or other elements. If you create your own macros, you
might choose simplicity over generality, and include only visible lines.

To produce Figure 5, the following embellishments were added after the previously shown source:

thinlines_
box dotted wid last [].wid ht last [].ht at last []

move to 0.85 between last [].sw and last [].se
spline <- down arrowht*2 right arrowht/2 then right 0.15; "\tt last []" ljust

arrow <- down 0.3 from R1.start chop 0.05; "\tt R1.start" below
arrow <- down 0.3 from R1.end chop 0.05; "\tt R1.end" below
arrow <- down last [].c.y-last arrow.end.y from R1.c; "\tt R1.centre" below

dimension_(from R1.start to R1.end,0.45,\tt elen_,0.4)
dimension_(right_ dimen_ from R1.c-(dimen_/2,0),0.3,\tt dimen_,0.5)

.PE

• The line thickness is set to the default thin value of 0.4 pt, and the box displaying the element
body block is drawn. Notice how the width and height can be specified, and the box centre
positioned at the centre of the block.

• The next paragraph draws two objects, a spline with an arrowhead, and a string left-justified
at the end of the spline. Other string-positioning modifiers than ljust are rjust, above,
and below.

• The last paragraph invokes a macro for dimensioning diagrams.

4.2 The two-terminal elements
Two-terminal elements are shown in Figures 6 to 15 and part of Figure 16. Several are included
more than once to illustrate some of their arguments, which are listed in detail in Section 19.

Most of the two-terminal elements are oriented; that is, they have a defined direction or polarity.
Several element macros include an argument that reverses polarity, but there is also a more general
mechanism, as follows.

The first argument of the macro
reversed(‘macro name’,macro arguments)

is the name of a two-terminal element in quotes, followed by the element arguments. The element is
drawn with reversed direction; thus,

10

diode(right_ 0.4); reversed(‘diode’,right_ 0.4)
draws two diodes to the right, but the second one points left.

Similarly, the macro
resized(factor,‘macro name’,macro arguments)

will resize the body of an element by temporarily multiplying the dimen_ macro by factor but m4
primitives can be employed instead as follows:

pushdef(‘dimen_’,dimen_*(factor)),macro name(arguments) popdef(‘dimen_’)
More general resizing should be done by redefining dimen_ globally as described in Section 12.1.

Figure 6 shows some resistors with typical variants. The first macro argument specifies the

resistor . . .(,4,QR) . . .(,,V)

. . .(,,B) . . .(,,F) . . .(,4,H)

. . .(,,E)≡ebox . . .(,,ES) . . .(,,EX)

. . .(,,AC) . . .(,type=LD;env=fill_(0.9))

. . .(,type=T;
env=fill_(0.9))

. . .(,type=LDE;env=fill_(0.9);
body=fill_(1))’

H ebox(,wdth=0.2;box=dashed shaded "green";text="H")

Figure 6: Resistors drawn by the macro resistor(linespec, n, chars, cycle wid). The second argument
is either an integer to specify number of cycles or blank for the default (3). The third argument
specifies the desired variant with R added for orientation to the right. The default ebox element
designates a box resistor. The alternative invocation is resistor(linespec, key=value sequence)
illustrated in the three bottom rows.

invisible line segment along which the element is drawn. If the argument is blank, the element is
drawn from the current position in the current drawing direction along a default length. The other
arguments produce variants of the default elements. Thus, for example,

resistor(up_ 1.25,7)
draws a resistor 1.25 units long up from the current position, with 7 vertices per side. The macro
up_ evaluates to up but also resets the current directional parameters to point up.

Capacitors are illustrated in Figure 7. See Section 6 for the variable macro.

capacitor capacitor(,C) capacitor(,C+)

capacitor(,P) capacitor(,E) capacitor(,K)

capacitor(,M) capacitor(,N) capacitor(,CP)

capacitor(,dC) capacitor(,dF) variable(‘capacitor’,
NN,-30,dimen_/3)

Figure 7: The capacitor(linespec, chars, [R],height, width) macro, and an example application of the
variable macro.

11

Inductors are illustrated in Figure 8.

inductor inductor(,W) inductor(,L)

...(„3,M) ...(,W,6,P1);
variable ...(,L,9,K)

...(,,,M3)
addtaps(-,1/2,-dimen_/6)

ebox(,,,0)
tapped(‘ebox(,,,0)’,
-,1/4,-dimen_/6,
3/4,-dimen_/6)Tap1 Tap2

shielded(
‘inductor(,,,M)’) shielded(‘ebox(,,,0)’,R)

Figure 8: Basic inductors created with the inductor(linespec, W|L, cycles, M|P|K, loop wid) macro,
the ebox macro for European-style inductors, and some modifications (see also Section 6). When an
embellished element is repeated several times, writing a wrapper macro may be desirable.

Some two-terminal elements often drawn with truncated leads are in Figure 9. More basic
elements are in Figure 10, and amplifiers in Figure 11.

lamp(,,
shaded "yellow")

lamp(,T) thermocouple thermocouple(,,,T)

heater(,,,,
shaded "red!50")

heater(,,,,E) heater(,,,,ET)

Figure 9: These elements have two terminals but are often drawn with truncated leads.

memristor tline

pvcell reed reed(,,,fill_(0.9),CR)

gap gap(,,A) arrowline

xtal xtal(,type=R)

Figure 10: More two-terminal elements.

amp amp(,5mm__) integrator

delay(,,
fill_(0.9))

delay(„type=S;
body=shaded "blue!25")

Figure 11: Amplifier, delay, and integrator.

12

Diodes are shown in Figure 12.

diode
diode(,S)
diode(,V)
diode(,v)
diode(,w)
diode(,B)
diode(,b)
diode(,G)
diode(,D)

diode(,z)
diode(,K)
diode(,ZK)
diode(,CR)
diode(,L)
diode(,F)
diode(,Sh)
diode(,M)
diode(,MK)

diode(,Z,RE)

diode(,U)
diode(,T)

diode(,P)

diode(,LE)
diode(,LER)

Figure 12: The macro diode(linespec, B|b|CR|D|L|LE[R]|P[R]|S|T|U|V|v|w|Z|chars, [R][E]). Ap-
pending K to the second argument draws an open arrowhead.

The arrows are drawn relative to the diode direction by the LE option. For absolute arrow
directions, one can define a wrapper (see Section 13) for the diode macro to draw arrows at 45
degrees, for example:

define(‘myLED’,‘diode(‘$1’); em_arrows(N,45) with .Tail at last [].ne’)
Figure 13 shows sources, many of which contain internal symbols, and of which the AC and

S options illustrate the need to draw a single cycle of a sinusoid or approximate sinusoid. As a

source

source(,I)

source(,i)

source(,ti)

source(,dci)

source(,ii)

− + source(,V)

source(,v)

source(,tv)

source(,dcv)

source(,SC)

source(,AC)

source(,X)

source(,G)

source(,Q)

source(,F)

source(,,0.4,,
shaded "yellow")

source(,P)

source(,U)

source(,H)

source(,R)

source(,S)

source(,SCr)

source(,T)

source(,L)

source(,B)

nullator

norator

G ttmotor(,G)

battery

battery(,3,R)

source(,N)

source(,NA)

source(,NB)

mA source(,"mA")

consource

consource(,I)

consource(,i)

consource(,ti)

source(,SE)

− + consource(,V)

consource(,v)

consource(,tv)

proximity
= consource(,P)

+
geiger(,,,,
fill_(0.9))

Figure 13: Sources and source-like elements. An argument of each element allows customization such as
shading. The geiger macro is a wrapper for source.

convenience, the macro ACsymbol(at position, length, height, [n:][A]U|D|L|R|degrees) defines
an interface to the sinusoid macro. For example, to add the symbol “ ” to an ebox:

13

ebox; { ACsymbol(at last [],,,dimen_/8) }
For direct current (), there is also DCsymbol(at position, length, height, U|D|L|R|degrees),
and for power-system diagrams, macros Deltasymbol(at position, keys, U|D|L|R|degrees), and
Ysymbol(at position, keys, U|D|L|R|degrees).

Fuses, breakers, and jumpers are in Figure 14, and switches with numerous controls in Figure 15.

fuse fuse(,D) fuse(,B) fuse(,C) fuse(,S,,,
fill_(0.9))

fuse(,SB)

cbreaker cbreaker(,R) . . .(,,D) . . .(,,T) . . .(,,TS)

fuse(,HB)
. . .(,HC,0.5,0.3) jumper . . .(,CJBED) . . .(,body=outlined "gray" \

shaded "gray";)

Figure 14: Variations of the macros fuse(linespec, A|dA|B|C|D|E|S|HB|HC|SB, wid, ht, attributes),
cbreaker(linespec,L|R,D|T|TS), and jumper(linespec,chars|keys).

lswitch (,,O) (,,C) (,,DA) (,,dDO) (,,uDC)

(,,K) (,,KD) (,,KOD) (,,KCD) bswitch (,,C)

dswitch(,,)

B

(,,WdBK)

B K

(,,WBmdDK) (,,WBKTr)
(,,WdBL) (,,WBSd)

(,,WBCb) (,,WBcCb) (,,WBcDI)

DI

(,,WBKCo) (,,WBFDI) (,,WBFSd)

(,,WBMMR) (,,WBMM) (,,WBMR) (,,WBEL) (,,WBLE) (,,WBoKEL)

(,,WBTh) (,,WBKC)

C

(,,WBM) (,,WBCO) (,,WBMP) (,,WBoKCP)

(,,WBCY) (,,WBCZ) (,,WBCE) (,,WBRH) (,,WBRdH) (,,WBRHH)

(,,WBPr) (,,WBPrT)
(,,WBPrM)

W

(,,WBDIGX,
text=W)

M

(,,WBDIGC,
circle="M")

M

(,,WBcDIGC,
circle="M")

Figure 15: The switch(linespec,L|R,chars,L|B|D,attribs) macro is a wrapper for the macros
lswitch(linespec,[L|R],[O|C][D][K][A]), bswitch(linespec,[L|R],[O|C]), and the many-
optioned dswitch(linespec,R,W[ud]B chars,attributes) shown. The switch is drawn in the current
drawing direction. A second-argument R produces a mirror image with respect to the drawing
direction. The separately defined macros Proxim and Magn embellish switches in the bottom row.

14

Figure 16 shows a collection of surge-protection devices, or arresters, of which the E and S types
may be either 2-terminal or as 3-terminal (composite) elements described in Section 6.

arrester arrester(,G) ...(,g) ...(,M) ...(,C) ...(,A)

...(,H) ...(,HR) ...(,P) ...(,s) ...(,F) ...(,S)

...(,E) ...(,DE,,,
fill_(0.95))

A B

G ...(,DS)

A B
G

...(,DEL)

A B
G

...(up_ dimen_,DSL)
A

B
G

arrester(,,:dimen_/5,:dimen_/3,shaded "red")

arrester(,S,,,shaded "yellow")

arrester(,g,,:dimen_/6,shaded "red")

arrester(,C,,,shaded "blue")

Figure 16: Variations of the macro arrester(linespec, chars, body len[:arrowhead ht], body
ht[:arrowhead wid], attributes). Putting D in argument 2 for the S or E configuration cre-
ates a 3-terminal composite element with terminals A, B, and G, in which case the first argument
determines length and direction but not position.

Figure 17 shows some two-terminal elements with arrows or lines overlaid to indicate variability
using the macro

variable(‘element’,type,[+|-]angle,length),
where type is one of A, P, L, N, NN with C or S optionally appended to indicate continuous
or stepwise variation. Alternatively, this macro can be invoked similarly to the label macros in
Section 4.4 by specifying an empty first argument; thus, the following line draws the third resistor
in Figure 17:

resistor(up_ dimen_); variable(,uN)

A N uN NN uNN

C S
A

P

L

N

Figure 17: Illustrating variable(‘element’,[A|P|L|[u]N]|[u]NN]][C|S],[+|-]angle,length). For
example, variable(‘resistor(up_ dimen_)’,A) draws the leftmost resistor shown above. The
default angle is 45◦, regardless of the direction of the element, but the angle preceded by a sign (+
or −) is taken to be relative to the drawing direction of the element as for the lower right capacitor
in Figure 7, for example. The array on the right shows the effect of the second argument.

15

Figure 18 contains radiation-effect arrows for embellishing two-terminal and other macros.

Head
TailA1
A2

em_arrows(N) . . .(ND,45) . . .(I) . . .(ID) . . .(E) . . .(NT)

Figure 18: Radiation arrows: em_arrows(type|keys,angle, length)

The arrow stems are named A1, A2, and each pair is drawn in a [] block, with the names Head
and Tail defined to aid placement near another device. The second argument specifies absolute angle
in degrees (default 135 degrees).

4.3 Branch-current arrows
Arrowheads and labels can be added to conductors using basic pic statements. For example, the
following line adds a labeled arrowhead at a distance alpha along a horizontal line that has just
been drawn. Many variations of this are possible:

arrow right arrowht from last line.start+(alpha,0) "i_1" above
Macros have been defined to simplify labelling two-terminal elements, as shown in Figure 19.

i

b_current(i)
i

. . .(i,below_)

i

. . .(i,,O)
i

. . .(i,below_,O)

i

b_current(i,,,E)
i

. . .(i,below_,,E)

i

. . .(i,,O,E,0.2)
i

. . .(i,below_,O,E)
i

larrow(i)
i

rarrow(i)

i

larrow(i,<-)
i

rarrow(i,<-)

Figure 19: Illustrating b_current, larrow, and rarrow. The drawing direction is to the right.

The macro
b_current(label, above_|below_, In|O[ut], Start|E[nd], frac)

draws an arrow from the start of the last-drawn two-terminal element frac of the way toward the
body.

If the fourth argument is End, the arrow is drawn from the end toward the body. If the third
element is Out, the arrow is drawn outward from the body. The first argument is the desired label,
of which the default position is the macro above_, which evaluates to above if the current direction
is right or to ljust, below, rjust if the current direction is respectively down, left, up. The label
is assumed to be in math mode unless it begins with sprintf or a double quote, in which case it
is copied literally. A non-blank second argument specifies the relative position of the label with
respect to the arrow, for example below_, which places the label below with respect to the current
direction. Absolute positions, for example below or ljust, also can be specified.

For those who prefer a separate arrow to indicate the reference direction for current, the macros
larrow(label, ->|<-,dist) and rarrow(label, ->|<-,dist) are provided. The label is placed
outside the arrow as shown in Figure 19. The first argument is assumed to be in math mode unless
it begins with sprintf or a double quote, in which case the argument is copied literally. The third
argument specifies the separation from the element.

16

4.4 Labels
Arbitrary text labels can be positioned by any pic placement method including the basic examples
shown:

"text" at position
"text" at position above
"text" wid width ht height with .sw at position

In addition, special macros for labeling two-terminal elements are available:
llabel(label, label, label, rel placement, block name)
clabel(label, label, label, rel placement, block name)
rlabel(label, label, label, rel placement, block name)
dlabel(long, lat, label, label, label, [X][A|B][L|R])
The first macro places the first three arguments, which are treated as math-mode strings, on

the left side of the last [] block (or the block named in the fifth argument if present) with respect
to the current direction: up, down, left, right. The second macro places the strings along the
centre of the element, and the third along the right side. The fourth applies a displacement long, lat
with respect to the drawing direction. Labels beginning with sprintf or a double quote are copied
literally rather than assumed to be in math mode. A simple circuit example with labels is shown in
Figure 20.

.PS
‘Loop.m4’
cct_init
define(‘dimen_’,0.75)
loopwid = 1; loopht = 0.75

source(up_ loopht); llabel(-,v_s,+)
resistor(right_ loopwid); llabel(,R,); b_current(i)
inductor(down_ loopht,W); rlabel(,L,)
capacitor(left_ loopwid,C); llabel(+,v_C,-); rlabel(,C,)

.PE

−

vs

+
Ri

L

+
vC

−
C

Figure 20: A loop containing labeled elements, with its source code.

Most commonly, only the first three label arguments are needed, and blank arguments are ignored.
The fourth argument can be above, below, left, or right to supplement the default relative
position. The macro dlabel performs these functions for an obliquely drawn element, placing
the three macro arguments at vec_(-long,lat), vec_(0,lat), and vec_(long,lat) respectively
relative to the centre of the element. In the fourth argument, an X aligns the labels with respect
to the line joining the two terminals rather than the element body, and A, B, L, R use absolute
above, below, left, or right alignment respectively for the labels.

5 Placing two-terminal elements
The length and position of a two-terminal element are defined by a straight-line segment, so four
numbers or equivalent are required to place the element as in the following example:

resistor(from (1,1) to (2,1)).
However, pic has a very useful concept of the current point (explicitly named Here); thus,
resistor(to (2,1))

is equivalent to
resistor(from Here to (2,1)).
Any defined position can be used; for example, if C1 and L2 are names of previously defined

two-terminal elements, then, for example, the following places the resistor:
resistor(from L2.end to C1.start)
A line segment starting at the current position can also be defined using a direction and length.

To draw a resistor up d units from the current position, for example:
resistor(up_ d)

17

Pic stores the current drawing direction, which is unfortunately limited to up, down, left,
right, for reference when necessary. The circuit macros need to know the current direction, so
whenever up, down, left, right are used they should be written respectively as the macros up_,
down_, left_, right_ as in the above example.

To allow drawing circuit objects in other than the standard four directions, a transformation
matrix is applied at the macro level to generate the required (but sometimes very elaborate) pic
code. Potentially, the matrix elements can be used for other transformations. The macro

setdir_(direction, default direction)
is preferred when setting drawing direction. The direction arguments are of the form

R[ight] | L[eft] | U[p] | D[own] | degrees,
but the macros Point_(degrees), point_(radians), and rpoint_(relative linespec) are employed
in many macros to re-define the entries of the matrix (named m4a_, m4b_, m4c_, and m4d_) for
the required rotation. The macro eleminit_ in the two-terminal elements invokes rpoint_ with a
specified or default linespec to establish element length and direction.

As shown in Figure 21, “Point_(-30); resistor” draws a resistor along a line with slope of -30
degrees, and “rpoint_(to Z)” sets the current direction cosines to point from the current location
to location Z.
.PS
‘Oblique.m4’
cct_init

Ct:dot; Point_(-60); capacitor(,C); dlabel(0.12,0.12,,,C_3)
Cr:dot; left_; capacitor(,C); dlabel(0.12,0.12,C_2,,)
Cl:dot; down_; capacitor(from Ct to Cl,C); dlabel(0.12,-0.12,,,C_1)

T:dot(at Ct+(0,elen_))
inductor(from T to Ct); dlabel(0.12,-0.1,,,L_1)

Point_(-30); inductor(from Cr to Cr+vec_(elen_,0))
dlabel(0,-0.1,,L_3,)

R:dot
L:dot(at Cl-(R.x-Cr.x,Cr.y-R.y))

inductor(from L to Cl); dlabel(0,-0.12,,L_2,)
right_; resistor(from L to R); rlabel(,R_2,)
resistor(from T to R); dlabel(0,0.15,,R_3,) ; b_current(\;y,ljust)
line from L to 0.2<L,T>
source(to 0.5 between L and T); dlabel(sourcerad_+0.07,0.1,-,,+)

dlabel(0,sourcerad_+0.07,,u,)
resistor(to 0.8 between L and T); dlabel(0,0.15,,R_1,)
line to T

.PE

C3

C2

C1

L1

L3L2

R2

R3

y

−

+
u

R1

Figure 21: Illustrating elements drawn at oblique angles.

To implement rotations, macro vec_(x,y) evaluates to the position (x,y) rotated as defined
by the argument of the previous setdir_, Point_, point_ or rpoint_ command. The principal
device used to define relative locations in the circuit macros is rvec_(x,y), which evaluates to
position Here + vec_(x,y). Thus, line to rvec_(x,0) draws a line of length x in the current
direction.

Figure 21 illustrates that some hand placement of labels using dlabel may be useful when
elements are drawn obliquely. The figure also illustrates that any commas within m4 arguments
must be treated specially because the arguments are separated by commas. Argument commas are
protected either by parentheses as in inductor(from Cr to Cr+vec_(elen_,0)), or by multiple
single quotes as in ‘‘,’’, as necessary. Commas also may be avoided by writing 0.5 between L
and T instead of 0.5<L,T>.

18

5.1 Series and parallel circuits
To draw elements in series, each element can be placed by specifying its line segment as described
previously, but the pic language makes some geometries particularly simple. Thus,

setdir_(Right)
resistor; llabel(,R); capacitor; llabel(,C); inductor; llabel(,L)

draws three elements in series as shown in the top line of Figure 22.
R C L

R C L

R C L

Figure 22: Three ways of drawing basic elements in series.

However, the default length elen_ appears too long for some diagrams. It can be redefined
temporarily (to dimen_, say), by enclosing the above line in the pair

pushdef(‘elen_’,dimen_) resistor. . . popdef(‘elen_’)
with the result shown in the middle row of the figure.

Alternatively, the length of each element can be tuned individually; for example, the capacitor in
the above example can be shortened as shown, producing the bottom line of Figure 22:

resistor; llabel(,R)
capacitor(right_ dimen_/4); llabel(,C)
inductor; llabel(,L)
If a macro that takes care of common cases automatically is to be preferred, you can use the

macro series_(elementspec, elementspec, . . .). This macro draws elements of length dimen_ from
the current position in the current drawing direction, enclosed in a [] block. The internal names
Start, End, and C (for centre) are defined, along with any element labels. An elementspec is of
the form [Label:] element; [attributes], where an attribute is zero or more of llabel(. . .),
rlabel(. . .), or b_current(. . .).

Drawing elements in parallel requires a little more effort but, for example, three elements can be
drawn in parallel using the code snippet shown, producing the left circuit in Figure 23:

define(‘elen_’,dimen_)
L: inductor(right_ 2*elen_,W); llabel(+,L,-)
R1: resistor(right elen_ from L.start+(0,-dimen_)); llabel(,R1)
R2: resistor; llabel(,R2)
C: capacitor(right 2*elen_ from R1.start+(0,-dimen_)); llabel(,C)

line from L.start to C.start
line from L.end to C.end

19

+ L −

R1 R2

C

Start End

parallel_(‘L:inductor(,W); llabel(+,L,-)’,
series_(‘R1:resistor; llabel(,R1)’, ‘R2:resistor; llabel(,R2)’),
‘C:capacitor; llabel(,C)’)

R1

R2

L

C

+
V

−

Start

End

setdir_(Down)
parallel_(
series_(‘R1:resistor; rlabel(,R_1)’,
parallel_(
series_(‘resistor; rlabel(,R_2)’,

‘inductor(,W); rlabel(,L)’),
‘capacitor(,C); rlabel(,C)’),

line down dimen_/2),
‘Sep=linewid*3/2; V:source; rlabel(+,V,-)’)

Figure 23: Illustrating the macros parallel_ and series_, with Start and End points marked.

A macro that produces the same effect automatically is
parallel_(‘elementspec’, ‘elementspec’, . . .)
The arguments must be quoted to delay expansion, unless an argument is a nested parallel_ or

series_ macro, in which case it is not quoted. The elements are drawn in a [] block with defined
points Start, End, and C. An elementspec is of the form

[Sep=val;][Label:] element; [attributes]
where an attribute is of the form

[llabel(. . .);] | [rlabel(. . .)] | [b_current(. . .);]
Putting Sep=val; in the first branch sets the default separation of all branches to val; in a later

element, Sep=val; applies only to that branch. An element may have normal arguments but should
not change the drawing direction.

6 Composite circuit elements
Many basic elements are not two-terminal. These elements are usually enclosed in a [] pic block,
and contain named interior locations and components. Nearly all elements drawn within blocks can
be customized by adding an extra argument, which is executed as the last item within the block. By
default, a block is placed as if it were a box; otherwise, the block must be placed by using its compass
corners, thus: element with corner at position or, when the block contains predefined locations,
thus: element with location at position. In some cases, an invisible line can be specified by the
first argument to determine length and direction (but not position) of the block. A few macros are
positioned with the first argument; the ground macro, for example: ground(at position).

Figure 24 illustrates the adaptation of file quick.m4 to include a transformer, a composite
element described in detail below, followed by code for the figure.

−
Vs

+ Rs

+
V−

1
jωC

I T1

RL

IL

Figure 24: The file quick.m4 modified to include a composite element, the transformer, which is positioned
by placing an internal point, thus: T1: transformer(down_ Vs.len,,6,,4) with .P1 at Here.

Figure 25 shows variants of the transformer macro, which has predefined internal locations P1,
P2, S1, S2, TP, and TS. The first argument specifies the direction and distance from P1 to P2 but
not the position of the transformer, which is determined by the enclosing block as normal for a

20

composite element. The second argument places the secondary side of the transformer to the left
or right of the drawing direction. The optional third and fifth arguments specify the number of
primary and secondary arcs respectively. If the fourth argument string contains an A, the iron core
is omitted; if a P, the core is dashed (powder); and if it contains a W, wide windings are drawn. A D1
puts phase dots at the P1, S1 end, D2 at the P2, S2 ends, and D12 or D21 puts dots at opposite ends.

P1

P2
TP

S1

S2
TS

transformer

P1

P2

TP

S1

S2

TS

...(down_ 0.6,,2,P,8)

P1

P2

TP
S1

S2
TS

...(,,8,WD12,4)

P1

P2

TP

S1

S2

TS

...(,,9,AL)

P1

P2

TP

S1

S2

TS

...(,R,8,AW)

Figure 25: The transformer(linespec,L|R,np,[A|P][W|L][D1|D2|D12|D21],ns) macro (drawing direc-
tion down), showing predefined terminal and centre-tap points.

The code for Figure 24 is reproduced in the following. The transformer is positioned by placing
internal point P1.

.PS
#QTrans.m4
cct_init
elen = 0.75

Vs: source(up_ elen,S); llabel(-,V_s,+)
resistor(right_ elen); rlabel(,R_s)
dot
{ capacitor(down_ to (Here,Vs.start))

rlabel(+,V,-); llabel(,{1\over{j\omega C}},)
dot }

arrowline(right_ elen*2/3); llabel(,I)
T1: transformer(down_ Vs.len,,6,,4) with .P1 at Here # Place P1

"$T1$" at last [].n above
line from T1.P2 to Vs.start
line from T1.S1 up_ to (T1.S1,Vs.end) then right_ elen*2/3
resistor(down_ Vs.len); rlabel(,R_L); b_current(I_L,rjust)
line to (T1.S2,Here) then to T1.S2

.PE

Another composite element, potentiometer(linespec,cycles,fractional pos,length, . . .), shown
in Figure 26, first draws a resistor along the specified line, then adds arrows for taps at fractional
positions along the body, with default or specified length. A negative length draws the arrow from
the right of the current drawing direction.

potentiometer(down_ dimen_)

Start

End
T1

...(down_ dimen_,,0.5,-5mm__)

Start

End
T1

...(down_ dimen_,,0.25,-5mm__,0.75,5mm__)

Start

End

T1
T2

Figure 26: Default and multiple-tap potentiometer.

The macro addtaps([arrowhd | type=arrowhd;name=Name], fraction, length, fraction, length,
. . .), shown in Figure 27, will add taps to the immediately preceding two-terminal element.

21

R1.start R1.end

Tap1

Tap2 right_; t = 0.2 in__
R1: resistor(,,E)
addtaps(<-,0.2,-t,0.8,t) Tx1 Tx3

R2: ebox(,elen_*0.6)
addtaps(type=-;name=Tx,

0.2,-t,0.5,-t,0.8,-t)

R3.Start R3.End
R3.Tap1 R3.Tap3

R3: tapped(‘ebox(,elen_*0.6,)’,->,0.2,-t,0.5,-t,0.8,-t) \
with .Start at R1.start+(0.25in__,-0.6in__)

L1: tapped(‘inductor(right_ 9*dimen_/8,,9)’,
-,0,-t,3/9,-t/2,6/9,-t/2,1,-t)

L1.Tap1 L1.Tap4

Figure 27: Macros for adding taps to two-terminal elements.

However, the default names Tap1, Tap2 . . . may not be unique in the current scope. An alterna-
tive name for the taps can be specified or, if preferable, the tapped element can be drawn in a []
block using the macro tapped(‘two-terminal element’, [arrowhd | type=arrowhd;name=Name],
fraction, length, fraction, length, . . .). Internal names .Start, .End, and .C are defined automati-
cally, corresponding to the drawn element. These and the tap names can be used to place the block.
These two macros require the two-terminal element to be drawn either up, down, to the left, or to
the right; they are not designed for obliquely drawn elements.

A few composite symbols derived from two-terminal elements are shown in Figure 28.

KelvinR

T1 T2Start End

KelvinR(,R)
T1 T2

FTcap

Start End
T1

T2
FTcap(B)

Start End
T1

T2
FTcap(C)

Start End

T
FTcap(D)

Start End

T

Figure 28: Composite elements KelvinR(cycles,[R],cycle wid) and FTcap(chars) .

The ground symbol is shown in Figure 29. The first argument specifies position; for example,
ground(at (1.5,2)) has the same effect as move to (1.5,2); ground. The second argument
truncates the stem, and the third defines the symbol type. The fourth argument specifies the angle
at which the symbol is drawn, with D (down) the default. This macro is one of several in which a
temporary drawing direction is set using the setdir_(U|D|L|R|degrees, default R|L|U|D|degrees
) macro and reset at the end using resetdir_.

ground
ground(,T)

(,,F)
(,,E)

(,dimen_/2,S)
(,,S,90)

(,,Q)
(,,L)

(,,P)
(,T,PA)

Figure 29: The ground(at position, T|stem length, N|F|S|L|P[A]|E, U|D|L|R|degrees) macro.

The arguments of antenna(at position, T|stem length, A|L|T|S|D|P|F, U|D|L|R|degrees)
shown in Figure 30 are similar to those of ground.

T

antenna

T

(,T)

T1 T2

(,,L)

T1 T2

(,T,L)

T

(,,T)

T1 T2

(,,S)

T1 T2

(,,D)

T

(,dimen_*3/4,P)

T

(,,F)

Figure 30: Antenna symbols, with macro arguments shown above and terminal names below.

22

Figure 31 illustrates the macro opamp(linespec, - label, + label, size, chars, attributes).

−

+

opamp(,,,
body=shaded "yellow")

Out

In1

In2

N
E1

E

E2
S

W
−+

Point_(90);
opamp(,,,,PR)

V1 V2
−

+

opamp(,,,
body=shaded "orange"
,T)

Figure 31: Operational amplifiers. The P option adds power connections. The second and third arguments
can be used to place and rotate arbitrary text at In1 and In2.

The element is enclosed in a block containing the predefined internal locations shown. These
locations can be referenced in later commands, for example as “last [].Out.” The first argument
defines the direction and length of the opamp, but the position is determined either by the enclosing
block of the opamp, or by a construction such as “opamp with .In1 at Here”, which places the
internal position In1 at the specified location. There are optional second and third arguments for
which the defaults are \scriptsize$-$ and \scriptsize$+$ respectively, and the fourth argument
changes the size of the opamp. The fifth argument is a string of characters. P adds a power
connection, R exchanges the second and third entries, and T truncates the opamp point.

Typeset text associated with circuit elements is not rotated by default, as illustrated by the
second and third opamps in Figure 31. The opamp labels can be rotated if necessary by using
postprocessor commands (for example PSTricks \rput) as second and third arguments.

The code in Figure 32 places an opamp with three connections.

line right 0.2 then up 0.1
A: opamp(up_,,,0.4,R) with .In1 at Here

line right 0.2 from A.Out
line down 0.1 from A.In2 then right 0.2

−+

Figure 32: A code fragment invoking the opamp(linespec,-,+,size,[R][P]) macro.

Figure 33 shows some audio devices, defined in [] blocks, with predefined internal locations as
shown.

speaker

In1
In2
In3

In4 In5

In6 In7

Box

speaker(,,H,
fill_(0.9))

bell

In1
In2
In3

Box Circle

buzzer

In1
In2
In3

Box

buzzer(,,C)

In1
In2
In3

Face

microphone

In1
In2
In3

Circle

microphone(A)

Head

Head.b
Stand.s

earphone

In1
In2
In3

Box

earphone(,,C)

L R
N

C

Figure 33: Audio components: speaker(U|D|L|R|degrees,size,type,attributes), bell, microphone,
buzzer, earphone, with their internally named positions and components.

The first argument specifies the device orientation. The fourth can add fill or line attributes.
Thus,

S: speaker(U) with .In2 at Here
places an upward-facing speaker with input In2 at the current location.

23

The nport(box specs [; other commands], nw, nn, ne, ns, space ratio, pin lgth, style) macro is
shown in Figure 34.

W1a

W1b

E1a

E1b

n-port
W1a

W1b

E1a

E3b

N1a N1b N2a N2b

S1a S4b· · ·

... W1 E1

S1
nport

nport(wid 2.0 ht 1 fill_(0.9) "n-port",1,2,3,4)

nterm

Figure 34: The nport macro draws a sequence of pairs of named pins on each side of a box. The pin
names are shown. The default is a twoport. The nterm macro draws single pins instead of pin pairs.

The macro begins with the line define(‘nport’,‘[Box: box ‘$1’, so the first argument is a
box specification such as size, fill, or text. The second to fifth arguments specify the number of
ports (pin pairs) to be drawn respectively on the west, north, east, and south sides of the box. The
end of each pin is named according to the side, port number, and a or b pin, as shown. The sixth
argument specifies the ratio of port width to inter-port space, the seventh is the pin length, and
setting the eighth argument to N omits the pin dots. The macro ends with ‘$9’]’), so that a ninth
argument can be used to add further customizations within the enclosing block.

The nterm(box specs, nw, nn, ne, ns, pin lgth, style) macro illustrated in Figure 34 is similar to
the nport macro but has one fewer argument, draws single pins instead of pin pairs, and defaults to
a 3-terminal box.

Many custom labels or added elements may be required, particularly for 2-ports. These elements
can be added using the first argument and the ninth of the nport macro. For example, the following
code adds a pair of labels to the box immediately after drawing it but within the enclosing block:

nport(; ‘"0"’ at Box.w ljust; ‘"∞"’ at Box.e rjust)
If this trick were to be used extensively, then the following custom wrapper would save typing,

add the labels, and pass all arguments to nport:

define(‘nullor’,‘nport(‘$1’
{‘"${}0$"’ at Box.w ljust
‘"∞"’ at Box.e rjust},shift($@))’)

The above example and the related gyrator macro are illustrated in Figure 35.

0 ∞

nullor gyrator
gyrator(invis,,0,N)

gyrator(invis wid boxht,,0,NV)

Figure 35: The nullor example and the gyrator macro are customizations of the nport macro.

24

Figure 36 shows the macro contact(chars), which contains predefined locations P, C, O for the
armature and normally closed and normally open terminals. An I in the first argument draws open
circles for contacts.

contact

P
O

C

(R)

P
O

C
(O) (C) (P)

P
O

C

(PR)

P
O

C
(PO)

O

C

(PC)

(I)

P
O
C

(RI)
P

O
C

(OI) (CI) (PI)
O
C

(PIO) (PIC)

(T)

C
O

(RT)

O
C

(OT) (CT) (PT) (PTO) (PTC)

(U)

C

O
(RU)

O

C
(OU)

O
(CU)

C

(PU) (PUO) (PUC)

Figure 36: The contact(chars) macro (default drawing direction right) can be used alone, in a set of
ganged contacts, or in relays.

The contacts(poles, chars) macro in Figure 37 draws multiple contacts.

contacts(2)

P1
O1

C1

P2
O2

C2

(2,I)

P1
O1
C1

P2
O2
C2

(2,IO)

P1
O1

P2
O2

(2,PICD)

P1
O1
C1

P2
O2
C2

(2,PTCD)

P1 O1
C1

P2 O2
C2

(2,PUCD)

P1 O1
C1

P2 O2
C2

Figure 37: The contacts(poles, chars) macro (drawing direction right).

For drawing relays, the macro relaycoil(chars, wid, ht, U|D|L|R|degrees) shown in Figure 38
provides a choice of connection points and actuator types.

relaycoil

V1 V2

(S) (NX)

A1
A2
A3

B1
B2
B3

(AXSR)

V1
V2

(BXSR)

V1
V2

(SR) (SO) (SOR) (PC)

(HS) (NAC) (AC) (ML) (PO) (RM) (RH) (TH) (EL) (MR)

Figure 38: The relaycoil macro.

25

The relay macro in Figure 39 defines coil terminals V1, V2 and contact terminals Pi, Ci, Oi.

V1 V2

P1
O1

C1

relay

P1
C1

P2
C2

(2,CTh)

P1
O1

P1
O2

(2,O)

V1
V2

P1
O1
C1

P2
O2
C2

(2,PIAX)

V1 V2

P1
O1

C1

P2
O2

C2
relay(2,R)

Figure 39: The relay(poles, chars, attributes) macro (drawing direction right).

The double-throw switches shown in Figure 40 are drawn in the current drawing direction like
the two-terminal elements, but are composite elements that must be placed accordingly.

RTL
NPDT

R
T
L

up_; NPDT
R1L1

R2L2

NPDT(2)

R1L1

R2L2

R3L3

NPDT(3,R)

R1 L1

R2 L2

left_; NPDT(2,R)

Figure 40: Multipole double-throw switches drawn by NPDT(npoles, [R]).

The jack and plug macros and their defined points are illustrated in Figure 41. The first
argument of both macros establishes the drawing direction.

A
B TB

TA
A
B A

B
C

A

B
C

plug plug(,R) plug(,3) plug(L,3R)

L
F

G

H
L

S

L
LM
LB

S

L
LM
LB

SG

L

L1
LB1

S

S1
SB1

G

C

jack ..(,LMBS)..(L,RLS) ..(,LMBSX) ..(,XLLBSSBC)

Figure 41: The jack(U|D|L|R|degrees, chars [;keys]) and plug(U|D|L|R|degrees,[2|3][R]) compo-
nents and their defined points.

The second argument is a string of characters defining drawn components. An R in the string
specifies a right orientation with respect to the drawing direction. The two principal terminals of the
jack are included by putting L S or both into the string with associated make (M) or break (B) points.
Thus, LMB within the third argument draws the L contact with associated make and break points.
Repeated L[M|B] or S[M|B] substrings add auxiliary contacts with specified make or break points.

A macro for drawing headers is in Figure 42.

P1

Header
P2

Block
P1

Header(2,3,8mm__,10mm__)

P2

P5 P6 P1

left_; Header(2,4,,,fill_(0.9))

P8 P1

P2
down_; Header(2,8)

P15

P16

PinP1
PinP2

Figure 42: Macro Header(1|2, rows, wid, ht, type).

26

Some connectors are shown in Figure 43 and Figure 44. The tstrip macro allows keys wid=value;
ht=value; and box=attributes; in argument 3 for width, height, and e.g., fill, color, or dashed.

L1

L4
...

R1

R4
...T1

T4
...

tstrip(U)

T1 T5· · ·

tstrip(R,5,
DO;wid=1.0;ht=0.25)

ccoax
C S

ccoax(,F)
V2

tbox(V_2)

V1
tbox(V_1,,,<)

V1
tbox(V_1,,,<>)

tconn(,O) . . .(,>) . . .(,>>) . . .(,<) . . .(,<<) . . .(,A) . . .(,M)

Figure 43: Macros tstrip(R|L|U|D|degrees, chars), ccoax(at location, M|F, diameter), tbox(text,
wid, ht, <|>|<>,type), and tconn(linespec, chars|keys, wid).

H

pconnex(,A)

HN

G

(,AF) (,AC) (,ACF) (Up,D) (Up,DF) (U,J) (U,JF)

(,G) (,GF) (L,GF) (,GC) (,GCF)
(,P) (,PF)

Figure 44: A small set of power connectors drawn by pconnex(R|L|U|D|degrees, chars). Each connector
has an internal H, N, and where applicable, a G shape.

A few compositie macros have no terminals at all. ACsymbol and DCsymbol have been mentioned;
some others are Ysymbol, Deltasymbol, adjust, and the heatsink shown in Figure 45.

Figure 45: The elements ACsymbol, DCsymbol, Ysymbol, Deltasymbol, adjust, and heatsink(at
position, keys, U|D|L|R|degrees) have similar argument sequences.

A basic winding macro for magnetic-circuit sketches and similar figures is shown in Figure 46.
For simplicity, the complete spline is first drawn and then blanked in appropriate places using the
background (core) color (lightgray for example, default white).

27

winding

winding(R)

pitch

diam core wid

core color

T1 T2

Left pins
cw

T1
T2

Left pins
ccw

T1
T2

Right pins
cw

T1
T2

Right pins
ccw

T1
T2

arcwinding(
,60,120)

. . .(,120,60)

. . .(,60,120
„-dimen_)

. . .(,120,60
„-dimen_)

g
i1

−
v1

+
N1

i2

−
v2

+
N2

ϕ

T1 T2T1

T2

T1

T2

Figure 46: The winding(L|R, winding diam, pitch, nturns, core wid, "core color") macro draws a coil
with axis along the current drawing direction. Terminals T1 and T2 are defined. Setting the first
argument to R draws a right-hand winding. Similarly, arcwinding(winding diam, start degrees, end
degrees, nturns, core centre rad, core width, "core color") draws curved windings. Negative core
centre rad puts the terminals on the outside.

6.1 Semiconductors
Figure 47 shows the variants of bipolar transistor macro bi_tr(linespec,L|R,P,E) which contains
predefined internal locations E, B, C.

E

B

C

bi_tr(up_ dimen_)

E

B
C

bi_tr(,R)
E

B
C

bi_tr(,,P)

E

B
C

bi_tr(,,,E)
E

G
C

igbt

E

G

C

igbt(,,LD)

Figure 47: Variants of bipolar transistor bi_tr(linespec,L|R,P,E) (current direction upward).

The first argument defines the distance and direction from E to C, with location determined
by the enclosing block as for other elements, and the base placed to the left or right of the current
drawing direction according to the second argument. Setting the third argument to P creates a PNP
device instead of NPN, and setting the fourth to E draws an envelope around the device.

Figure 48 shows a composite macro with several optional internal elements.

E

B
C

Darlington
E

B

B1

C

(R,DZB1)
E

B

B1

C

(,EB1)
E

B

B1

C

(,EB1DZR1)
E

B

B1

C

(,EB1DE1E2)

Figure 48: Macro Darlington(L|R,[E][P][B1][E1|R1][E2|R2][D][Z]), drawing direction up_.

28

The code fragment example in Figure 49 places a bipolar transistor, connects a ground to the
emitter, and connects a resistor to the collector.

S: dot; line left_ 0.1; up_
Q1: bi_tr(,R) with .B at Here
ground(at Q1.E)
line up 0.1 from Q1.C; resistor(right_ S.x-Here.x); dot

Figure 49: The bi_tr(linespec,L|R,P,E) macro.

The bi_tr and igbt macros are wrappers for the macro bi_trans(linespec, L|R, chars, E),
which draws the components of the transistor according to the characters in its third argument. For
example, multiple emitters and collectors can be specified as shown in Figure 50.

C

B

E

B

C

BU

uE
S S

bi_trans(,,BCuEBUS)

C

B

E0E2 E1

Em2

bi_trans(,,BCdE2BU)

E

B

C0 C2C1

Cm2

bi_trans(,,BC2dEBU)

Figure 50: The bi_trans(linespec,L|R,chars,E) macro. The sub-elements are specified by the third
argument. The substring En creates multiple emitters E0 to En. Collectors are similar.

The 3 or 4-terminal thyristor macro with predefined internal locations G and T1, T2, or A, K,
G, and Ga as appropriate is in Figure 51. Except for the G and Ga terminals, a thyristor (the IEC
variant excluded) is much like a two-terminal element.

A

K
G

thyristor

T1

T2
G

...(,B)

T1

T2
G

...(,BRK)

T1

T2 G

...(,BE)

A

K
G

...(,A)

A

K
G

...(,F)

T1

T2G

...(,BRE)

A

KG
...(,UARE)

A

K

G

...(,AV)

A

K
G

...(,IEC)

A

K

G

...(,UAH)

A

K

Ga

...(,N)

A

K

Ga

...(,UANRE)

A

K G
...(,SCR)

A

K G

...(SCRE)

A

KG
...(SCRRE)

A

K
G

...(SCS)

Ga A

K G
...(SCSE)

Ga A

K

G

...(SUSE)

T1

T2

G

...(SBSE)

scr(,,Q)
Q.G

scs(,,Q2)
Q2.G

Q2.Ga

sus(,RE,Q3)

Q3.G

sbs(,E,Q4)

Q4.G

Figure 51: The top two rows illustrate use of the thyristor(linespec, chars) macro, drawing direction
down_, and the bottom row shows wrapper macros (drawing direction right_) that place the
thyristor like a two-terminal element. Append K to the second argument to draw open arrowheads.

The wrapper macro thyristor_t(linespec, chars, label) and similar macros scr, scs, sus,
and sbs place thyristors using linespec as for a two-terminal element, but require a third argument
for the label for the compound block; thus,

scr(from A to B,,Q3); line right from Q3.G

29

draws the element from position A to position B with label Q3, and draws a line from G.
A UJT macro with predefined internal locations B1, B2, and E is shown in Figure 52.

B1

E
B2

ujt(up_ dimen_,,,E)

B1

E B2

ujt(,,P,)
B1

EB2

ujt(,R,,)
B1

EB2

ujt(,R,P,)

Figure 52: UJT devices, with current drawing direction up_.

Some FETs with predefined internal locations S, D, and G are also included, with similar
arguments to those of bi_tr, as shown in Figure 53.

j_fet

G

S D
j_fet(right_
dimen_,,P,E)

G

S D
e_fet

G

S D

e_fet(,,P)

G

S D
e_fet(,,P,S)

G

S D

c_fet

G

S D
c_fet(,,P)

G

S D

d_fet

G

S D

d_fet(,,P)

G

S D
d_fet(,,P,S)

G

S D

g_fet

G

S D

g_fet(up_
dimen_,,P)

G
S

D

Fe_fet

G

S D

. . .(,,TEDSQuB)

G

S D

T

IRF4905
G

D

S

Figure 53: JFET, insulated-gate enhancement and depletion MOSFETs, simplified versions, graphene,
ferroelectric fets, and a custom component. These macros are wrappers that invoke the mosfet
macro.

In all cases the first argument is a linespec, and entering R as the second argument orients the G
terminal to the right of the current drawing direction. The macros in the figure are wrappers for the
general macro mosfet(linespec,R,characters,E). The third argument of this macro is a subset of
the characters BDEFGHKMPOQRSTXZ, each letter corresponding to a diagram component as shown in
the figure. Preceding the characters B, G, and S by u or d adds an up or down arrowhead to the
pin, preceding T by d negates the pin, and preceding M by u or d puts the pin at the drain or source
end respectively of the gate. This system allows considerable freedom in choosing or customizing
components, and Figure 54 shows the subcomponents defined in mosfet together with some custom
elements that could be put in wrappers if used often.

mosfet uS D dB E F uG dH M uM dM M1 uM2 M1Z Q R dT X
K OPy

mosfet(,,dGSDF)

dG

F
S D

. . .(,,uHSDF)

uH

. . .(,,dMEDSQuB)

dM

E
Q

uB

. . .(,,uMEDSuB)

G

S DB

G0 G1

. . .(,,dBSDFQM1,E)

G0G1

...(,,dBSDFQuM1)
. . .(,,ZSDFdT)

Z

dT

. . .(,,SDFdT)

Figure 54: Subcomponents defined in the mosfet macro with a reference frame, showing some effects of
preceding the subcomponent letter by u or d. The bottom-row contains custom devices.

The number of possible semiconductor symbols is very large, so these macros must be regarded as
prototypes. Often an element is a minor modification of existing elements. The thyristor(linespec,

30

chars) macro in Figure 51 is derived from diode and bipolar transistor macros. Another example is
the tgate macro shown in Figure 55, which also shows a pass transistor.

A B
G

Gb
tgate

A B
G

Gb

tgate(,L)

A B
G

tgate(,B)

A B

G

Gb
ptrans

A B

G

Gb

ptrans(,L)

Figure 55: The tgate(linespec, [B][R|L]) element, derived from a customized diode and ebox, and the
ptrans(linespec, [R|L]) macro. These are not two-terminal elements, so the linespec argument
defines the direction and length of the line from A to B but not the element position.

Some other non-two-terminal macros are dot, which has an optional argument “at location”,
the line-thickness macros, the fill_ macro, and crossover, which is a useful if archaic method to
show non-touching conductor crossovers, as in Figure 56.

Q1 Q2

RL

Vcc
RLR1 R1

R2

−Vcc

R2

Figure 56: Bipolar transistor circuit, illustrating crossover and colored elements.

This figure also illustrates how elements and labels can be colored using the macro
rgbdraw(r, g, b, drawing commands)

where the r, g, b values are in the range 0 to 1 to specify the rgb color. This macro is a wrapper for
the following, which may be more convenient if many elements are to be given the same color:

setrgb(r, g, b)
drawing commands
resetrgb
A macro is also provided for colored fills:
rgbfill(r, g, b, drawing commands)

These macros depend heavily on the postprocessor and are intended only for PSTricks, Tikz PGF,
MetaPost, SVG, and the Postscript or PDF output of dpic. Their effects are fragile in some situations.
Basic Pic objects are probably best colored and filled as discussed in Section 3.4.

7 Corners
If two straight lines meet at an angle then, depending on the postprocessor, the corner may not be
mitred or rounded unless the two lines belong to a multisegment line, as illustrated in Figure 57.

31

line up 0.2
line right 0.2

line up 0.2 \
then right 0.2

line up 0.2
line right 0.2 \
chop -hlth chop 0

line up 0.2
round
line right 0.2

line up 0.15 left 0.15
corner
line up 0.1 right 0.1

A
corner(,at A) L M

Mitre_(L,M,5 bp__)
A

B
C

mitre_(A,B,C)

Figure 57: Producing mitred angles and corners.

This detail is normally not an issue for circuit diagrams unless the figure is magnified or thick
lines are drawn. Rounded corners can be obtained by setting post-processor parameters, but the
figure shows the effect of macros round and corner. The macros mitre_(Position1, Position2,
Position3, length, attributes) and Mitre_(Line1, Line2, length, attributes) may assist as shown.
Otherwise, a right-angle line can be extended by half the line thickness (macro hlth) as shown on
the upper row of the figure, or a two-segment line can be overlaid at the corner to produce the same
effect.

8 Looping
Sequential actions can be performed using either the dpic command

for variable=expression to expression [by expression] do { actions }
or at the m4 processing stage, which is executed and finished before dpic or gpic begin. An m4
macro inside a pic loop is expanded only once and the resulting expansion executed with each pic
repetition. As an alternative, the libgen library defines the m4 macro

for_(start, end, increment, ‘actions’)
for this and other purposes. Nested loops are allowed and the innermost loop index variable
is m4x. The first three arguments must be integers and the end value must be reached ex-
actly; for example, for_(1,3,2,‘print In‘’m4x’) prints predefined locations In1 and In3, but
for_(1,4,2,‘print In‘’m4x’) does not terminate since the index takes on values 1, 3, 5,

Repetitive actions can also be performed with the libgen macro
foreach_(‘variable’, actions, value1, value2, . . .)

(an alias for the older macro Loopover_), which evaluates actions and increments counter m4Lx for
each instance of variable set to value1, value2, . . .

9 Logic gates
Library liblog.m4 contains a selection of basic and advanced logic gates and structures. The default
size and style parameters defined near the top of the file can be globally redefined or temporarily set
locally. Individual gates also have arguments that allow adjustment of size, and fill, for example.

Figure 58 shows the basic logic gates. The first argument of the gate macros can be an integer
N from 0 to 16, specifying the number of input locations In1, . . . InN, as illustrated for the NOR
gate in the figure. By default, N = 2 except for macros NOT_gate and BUFFER_gate, which have
one input In1 unless they are given a first argument, which is treated as the line specification of a
two-terminal element. Alternately, the first argument can be a sequence of letters P or N to define a
number of normal or negated (Not-circled) inputs.

32

AND_gate

OR_gate

BUFFER_gate

XOR_gate

NAND_gate

NOR_gate(3)
Out

N_Out

In1
In2
In3

NOT_gate

NXOR_gate(NPN)
In1

In2
In3

&
NAND_gate(,B)

≥ 1
NOR_gate(3,NB)

= 1
BOX_gate(PN,N,,,=1)

=
BOX_gate(PP,N,,,=)

Figure 58: Basic logic gates. The input and output locations of a three-input NOR gate are shown.
Inputs are negated by including an N in the second argument letter sequence. A B in the second
argument produces a box shape as shown in the rightmost column, where the second example has
AND functionality and the bottom two are examples of exclusive OR functions.

Inputs retain their positions relative to the body regardless of gate orientation, as in Figure 59.

.PS
‘FF.m4’
log_init
Sg: NOR_gate

left_
Rg: NOR_gate at Sg+(0,-L_unit*(AND_ht+1))

line from Sg.Out right L_unit*3 then down Sg.Out.y-Rg.In2.y then to Rg.In2
line from Rg.Out left L_unit*3 then up Sg.In2.y-Rg.Out.y then to Sg.In2
line left 4*L_unit from Sg.In1 ; "S" rjust
line right 4*L_unit from Rg.In1 ; "R" ljust

.PE

S

R

Figure 59: SR flip-flop.

Beyond a default number (6) of inputs, the gates are given wings as in Figure 60.

Ȳ

Y

Ē

S0

S1

S2

I0 I1 I2 I3 I4 I5 I6 I7

Figure 60: Eight-input multiplexer, showing a gate with wings.

Negated inputs or outputs are marked by circles drawn using the NOT_circle macro. The name
marks the point at the outer edge of the circle and the circle itself has the same name prefixed
by N_. For example, the output circle of a nand gate is named N_Out and the outermost point of
the circle is named Out. Instead of a number, the first argument can be a sequence of letters P or N
to define normal or negated inputs; thus for example, NXOR_gate(NPN) defines a 3-input nxor gate

33

with not-circle inputs In1 and In3 and normal input In2 as shown in the figure. The macro IOdefs
can also be used to create a sequence of custom named inputs or outputs.

Gates are typically not two-terminal elements and are normally drawn horizontally or vertically
(although arbitrary directions may be set with e.g. Point_(degrees)). Each gate is contained in a
block of typical height 6*L_unit where L_unit is a macro intended to establish line separation for
an imaginary grid on which the elements are superimposed.

Including an N in the second argument character sequence of any gate negates the inputs, and
including B in the second argument invokes the general macro BOX_gate([P|N]...,[P|N],horiz
size,vert size,label), which draws box gates. Thus, BOX_gate(PNP,N,,8,\geq 1) creates a gate
of default width, eight L_units height, negated output, three inputs with the second negated, and
internal label “≥ 1”. If the fifth argument begins with sprintf or a double quote then the argument
is copied literally; otherwise it is treated as scriptsize mathematics.

A good strategy for drawing complex logic circuits might be summarized as follows:

• Establish the absolute locations of gates and other major components (e.g. chips) relative to a
grid of mesh size commensurate with L_unit, which is an absolute length.

• Draw minor components or blocks relative to the major ones, using parameterized relative
distances.

• Draw connecting lines relative to the components and previously drawn lines.
• Write macros for repeated objects.
• Tune the diagram by making absolute locations relative, and by tuning the parameters. Some

useful macros for this are the following, which are in units of L_unit:

AND_ht, AND_wd: the height and width of basic AND and OR gates
BUF_ht, BUF_wd: the height and width of basic buffers
N_diam: the diameter of NOT circles

The macro BUFFER_gate(linespec,[N|B],wid,ht,[N|P]*,[N|P]*) is a wrapper for the compos-
ite element BUFFER_gen. If the second argument is B, then a box gate is drawn; otherwise the gate
is triangular. Arguments 5 and 6 determine the number of defined points along the northeast and
southeast edges respectively, with an N adding a NOT circle. If the first argument is non-blank
however, then the buffer is drawn along an invisible line like a two-terminal element, which is
convenient sometimes but requires internal locations of the block to be referenced using last [], as
shown in Figure 61.

In1

bd = dimen_*3/4
BUFFER_gate(,,bd,bd)

NE Out

SE C

In1
N_NE1

N_NE2

Out

BUFFER_gate(,N,bd,bd,NN) BUFFER_gen(ITNOC,bd,bd,PN,,N,,
LH_symbol at C)

In1
In2

Out

N_SE1
C

BUFFER_gate(right_ elen_,,bd,bd)

BUFFER_gate(right_ elen_,N,bd,bd,,N,,LH_symbol(I) at C)
line down dimen_/3 from last [].N_SE1.s then left dimen_*2/3

Figure 61: The BUFFER_gate and BUFFER_gen macros. The bottom two examples show how the gate can
be drawn as a two-terminal macro but internal block locations must be referenced using last [].

Figure 62 shows the macro FlipFlop(D|T|RS|JK, label, boxspec, pinlength), which is a wrapper
for the more general macro FlipFlopX(boxspec, label, leftpins, toppins, rightpins, bottompins,
pinlength).

34

Q1

D

CK

Q

Q

FlipFlop(D,Q1)

Q2

T

CK

Q

Q

FlipFlop(T,Q2,
ht h1 wid w1 fill_(0.9))

R

S

Q

Q

FlipFlop(RS,,,
Chip.wid/8)

J

CK

K

CLR
Q

Q
PR

FlipFlop(JK)

D

CK

Q

Q

FlipFlopX(,,
:D;E:CK,,:Q;:lg_bartxt(Q))

T

CK

Q

FlipFlopX(,,
:T;E:CK,,:Q;)

J

CK

K

CLR
Q

FlipFlopX(,,
:J;E:CK;:K,N:CLR,:Q;)

Figure 62: The FlipFlop and FlipFlopX macros, with variations.

The first argument modifies the box (labelled Chip) default specification. Each of arguments 3
to 6 is null or a string of pinspecs separated by semicolons (;). A pinspec is either empty (null) or
of the form [pinopts]:[label[:Picname]]. The first colon draws the pin. Pins are placed top to
bottom or left to right along the box edges with null pinspecs counted for placement. Pins are named
by side and number by default; eg W1, W2, ..., N1, N2, ..., E1, ..., S1, ... ; however, if
:Picname is present in a pinspec then Picname replaces the default name. A pinspec label is text
placed at the pin base. Semicolons are not allowed in labels; use e.g., \char59{} instead. To put a
bar over a label, use lg_bartxt(label). The pinopts are [L|M|I|O][N][E] as for the lg_pin macro.
Optional argument 7 is the pin length in drawing units.

Figure 63 shows a multiplexer block with variations, and Figure 64 shows the very similar
demultiplexer.

M1

0

1

2

3

Mux(4,M1)

In0
In1
In2
In3

Out

Sel

0

1

2

3

OE

left_; Mux(4,,LNOE)

In0

NOE

Out

Sel
00

01

10

11

OE

Mux(4,,OEBN2)

Sel0 Sel1
In0

In3
OE

0 1 2 3 4 5 6 7

down_; Mux(8,,L3,,28*L_unit)

Sel0

Sel2

In0 In7

Figure 63: The Mux(input count, label, [L][B|H|X][N[n]|S[n]][[N]OE],wid,ht) macro.

DM1

0

1

2

3

Demux(4,DM1)

Out0

Out3

In

Sel

0

1

2

3

OE

left_; Demux(4,,LOE)

Sel
Out0

OE
In

00

01

10

11
OE

(4,,NOEBN2)

Sel0 Sel1
Out0

Out3NOE

In
0 1 2 3 4 5 6 7

down_; Demux(8,,L3,,28*L_unit)

Sel0

Sel2
Out0 Out7

In

Figure 64: The Demux(input count, label, [L][B|H|X][N[n]|S[n]][[N]OE],wid,ht) macro.

35

Customized gates can be defined simply. For example, the following code defines the custom
flipflops in Figure 65.

define(‘customFF’,‘FlipFlopX(wid 10*L_unit ht FF_ht*L_unit,,
:S;NE:CK;:R, N:PR, :Q;;ifelse(‘$1’,1,:lg_bartxt(Q)), N:CLR) ’)

S

CK

R

PR
Q

Q
CLR

SERIAL
INPUT

CLEAR

CLOCK

S

CK

R

PR
Q

Q
CLR

S

CK

R

PR
Q

Q
CLR

S

CK

R

PR
Q

Q
CLR

S

CK

R

PR
Q

CLR

OUTPUT

PR4 PR3 PR2 PR1 PR0
PRESET
ENABLE

Figure 65: A 5-bit shift register.

This definition makes use of macros L_unit and FF_ht that predefine default dimensions. There are
three pins on the right; the centre pin is null and the bottom is null if the first macro argument is 1.

For hybrid applications, the dac and adc macros are illustrated in Figure 66. The figure shows the
default and predefined internal locations, the number of which can be specified as macro arguments.

In1

NW

SW SE

NE
N1

S1

Out1
C

dac

DAC
In1

In2

N1 N2

Out1
Out2

Out3

S1 S2 S3
Q: dac(,,2,2,3,3); "DAC" "2" at Q.C

NW

SW SE

NE

In1

N1

S1

Out1
C

adc

ADC
In1

In2

N1 N2

Out1
Out2
Out3

S1 S2 S3
adc(,,2,2,3,3)

Figure 66: The dac(width,height,nIn,nN,nOut,nS) and adc(width,height,nIn,nN,nOut,nS) macros.

In addition to the logic gates described here, some experimental IC chip diagrams are included
with the distributed example files.

9.1 Automatic structures
In some common but special cases, logic circuits having a predefined structure can be drawn
automatically, thereby saving much repetitive code. Boolean functions expressed as a product of
sums or a sum of products are examples, and result in two-layer diagrams. Consider for example,
the function

f(a, b, c, d) = abcd + ~ba + c + b~a

which is the sum (that is, “or”) of four terms which are products (that is, “and”) of one or more
single-character variables or their negation indicated by a preceding tilde. This and similar functions
can be drawn in two-layer form, as follows. Define the circuit using function notation with the
logic-gate functions And, Or, Not, Buffer, Xor, Nand, Nor, and Nxor. Variables can also be
negated using tilde notation as shown above. An m4 macro implementing a stack can parse the
defining function and draw the corresponding structure, as shown in Figure 67 for the above example.

36

abcd

f

Figure 67: The circuit drawn by Autologix(Or(And(a,b,c,d),And(Not(b),a),c,And(d,Not(a)))).

Such an implementation is the macro
Autologix(function-spec; function-spec; . . ., [M[irror]] [N[occonect]] [L[eftinputs]]

[R][V] [;offset=value])
where function-spec is of the form function(args) [@ location-attribute], e.g.,

HalfAdder: Autologix(Xor(x,y);And(x,y),LVR).
This macro draws one or more trees of gates with the output or outputs (treeroots) to the right

(on the left if the M[irror] option is used). The predefined functions are given above and may
be nested; e.g., Or(And(x,~y),And(~x,y)). The output is contained in a [] block, which can
be positioned normally. Function notation does not model internal connections such as feedback,
however, but internal nodes can be accessed and connections added.

The resulting block has outputs labeled Out1, Out2, . . . corresponding to the functions in the
first argument, and inputs labeled In<var> for each variable <var> in the defining expressions, (with
NOT gates for variables preceded by ~).

The exact appearance of a tree depends on the order in which terms and variables appear in the
expressions. Gates can be placed relative to previously drawn objects using the @ location construct;
e.g., @with .nw at last [].sw+(0,-dimen_).

The macro has option R for reversing the drawn order of the inputs N for omitting input
connections, and V to reverse the order in which variables are scanned. There is also a limited
capability L for drawing inputs on the left; their vertical placement can be adjusted by adding
;offset=var.

To assist in manually adding connections to the resulting structure, the internal gate inputs and
outputs are defined and numbered In1, In2, . . . and Out1, Out2, These labels are listed at the
end of the output of Autologix. Inputs are shown for an example in in Figure 68.

Out1

Out2

AB CCk

Autologix(
Nand(And(Or(A,C),Or(B,˜C),Or(˜A,B,C)),Ck);
Nand(˜A,B))@with .n at last [].s+(0,-2bp__))

B.Out

B: Autologix(
Or(And(B,Not(C)),And(Not(A),B,C)),N)

B.In1
B.In2

B.In3
B.In4
B.In5

Figure 68: The Autologix(expression; expression;. . ., options) macro automatically draws Boolean
expressions in function notation. The function tree is drawn, then a row or column of inputs, then
the connections. A default result is on the left, and a tree of gates without input connections but
with internal input labels shown is at the upper right.

37

The given expressions need not be in canonical two-layer form and, with minor effort, custom
gates beyond those mentioned above can be defined and included. Here is how to include an arbitrary
circuit (an SR-flipflop, for example) that is not one of the standard gates. First, define the circuit
with a name ending in _gate. Put its inputs named In1, In2, . . . on the left and the output Out on
the right:

define(‘SR_gate’,‘[u = 2*L_unit
S: NOR_gate

line right_ 2*u from S.Out
Out: Here
R: NOR_gate at S+(0,-5*u)
TS: S.In2-(u,0)
TR: (TS,R.In1)

dot(at S.Out+(u,0))
line down u*3/2 then to TR+(0,u) then to TR then to R.In1
line from R.Out right u then up u*3/2 then to TS+(0,-u) \

then to TS then to S.In2
In1: S.In1
In2: R.In2]’)

Now define the function by which the circuit will be invoked using the built-in _AutoGate and
the circuit name omitting _gate:

define(‘SRff’,‘_AutoGate(SR,$@)’)

That is all. The result, with a NAND and an AND gate, is shown in Figure 69:

x

y

Out

Autologix(SRff(And(x,y),Nand(x,y)),LRV)

Figure 69: The SRff example.

10 Integrated circuits
Developing a definitive library of integrated circuits is problematic because context may determine
how they should be drawn. Logical clarity may require drawing a functional diagram in which the
connection pins are not in the physical order of a terminal diagram, for example. Circuit boards
and connectors are similar. Although the geometries are simple, managing lists of pin locations and
labels can be tedious and repetitive.

The many-argument macro lg_pin(location, label, Picname, n|e|s|w [L|M|I|O][N][E],
pinno, optional length) can be used to draw a variety of pins as illustrated in Figure 70. To
draw the left-side pins, for example, one can write

lg_pin(U.nw-(0,lg_pinsep), Vin, Pin1, w)
lg_pin(U.nw-(0,2*lg_pinsep),,, wL)

and so on. Each pin can also be given a pic name, some text to indicate function, and a number
but, to reduce the tedium of adding the pins by hand, a list can be given to foreach_(‘variable’,
‘actions’, value1, value2, . . .) which executes the given actions successively with variable = value1,
value2 . . . and the counter m4Lx set to 1, 2, The remaining left-side and the right-side pins in
the figure have been specified using this macro.

38

.PS
SampleIC.m4
log_init
command "\small\sf"

U: box wid 18*L_unit ht 9*lg_pinsep

lg_pin(U.nw-(0,lg_pinsep),Vin,Pin1,w)
lg_pin(U.nw-(0,2*lg_pinsep),,,wL)

foreach_(‘x’,
‘lg_pin(U.nw-(0,(m4Lx+2)*lg_pinsep),x,,w‘’x)’,
M,I,O,N,E,NE)

define(‘Upin’,
‘lg_pin(U.ne-(0,(17-‘$1’)*lg_pinsep),‘$2’,Pin‘$1’,e‘$3’,‘$1’,8*L_unit)’)

foreach_(‘x’,
‘Upin(patsubst(x,;,‘,’))’,
16;Vin;, 15;D0;L, 14;D1;M, 13;D2;I, 12;D3;O, 11;D4;N, 10;D5;E, 9;D6;NE)

.PE

Vin

M
I
O
N

E
NE

Vin 16

D0 15

D1 14

D2 13

D3 12

D4 11

D5 10

D6 9

Figure 70: An imaginary 16-pin integrated circuit and its code. Pin variations defined individually and
by the first foreach_ are shown on the left; and text, pic labels, and pin numbers are defined on
the right. The third and successive arguments of the second foreach_ are ;-separated pin number,
text, and pin type. The semicolons are changed to commas by the patsubst m4 macro and the
Upin macro gives the resulting arguments to lg_pin.

11 Single-line diagrams
Standard single-line diagrams for power distribution employ many of the normal two-terminal
elements along with others that are unique to the context. This distribution contains a library of
single-line diagram (SLD) elements that can be loaded with the command include(libSLD.m4).
The examples.pdf and examplesSVG.html documents include samplers of some of their uses.

The SLD macros allow considerable scope for customization using key-value pairs to set internal
parameters. In addition, diagram-wide or block-scope changes are made as usual by redefining envi-
ronmental variables, particularly linethick, for example, and linewidth for scaling. Element body
sizes are altered using, for example, define(‘dimen_’,dimen_*1.2) as for the normal circuit ele-
ments. To apply such a change to a single element or a group of them, use pushdef(‘dimen_’,expr)
element statements popdef(‘dimen_’). The SLD library also includes a number of redefinable
default style parameters, which are currently as follows:

define(‘sl_breakersize_’,‘dimen_*3/16’) # breaker box size
define(‘sl_breakersep_’,‘dimen_/2’) # breaker separation from body
define(‘sl_ttboxlen_’,‘dimen_*3/4’) # inline box length
define(‘sl_ttboxwid_’,‘dimen_*3/4’) # inline box width
define(‘sl_sboxlen_’,‘dimen_*2/3’) # stem box length
define(‘sl_sboxwid_’,‘dimen_*2/3’) # stem box wid
define(‘sl_diskdia_’,‘dimen_*2/3’) # sl_disk diam
define(‘sl_chevronsiz_’,‘dimen_/4’) # sl_drawout (chevron) size
define(‘sl_loadwid_’,‘dimen_*0.32’) # load width
define(‘sl_loadlen_’,‘dimen_*0.45’) # load length
define(‘sl_transcale_’,1) # transformer body scale factor
define(‘sl_busthick_’,linethick*2) # sl_bus line thickness
define(‘sl_busindent_’,‘min(dimen_/5,rp_len/5)’) # busbar end indent

The greatest control of appearance is obtained by drawing all elements individually; however,
provision is made for automatically attaching circuit breakers (which occur often) and other symbols
to elements.

39

11.1 Two-terminal SLD elements
The two-terminal SLD elements are drawn along an invisible line segment that can be named as for
normal two-terminal elements. There are four arguments for which defaults are provided as always.
The transformers are shown in Figure 71 and other two-terminal elements in Figure 72.

sl_transformer(„C,C)

BrO

BrI

...(,type=S,O,O)

Body

C2

C1

M2

M1

...(,type=S,C,C,YN,YN)
...(,type=S,X,/,Delta,Y)

...(,type=S,,,Y,Delta)
...(,type=A,S,S3)

Figure 71: The SLD transformers drawn by sl_transformer(linespec, key-value pairs, stem object, stem
object, type S circle object, type S circle object), drawing direction up_.

The first argument is the linespec defining the direction and location of the element, e.g.,
sl_transformer(right_ expr).

sl_ttbox(„box=shaded "green",box=shaded "red")

sl_rectifier, sl_inverter

D sl_breaker, sl_breaker(,type=C)
sl_breaker(,type=D;name=B3) ; llabel(,"D",,,B3)

sl_reactor(„C,C) sl_drawout

Figure 72: SLD two-terminal elements, drawing direction right_.

The second argument is a sequence of semicolon (;)-separated key-value pairs that customize
the element body, depending on the case, e.g., sl_ttbox(,lgth=expr; wdth=expr; text="internal
label"; box=shaded "yellow").

If the third argument is blank, then a plain input stem is drawn for the element. If it is a C
then a default closed breaker is inserted and an O inserts a default open breaker, and similarly
an X or slash (/) add these elements. If it or its prefix is S: or Sn: where n is an integer, then,
instead of a breaker, an n-line slash symbol is drawn using the macro sl_slash(at position, keys,
[n:]R|L|U|D|degrees).

The separation of the optional attached breaker or other stem elements from the body is controlled
by the sl_breakersep_ global parameter. Adding sep=expr to the body keys adjusts separations for
an element; otherwise, adding this key to argument 3 or 4 adjusts the separation of the corresponding
attached object.

Otherwise, one or more of the extensive sl_ttbox body key-value pairs will insert a custom breaker
as needed. These keys include: lgth=expr, wdth=expr, name=Name, text="text", box=other
box attributes, e.g., dashed, shaded, For the slash symbol, the sl_slash keys are valid.

The fourth argument is like the third but controls a breaker or slash symbol in the output
lead. The example, sl_transformer(right_ elen_ from A,,C,C) draws a transformer with closed
breakers in the input and output leads.

40

Exception are the sl_drawout() element which does not have breakers and the transformer()
element which has an extra two arguments for the frequently used S variant.

The body can be given a name with name=Label; in the second argument. The default two-
terminal name is Body except for the sl_breaker element which has default body name Br and
the sl_slash element which has default name SL. Annotations can be added by writing "text" at
position as always, but there are other ways. One alternative is to use, for example, llabel(text,
text, text, position, name) as usual. However, this macro positions text by default with respect to
last [] which normally will be incorrect if breakers are automatically included with the element.
In the latter case, enter the element body name as the fifth argument of llabel(). For example, B:
sl_ttbox creates an element of which the invisible centre line has name B and the body has name
Body, and can be labelled like a normal two-terminal element. If, however, breakers are included
using B: tt_box(,,,C,C) then write, for example, llabel(,Box 15,,,Body) to place the label
correctly.

11.2 One-terminal and composite SLD elements
The one-terminal elements have two components: a stem with optional breaker or slash symbol, and
a head. SLD generators are shown in Figure 73, other one-terminal elements in Figure 74.

sl_generator
...(,type=WT)

...(,type=BS)
...(,type=PV)

...(,type=StatG)
...(,type=Y)

Head_Y.N

...(,type=Delta)

SG

sl_disk(,text="SG")

Figure 73: SLD generators, drawing direction up_.

sl_disk
sl_box(„C)

Head

sl_grid(„X)
Br

sl_load(„O)
sl_meterbox

sl_syncmeter
sl_lamp

Figure 74: SLD one-terminal elements, drawing direction up_.

There are three arguments, as follows. The first argument is a linespec which defines the location
and drawing direction of the element stem. The second argument is a sequence of semicolon-separated
key-value pairs as necessary to customize and name the element head, of which the default name
is Head. The third argument controls the presence and type of the object in the stem as for the
two-terminal element breakers. The default breaker name is Br and the default slash name is SL,
and the separation from the head is specified using global sl_breakersep_ or the local sep=expr
parameters as for the two-terminal elements.

A stem of zero length is allowed when only the element head is needed. Because a line segment
of zero length has undefined direction, the first argument must be one of U, D, L, R (for up, down,
left, right) or a number to set the direction in degrees, optionally followed by at position to set the
position (Here by default). For example, sl_box(45 at Here+(1,0)).

41

The macros sl_busbar(linespec, np, keys) and sl_ct(keys), shown in Figure 75, are composite;
that is, they are [] blocks with defined internal positions. For sl_busbar, these are Start, End,
and P1, P2, . . . Pnp where np is the value of the second argument.

sl_ct
Tstart TendTc

sl_transformer3(,
type=C)

Tstart TendTc

sl_busbar(right_ 3*dimen_,4,port=D)

P1 P2 P3 P4 End
Start

sl_transformer3(,
Y:Y:Delta)

sl_transformer3(,
direct=R,C:C:box=shaded "green",
Y:Y:Delta)

Tstart Tend

Tc

BrI BrO

Br

Figure 75: The sl_busbar() and some transformer variants.

For example, the line
line right_ 3cm__; sl_busbar(up_ 4.5cm__,5) with .P3 at Here

draws a vertical busbar at the end of a horizontal line.

12 Element and diagram scaling
There are several issues related to scale changes. You may wish to use millimetres, for example,
instead of the default inches. You may wish to change the size of a complete diagram while keeping
the relative proportions of objects within it. You may wish to change the sizes or proportions of
individual elements within a diagram. You must take into account that the size of typeset text
is independent of the pic language except when svg is being produced, and that line widths are
independent of the scaling of drawn objects.

The scaling of circuit elements will be described first, then the pic scaling facilities.

12.1 Circuit scaling
The circuit elements all have default dimensions that are multiples of the pic environmental parameter
linewid, so changing this parameter changes default element dimensions. The scope of a pic variable
is the current block; therefore, a sequence such as

resistor
T: [linewid *= 1.5; up_; Q: bi_tr] with .Q.B at Here

ground(at T.Q.E)
resistor(up_ dimen_ from T.Q.C)

connects two resistors and a ground to an enlarged transistor. Alternatively, you may redefine the
default length elen_ or the body-size parameter dimen_. For example, adding the line

define(‘dimen_’,(dimen_*1.2))
after the cct_init line of quick.m4 produces slightly larger body sizes for all circuit elements.

For more localized resizing, use, for example,
pushdef(‘dimen_’,expression) drawing commands popdef(‘dimen_’)

(but ensure that the drawing commands have no net effect on the dimen_ stack).
For logic elements, the equivalent to the dimen_ macro is L_unit, which has default value

(linewid/10).
The macros capacitor, inductor, and resistor have arguments that allow the body sizes to

be adjusted individually. The macro resized mentioned previously can also be used.

42

12.2 Pic scaling
There are at least three kinds of graphical elements to be considered:

1. When generating final output after reading the .PE line, pic processors divide distances and
sizes by the value of the environmental parameter scale, which is 1 by default. Therefore, the
effect of assigning a value to scale at the beginning of the diagram is to change the drawing
unit (initially 1 inch) throughout the figure. For example, the file quick.m4 can be modified
to use millimetres as follows:

.PS # Pic input begins with .PS
scale = 25.4 # mm
cct_init # Set defaults

elen = 19 # Variables are allowed
...

The default sizes of pic objects are redefined by assigning new values to the environmental
parameters arcrad, arrowht, arrowwid, boxht, boxrad, boxwid, circlerad, dashwid,
ellipseht, ellipsewid, lineht, linewid, moveht, movewid, textht, and textwid. The
. . .ht and . . .wid parameters refer to the default sizes of vertical and horizontal lines, moves, etc.,
except for arrowht and arrowwid, which are arrowhead dimensions. The boxrad parameter
can be used to put rounded corners on boxes. Assigning a new value to scale also multiplies
all of these parameters except arrowht, arrowwid, textht, and textwid by the new value
of scale (gpic multiplies them all). Therefore, objects drawn to default sizes are unaffected
by changing scale at the beginning of the diagram. To change default sizes, redefine the
appropriate parameters explicitly.

2. Dpic implements a scaled attribute for objects, so you can enclose the entire diagram (or part
of it) in [] brackets, thus: [. . . drawing commands] scaled x where x is a scale factor.

3. The .PS line can be used to scale the entire drawing, regardless of its interior. Thus, for
example, the line .PS 100/25.4 scales the entire drawing to a width of 100 mm. Line thickness,
text size, and dpic arrowheads are unaffected by this scaling.
If the final picture width exceeds maxpswid, which has a default value of 8.5, then the picture
is scaled to this size. Similarly, if the height exceeds maxpsht (default 11), then the picture
is scaled to fit. These parameters can be assigned new values as necessary, for example, to
accommodate landscape figures.

4. The finished size of typeset text is independent of pic variables, but can be determined as in
Section 14. Then, "text" wid x ht y tells pic the size of text, once the printed width x
and height y have been found.

5. Line widths are independent of diagram and text scaling, and have to be set explicitly.
For example, the assignment linethick = 1.2 sets the default line width to 1.2 pt. The
macro linethick_(points) is also provided, together with default macros thicklines_ and
thinlines_.

13 Writing macros
The m4 language is quite simple and is described in numerous documents such as the original
reference [10] or in later manuals [16]. If a new circuit or other element is required, then it may
suffice to modify and rename one of the library definitions or simply add an option to it. Hints for
drawing general two-terminal elements are given in libcct.m4. However, if an element or block is
to be drawn in only one orientation then most of the elaborations used for general two-terminal
elements in Section 4 can be dropped. If you develop a library of custom macros in the installation
directory then the statement include(mylibrary.m4) can bring its definitions into play.

43

It may not be necessary to define your own macro if all that is needed is a small addition to
an existing element that is defined in an enclosing [] block. After the element arguments are
expanded, one argument beyond the normal list is automatically expanded before exiting the block,
as mentioned near the beginning of Section 6. This extra argument can be used to embellish the
element.

A macro is defined using quoted name and replacement text as follows:
define(‘name’,‘replacement text’)
After this line is read by the m4 processor, then whenever name is encountered as a separate

string, it is replaced by its replacement text, which may have multiple lines. The quotation characters
are used to defer macro expansion. Macro arguments are referenced inside a macro by number; thus
$1 refers to the first argument. A few examples will be given.
Example 1: Custom two-terminal elements can often be defined by writing a wrapper for an
existing element. For example, an enclosed thermal switch can be defined as shown in Figure 76.

define(‘thermalsw’,
‘dswitch(‘$1’,‘$2’,WDdBTh)
circle rad distance(last [].T,last line.c) at last line.c ’)

Figure 76: A custom thermal switch defined from the dswitch macro.

Example 2: In the following, two macros are defined to simplify the repeated drawing of a series
resistor and series inductor, and the macro tsection defines a subcircuit that is replicated several
times to generate Figure 77.

.PS
‘Tline.m4’
cct_init
hgt = elen_*1.5
ewd = dimen_*0.9
define(‘sresistor’,‘resistor(right_ ewd); llabel(,r)’)
define(‘sinductor’,‘inductor(right_ ewd,W); llabel(,L)’)
define(‘tsection’,‘sinductor

{ dot; line down_ hgt*0.25; dot
parallel_(‘resistor(down_ hgt*0.5); rlabel(,R)’,

‘capacitor(down_ hgt*0.5); rlabel(,C)’)
dot; line down_ hgt*0.25; dot }

sresistor ’)

SW: Here
gap(up_ hgt)
sresistor
for i=1 to 4 do { tsection }
line dotted right_ dimen_/2
tsection
gap(down_ hgt)
line to SW

.PE

44

r L

RC

r L

RC

r L

RC

r L

RC

r L

RC

r

Figure 77: A lumped model of a transmission line, illustrating the use of custom macros.

Example 3: Figure 78 shows an element that is composed of several basic elements and that can be
drawn in any direction prespecified by Point_(degrees). The labels always appear in their natural
horizontal orientation.

rπ

+

−
vπ

gmvπ

ro

Base

Emitter

Collector

hybrid_PI_BJT

rπ

+

−
vπ

gmvπ

ro

hybrid_PI_BJT(M)

rπ

+

−
vπ

gmvπ

ro

hybrid_PI_BJT(LM)

rπ+

−
vπ

gmvπ

ro

Point_(45)
hybrid_PI_BJT

Figure 78: A composite element containing several basic elements

Two flags in the argument determine the circuit orientation with respect to the current drawing
direction and whether a mirrored circuit is drawn. The key to writing such a macro is to observe
that the pic language allows two-terminal elements to change the current drawing direction, so the
value of rp_ang should be saved and restored as necessary after each internal two-terminal element
has been drawn. A draft of such a macro follows:

‘Point_(degrees)
hybrid_PI_BJT([L][M])
L=left orientation; M=mirror’
define(‘hybrid_PI_BJT’,
‘[# Size (and direction) parameters:

hunit = ifinstr(‘$1’,M,-)dimen_
vunit = ifinstr(‘$1’,L,-)dimen_*3/2
hp_ang = rp_ang # Save the reference direction

Rpi: resistor(to rvec_(0,-vunit)); point_(hp_ang) # Restore direction
DotG: dot(at rvec_(hunit*5/4,0))
Gm: consource(to rvec_(0,vunit),I,R); point_(hp_ang) # Restore direction

dot(at rvec_(hunit*3/4,0))
Ro: resistor(to rvec_(0,-vunit)); point_(hp_ang) # Restore direction

line from Rpi.start to Rpi.start+vec_(-hunit/2,0) chop -lthick/2 chop 0
Base: dot(,,1)

line from Gm.end to Ro.start+vec_(hunit/2,0) chop -lthick/2 chop 0
Collector: dot(,,1)

line from Rpi.end to Ro.end chop -lthick/2
DotE: dot(at 0.5 between Rpi.end and DotG)

45

line to rvec_(0,-vunit/2)
Emitter: dot(,,1)

Labels
‘"$\mathrm{r_\pi}$"’ at Rpi.c+vec_(hunit/4,0)
‘"$ + $"’ at Rpi.c+vec_(-hunit/6, vunit/4)
‘"$ - $"’ at Rpi.c+vec_(-hunit/6,-vunit/4)
‘"$\mathrm{v_\pi}$"’ at Rpi.c+vec_(-hunit/4,0)
‘"$\mathrm{g_m}$$\mathrm{v_\pi}$"’ at Gm.c+vec_(-hunit*3/8,-vunit/4)
‘"$\mathrm{r_o}$"’ at Ro.c+vec_(hunit/4,0)
‘$2’] ’)

Example 4: A number of elements have arguments meant explicitly for customization. Figure 79
customizes the source macro to show a cycle of a horizontal sinusoid with adjustable phase given
by argument 2 in degrees, as might be wanted for a 3-phase circuit:

phsource(,120)

define(‘phsource’,‘source($1,
#‘Set angle to 0, draw sinusoid, restore angle’
m4smp_ang = rp_ang; rp_ang = 0
sinusoid(m4h/2,twopi_/(m4h),
ifelse(‘$2’,,,‘($2)/360*twopi_+’)pi_/2,-m4h/2,m4h/2) with .Origin at Here

rp_ang = m4smp_ang,
$3,$4,$5)’)

Figure 79: A source element customized using its second argument.

Example 5: Repeated subcircuits might appear only as the subcircuit and its mirror image,
for example, so the power of the vec_() and rvec_() macros is not required. Suppose that an
optoisolator is to be drawn with left-right or right-left orientation as shown in Figure 80.

C CA A

E EK KB

Figure 80: Showing opto and opto(BR) with defined labels.

The macro interface could be something like the following:
opto([L|R][A|B]),

where an R in the argument string signifies a right-left (mirrored) orientation and the element is of
either A or B type; that is, there are two related elements that might be drawn in either orientation,
for a total of four possibilities. Those who find such an interface to be too cryptic might prefer to
invoke the macro as

opto(orientation=Rightleft;type=B),
which includes semantic sugar surrounding the R and B characters for readability; this usage is made
possible by testing the argument string using the ifinstr() macro rather than requiring an exact
match. A draft of the macro follows, and the file Optoiso.m4 in the examples directory adds a third
type option.

‘opto([R|L][A|B])’
define(‘opto’,‘[{u = dimen_/2
Q: bi_trans(up u*2,ifinstr(‘$1’,R,R),ifinstr(‘$1’,B,B)CBUdE)
E: Q.E; C: Q.C; A:ifinstr(‘$1’,R,Q.e+(u*3/2,u),Q.w+(-u*3/2,u)); K: A-(0,u*2)

ifinstr(‘$1’,B,line from Q.B to (Q.B,E); B: Here)
D: diode(from A to K)

arrow from D.c+(0,u/6) to Q.ifinstr(‘$1’,R,e,w)+(0,u/6) chop u/3 chop u/4

46

arrow from last arrow.start-(0,u/3) to last arrow.end-(0,u/3)
Enc: box rad u wid abs(C.x-A.x)+u*2 ht u*2 with .c at 0.5 between C and K
‘$2’ }]’)

Two instances of this subcircuit are drawn and placed by the following code, with the result shown
in Figure 80.

Q1: opto
Q2: opto(type=B;orientation=Rightleft) with .w at Q1.e+(dimen_,0)

13.1 Macro arguments
Macro parameters are defined by entering them into specific arguments, and if an argument is blank
then a default parameter is used. For the resistor macro, for example:

resistor(linespec, cycles, chars, cycle wid)
an integer (3, say) in the second argument specifies the number of cycles.

Recently for some macros, a mixed style has been adopted by which parameters can entered
using keys. The previous case becomes

resistor(linespec, cycles=3;)
and the allowable keys for resistor are given in the macro definition, in this case on page 89.

Two macros assist this process. The first is
pushkey_(string, key, default value, [N])

so that in a macro, the line
pushkey_(‘$2’, wdth, dimen_*2)

checks macro argument 2 for the substring wdth=expression. If found, the macro m4wdth is defined,
using pushdef, to equal (expression) with enclosing parentheses omitted if the fourth argument
of pushkey_ is nonblank as would be required if m4wdth were to be non-numeric. If the substring
wdth= is not found, then m4wdth is given the default value (dimen_*2). The key wdth normally
should not be a macro name.

In addition, the macro
pushkeys_(string, keysequence)

applies pushkey_() to each of the terms of its keysequence (second) argument. Each term of
the semicolon-separated second argument sequence consists of the rightmost three arguments of
pushkey_ separated by colons (:) rather than commas. Normal good practice cancels pushed key
definitions at macro exit, for example, popdef(‘m4string1’,‘m4string2’, ...).

The macros setkey_() and setkeys_() are similar to pushkey_() and pushkeys_() respectively
but use the m4 define command rather than pushdef.

For example, consider the elementary example of a custom box macro:

define(‘custombox’,
‘pushkeys_(‘$1’,wdth:boxwid:; hght:boxht:; name::N; text::N)
ifelse(m4name,,,m4name:) box wid m4wdth ht m4hght ifelse(m4text,,,"m4text")
popdef(‘m4wdth’,‘m4hght’,‘m4name’,‘m4text’)’)

Then custombox(wdth=2; name=B1; text=Hello) first causes the macros m4wdth, m4hght,
m4name, and m4text to be created with values (2), (boxht), B1, and Hello respectively, and
custombox evaluates to

B1: box wid (2) ht (boxht) "Hello".
As another example, the macro sarrow(linespec, keys) can generate the custom arrows shown

below the three native arrows in Figure 81. The defined keys are type=; wdth=; lgth=; shaft=;
head=; hook=; and name=. Many variations of these arrowheads could be created by adding keys.

47

arrow -> 0
arrow -> 1 (default)
arrow -> 3
arrowwid=8bp__; arrowht=10bp__; sarrow(,type=Plain)
sarrow(,type=PP;hook=R;)
sarrow(,type=Open)
sarrow(,type=DI;head=colored "blue")
sarrow(,type=Open;head=fill_(0))
sarrow(,type=Crow;shaft=dashed)
sarrow(,type=Diamond;head=shaded "red";lgth=16bp__)

Figure 81: The three dpic native arrows and others generated by sarrow(linespec, keys).

14 Interaction with LATEX
The sizes of typeset labels and other TEX boxes are generally unknown prior to processing the
diagram by LATEX. Although they are not needed for many circuit diagrams, these sizes may be
required explicitly for calculations or implicitly for determining the diagram bounding box. The
following example shows how text sizes can affect the overall size of a diagram:

.PS
B: box

"Left text" at B.w rjust
"Right text: x^2" at B.e ljust

.PE

The pic interpreter cannot know the size of the text to the left and right of the box, and the
diagram is generated using default text size values. One solution to this problem is to measure the
text sizes by hand and include them literally, thus:

"Left text" wid 38.47pt__ ht 7pt__ at B.w rjust
but this is tedious.

Often, a better solution is to process the diagram twice. The diagram source is processed as
usual by m4 and a pic processor, and the main document source is LATEXed to input the diagram
and format the text, and also to write the text dimensions into a supplementary file. Then the
diagram source is processed again, reading the required dimensions from the supplementary file and
producing a diagram ready for final LATEXing. This hackery is summarized below, with an example
in Figure 82.

• Put \usepackage{boxdims} into the document source.

• Insert the following at the beginning of the diagram source, where jobname is the name of the
main LATEX file:
sinclude(jobname.dim)
s_init(unique name)

• Use the macro s_box(text) to produce typeset text of known size, or alternatively, invoke
the macros \boxdims and boxdim described later. The argument of s_box need not be text
exclusively; it can be anything that produces a TEX box, for example, \includegraphics.

48

.PS
gen_init
sinclude(Circuit_macros.dim)
s_init(stringdims)
B: box

s_box(Left text) at B.w rjust
s_box(Right text: $xˆ%g$,2) at B.e ljust

.PE

Left text Right text: x2

Figure 82: Macro s_box sets string dimensions automatically when processed twice. If two or more
arguments are given to s_box, they are passed through sprintf. The bounding box is shown.

The macro s_box(text) evaluates initially to
"\boxdims{name}{text}" wid boxdim(name,w) ht boxdim(name,v)

On the second pass, this is equivalent to
"text" wid x ht y

where x and y are the typeset dimensions of the LATEX input text. If s_box is given two or more
arguments as in Figure 82 then they are processed by sprintf.

The argument of s_init, which should be unique within jobname.dim, is used to generate a
unique \boxdims first argument for each invocation of s_box in the current file. If s_init has been
omitted, the symbols “!!” are inserted into the text as a warning. Be sure to quote any commas in
the arguments. Since the first argument of s_box is LATEX source, make a rule of quoting it to avoid
comma and name-clash problems. For convenience, the macros s_ht, s_wd, and s_dp evaluate to
the dimensions of the most recent s_box string or to the dimensions of their argument names, if
present.

The file boxdims.sty distributed with this package should be installed where LATEX can find it.
The essential idea is to define a two-argument LATEX macro \boxdims that writes out definitions for
the width, height and depth of its typeset second argument into file jobname.dim, where jobname
is the name of the main source file. The first argument of \boxdims is used to construct unique
symbolic names for these dimensions. Thus, the line

box "\boxdims{Q}{\Huge Hi there!}"
has the same effect as

box "\Huge Hi there!"
except that the line

define(‘Q_w’,77.6077pt__)define(‘Q_h’,17.27779pt__)define(‘Q_d’,0.0pt__)dnl
is written into file jobname.dim (and the numerical values depend on the current font). These
definitions are required by the boxdim macro described below.

The LATEX macro
\boxdimfile{dimension file}

is used to specify an alternative to jobname.dim as the dimension file to be written. This simplifies
cases where jobname is not known in advance or where an absolute path name is required.

Another simplification is available. Instead of the sinclude(dimension file) line above, the
dimension file can be read by m4 before reprocessing the source for the second time:

m4 library files dimension file diagram source file ...
Here is a second small example. Suppose that the file tsbox.m4 contains the following:

\documentclass{article}
\usepackage{boxdims,ifpstricks(pstricks,tikz)}
\begin{document}
.PS
cct_init s_init(unique) sinclude(tsbox.dim)
[source(up_,AC); llabel(,s_box(AC supply))]; showbox_
.PE
\end{document}

The file is processed twice as follows:
m4 pgf.m4 tsbox.m4 | dpic -g > tsbox.tex; pdflatex tsbox

49

m4 pgf.m4 tsbox.m4 | dpic -g > tsbox.tex; pdflatex tsbox
The first command line produces a file tsbox.pdf with incorrect bounding box. The second command
reads the data in tsbox.dim to size the label correctly. The equivalent pstricks commands (note the
ifpstricks macro in the second line of the diagram source) are

m4 pstricks.m4 tsbox.m4 | dpic -p > tsbox.tex; latex tsbox
m4 pstricks.m4 tsbox.m4 | dpic -p > tsbox.tex; latex tsbox; dvips tsbox

Objects can be taylored to their attached text by invoking \boxdims and boxdim explicitly. The
small source file in Figure 83, for example, produces the box in the figure.

.PS
‘eboxdims.m4’
sinclude(Circuit_macros.dim) # The input file is Circuit_macros.tex
box fill_(0.9) wid boxdim(Q,w) + 5pt__ ht boxdim(Q,v) + 5pt__ \

"\boxdims{Q}{\large$\displaystyle\int_0^T e^{tA}\,dt$}"
.PE

∫ T

0
etA dt

Q_w

Q_h+Q_d

Figure 83: Fitting a box to typeset text.

The figure is processed twice, as described previously. The line sinclude(jobname.dim) reads
the named file if it exists. The macro boxdim(name,suffix,default) from libgen.m4 expands the
expression boxdim(Q,w) to the value of Q_w if it is defined, else to its third argument if defined, else
to 0, the latter two cases applying if jobname.dim doesn’t exist yet. The values of boxdim(Q,h) and
boxdim(Q,d) are similarly defined and, for convenience, boxdim(Q,v) evaluates to the sum of these.
Macro pt__ is defined as *scale/72.27 in libgen.m4, to convert points to drawing coordinates.

Sometimes a label needs a plain background in order to blank out previously drawn components
overlapped by the label, as shown on the left of Figure 84.

Wood chips n3
Figure 84: Illustrating the f_box macro.

The technique illustrated in Figure 83 is automated by the macro f_box(boxspecs, label argu-
ments). For the special case of only one argument, e.g., f_box(Wood chips), this macro simply
overwrites the label on a white box of identical size. Otherwise, the first argument specifies the box
characteristics (except for size), and the macro evaluates to

box boxspecs s_box(label arguments).
For example, the result of the following command is shown on the right of Figure 84.

f_box(color "lightgray" thickness 2 rad 2pt__,"\huge$n^{%g}$",4-1)
More tricks can be played. The example
Picture: s_box(‘\includegraphics{file.eps}’) with .sw at location

shows a nice way of including eps graphics in a diagram. The included picture (named Picture
in the example) has known position and dimensions, which can be used to add vector graphics
or text to the picture. To aid in overlaying objects, the macro boxcoord(object name, x-fraction,
y-fraction) evaluates to a position, with boxcoord(object name,0,0) at the lower left corner of the
object, and boxcoord(object name,1,1) at its upper right.

15 PSTricks and other tricks
This section applies only to a pic processor (dpic) that is capable of producing output compatible
with PSTricks, Tikz PGF, or in principle, other graphics postprocessors.

By using command lines, or simply by inserting LATEX graphics directives along with strings to be
formatted, one can mix arbitrary PSTricks (or other) commands with m4 input to create complicated
effects.

50

Some commonly required effects are particularly simple. For example, the rotation of text by
PSTricks postprocessing is illustrated by the file

.PS
‘Axes.m4’

arrow right 0.7 "‘x-axis’" below
arrow up 0.7 from 1st arrow.start "‘\rput[B]{90}(0,0){y-axis}’" rjust

.PE

which contains both horizontal text and text rotated 90◦ along the vertical line. This rotation of
text is also implemented by the macro rs_box([angle=degrees;] text[,expr, expr . . .]), which is
similar to s_box but rotates its argument by 90◦, a default angle that can be changed by preceding
invocation with define(‘text_ang’,degrees) or by starting the first argument with angle=degrees;
where degrees is a decimal number (not an expression). The rs_box macro requires either PSTricks
or Tikz PGF and, like s_box, it calculates the size of the resulting text box but requires the diagram
to be processed twice.

The macro r_text(degrees, text, at position) works under PSTricks, Tikz PGF, and SVG, the
last requiring processing twice. The degrees argument is a decimal constant (not an expression) and
the text is a simple string without quotes. The text box is not calculated.

Another common requirement is the filling of arbitrary shapes, as illustrated by the following
lines within a .m4 file:
command "‘\pscustom[fillstyle=solid,fillcolor=lightgray]{’"
drawing commands for an arbitrary closed curve
command "‘}%’"

For colour printing or viewing, arbitrary colours can be chosen, as described in the PSTricks
manual. PSTricks parameters can be set by inserting the line
command "‘\psset{option=value, . . .}’"

in the drawing commands or by using the macro psset_(PSTricks options).
The macros shade(gray value,closed line specs) and rgbfill(red value, green value, blue value,

closed line specs) can be invoked to accomplish the same effect as the above fill example, but are
not confined to use only with PSTricks.

Since arbitrary LATEX can be output, either in ordinary strings or by use of command output,
complex examples such as found in reference [4], for example, can be included. The complications
are twofold: LATEX and dpic may not know the dimensions of the formatted result, and the code
is generally unique to the postprocessor. Where postprocessors are capable of equivalent results,
then macros such as rs_box, shade, and rgbfill mentioned previously can be used to hide code
differences.

15.1 Tikz with pic
Arbitrary pic output can be inserted into a \tikzpicture environment. The trick is to keep the pic
and Tikz coordinate systems the same. The lines
\begin{tikzpicture}[scale=2.54]
\end{tikzpicture}%

in the dpic -g output must be changed to
\begin{scope}[scale=2.54]
\end{scope}%

This is accomplished, for example, by adapting the \mtotex macro of Section 2.1.4 as follows:
\newcommand\mtotikz[1]{\immediate\write18{m4 pgf.m4 #1.m4 | dpic -g

| sed -e "/begin{tikzpicture}/s/tikzpicture/scope/"
-e "/end{tikzpicture}/s/tikzpicture/scope/" > #1.tex}\input{./#1.tex}}%

51

Then, from within a Tikz pictdure, \mtotikz{filename} will create filename.tex from filename.m4
and read the result into the Tikz code.

In addition, the Tikz code may need to refer to nodes defined in the pic diagram. The included
m4 macro tikznode(tikz node name,[position],[string]) defines a zero-size Tikz node at the given
pic position, which is Here by default. This macro must be invoked in the outermost scope of a pic
diagram, and the .PS value scaling construct may not be used.

16 Web documents, pdf, and alternative output formats
The issues related to web publishing are similar to those for other documents containing both
graphics and text. Here the important factor is that gpic -t generates output containing tpic
\special commands, which must be converted to the desired output, whereas dpic can generate
several alternative formats, as shown in Figure 85. One of the easiest methods for producing web
documents is to generate postscript as usual and to convert the result to pdf format with Adobe
Distiller or equivalent.

LATEX LATEX
pict2e

PDF
.pdf

-d

LATEX
.tex

-e

tpic
.tex

LATEX
psfrag

Postscript
psfrag

.eps

-f

LATEX
or

PDFlatex
tikz

PGF
.tex

-g

LATEX
Mfpic

Metafont

mfpic
.tex

-m

LATEX
PSTricks

PSTricks
.tex

-p

dpic

MetaPost

Meta-
Post
.mp

-s

Post-
script

.eps

-r

LATEX
or

PDFlatex

SVG
.svg

-v

Inkscape
or

HTML

Xfig
.fig

-x

Xfig

LATEX
or

PDFlatex

gpic -t m4 .pic.pic

Diagram source Macro libraries

Figure 85: Output formats produced by gpic-t and dpic. SVG output can be read by Inkscape or used
directly in web documents.

PDFlatex produces pdf without first creating a postscript file but does not handle tpic \specials,
so dpic must be installed.

Most PDFLatex distributions are not directly compatible with PSTricks, but the Tikz PGF
output of dpic is compatible with both LATEX and PDFLatex. Several alternative dpic output
formats such as mfpic and MetaPost also work well. To test MetaPost, create a file filename.mp
containing appropriate header lines, for example:

verbatimtex
\documentclass[11pt]{article}
\usepackage{times,boxdims,graphicx}
\boxdimfile{tmp.dim}
\begin{document} etex

Then append one or more diagrams by using the equivalent of
m4 <installdir>mpost.m4 library files diagram.m4 | dpic -s » filename.mp
The command “mpost –tex=latex filename.mp end” processes this file, formatting the di-

agram text by creating a temporary .tex file, LATEXing it, and recovering the .dvi output to
create filename.1 and other files. If the boxdims macros are being invoked, this process must be
repeated to handle formatted text correctly as described in Section 14. In this case, either put
sinclude(tmp.dim) in the diagram .m4 source or read the .dim file at the second invocation of m4
as follows:

52

m4 <installdir>mpost.m4 library files tmp.dim diagram.m4 | dpic -s » filename.mp
On some operating systems, the absolute path name for tmp.dim has to be used to ensure that

the correct dimension file is written and read. This distribution includes a Makefile that simplifies
the process; otherwise a script can automate it.

Having produced filename.1, rename it to filename.mps and, voilà, you can now run PDFlatex
on a .tex source that includes the diagram using \includegraphics{filename.mps} as usual.

The dpic processor can generate other output formats, as illustrated in Figure 85 and in example
files included with the distribution. The LATEX drawing commands alone or with eepic or pict2e
extensions are suitable only for simple diagrams.

17 Developer’s notes
In the course of writing a book in the late 1980s when there was little available for creating line
diagrams in LATEX, I wished to eliminate the tedious coordinate calculations required by the LATEX
picture objects that I was then using. The pic language seemed to be a good fit for this purpose,
and I took a few days off to write a pic-like interpreter (dpic). The macros in this distribution and
the interpreter are the result of that effort, drawings I have had to produce since, and suggestions
received from others. The emphasis throughout has been to produce a few types of diagrams well
rather than attempting to satisfy the needs of everyone.

Dpic has been upgraded over time to generate mfpic, MetaPost [6, 18], raw Postscript, Postscript
with psfrag tags, raw PDF, PSTricks, and TikZ PGF output, the latter two my preference because
of their quality and flexibility, including facilities for colour and rotations, together with simple font
selection. Xfig-compatible output was introduced early on to allow the creation of diagrams both by
programming and by interactive graphics. SVG output was added relatively recently, and seems
suitable for producing web diagrams directly and for further editing by the Inkscape interactive
graphics editor. The latest addition is raw PDF output, which has very basic text capability and is
most suitable for creating diagrams without labels.

The simple pic language is but one of many available tools for creating line graphics. Consequently,
the main value of this distribution is not necessarily in the use of a specific language but in the
element data encoded in the macros, which have been developed with reference to standards and
refined over decades, and which now total thousands of lines. The learning curve of pic compares
well with other possibilities but some of the macros have become less readable as more options
and flexibility have been added, and if starting over today, perhaps I would change some details.
Compromises have been made to preserve the compatability of some of the older macros and also
to retain reasonable compatibility with the various postprocessors. No choice of tool is without
compromise, and producing good graphics seems to be time consuming, no matter how it is done,
but the payoff can be worth the effort.

Instead of using pic macros, I preferred the equally simple but more powerful m4 macro processor,
and therefore m4 is required here, although dpic now supports pic macros. Free versions of m4 are
available for Unix and its descendents, Windows, and other operating systems. Additionally, the
simplicity of m4 and pic enables the writing of custom macros, which are mentioned from time to
time in this manual and included in some of the examples.

If starting over today would I not just use one of the other drawing packages available these
days? It would depend on the context, but pic remains a good choice for line drawings because it is
easy to learn and read but powerful enough (that is, Turing-complete) for coding the geometrical
calculations required for precise component sizing and placement. It would be nice if arbitrary
rotations and scaling were simpler, if a general path element with clipping were available as in
Postscript, and if adding color across postprocessors were easier. However, all the power of Postscript
or Tikz PGF, for example, remains available, as arbitrary postprocessor code can be included with
pic code.

The dpic interpreter has several output-format options that may be useful. The eepicemu and
pict2e extensions of the primitive LATEX picture objects are supported. The mfpic output allows the
production of Metafont alphabets of circuit elements or other graphics, thereby essentially removing
dependence on device drivers, but with the complication of treating every alphabetic component as a

53

TEX box. The xfig output allows elements to be precisely defined with dpic and interactively placed
with xfig. Similarly, the SVG output can be read directly by the Inkscape graphics editor, but SVG
can also be used directly for web pages. Dpic will also generate low-level MetaPost or Postscript
code, so that diagrams defined using pic can be manipulated and combined with others. I learned to
great benefit that the Postscript output can be imported into CorelDraw and Adobe Illustrator for
further processing, so that detailed diagram components produced by pic program can be combined
with effects best acheived using a wysiwyg drawing program. With raw Postscript, PDF, and SVG
output however, the user is responsible for ensuring that the correct fonts are provided and for
formatting the text.

Many thanks to the people who continue to send comments, questions, and, occasionally, bug
fixes. What began as a tool for my own use changed into a hobby that has persisted, thanks to your
help and advice.

18 Bugs
This section provides hints and a list of common errors.

First of all, be aware that old versions of LATEX, dpic, and these macros are not always compatible.
Updating an installation to current versions is often the way to eliminate mysterious error messages.

The distributed macros are not written for maximum robustness. Macro arguments could be
tested for correctness and explanatory error messages could be written as necessary, but that would
make the macros more difficult to read and to write. You will have to read them when unexpected
results are obtained or when you wish to modify them.

Maintaining reasonable compatibility with both gpic and dpic and, especially, with different post-
processors, has resulted in some macros becoming more complicated than is preferable. Furthermore,
some of the newer macros make use of dpic facilities not available with gpic.

Here are some hints, gleaned from experience and from comments I have received.

1. Misconfiguration: One of the configuration files listed in Section 2.2 and libgen.m4 must
be read by m4 before any other library macros. Otherwise, the macros assume default
configuration. To aid in detecting the default condition, a WARNING comment line is inserted
into the pic output. If only PSTricks is to be used, for example, then the simplest strategy is to
set it as the default processor by typing “make psdefault” in the installation directory to change
the mention of gpic to pstricks near the top of libgen.m4. Similarly if only Tikz PGF
will be used, change gpic to pgf using the Makefile. The package default is to read gpic.m4
for historical compatibility. The processor options must be chosen correspondingly, gpic -t
for gpic.m4 and, most often, dpic -p or dpic -g when dpic is employed. For example, the
pipeline for PSTricks output from file quick.m4 is
m4 -I installdir pstricks.m4 quick.m4 | dpic -p > quick.tex

but for Tikz PGF processing, the configuration file and dpic option have to be changed:
m4 -I installdir pgf.m4 quick.m4 | dpic -g > quick.tex

Any non-default configuration file must appear explicitly in the command line or in an
include() statement.

2. Pic objects versus macros: A common error is to write something like
line from A to B; resistor from B to C; ground at D

when it should be
line from A to B; resistor(from B to C); ground(at D)

This error is caused by an unfortunate inconsistency between pic object attributes and the
way m4 and pic pass macro arguments.

3. Commas: Macro arguments are separated by commas, so any comma that is part of an
argument must be protected by parentheses or quotes. Thus,
shadebox(box with .n at w,h)

54

produces an error, whereas
shadebox(box with .n at w‘,’h) and shadebox(box with .n at (w,h))

do not. The parentheses are preferred. For example, a macro invoked by circuit elements
contained the line
command "\pscustom[fillstyle=solid‘,’fillcolor=m4fillv]{%"

which includes a comma, duly quoted. However, if such an element is an argument of another
macro, the quotes are removed and the comma causes obscure “too many arguments” error
messages. Changing this line to
command sprintf("\pscustom[fillstyle=solid,fillcolor=m4fillv]{%%")

cured the problem because the protecting parentheses are not stripped away.
As a second example, the expansion of rgbstring(red frac,green frac,blue frac) for postpro-
cessor PSTricks or pgf contains a comma, so this macro is fragile when part of an argument of
another macro. One cure is to replace rgbstring(...) in the problematic argument by a
name, newcolor say, and define a pic macro: define newcolor {rgbstring(...)} so that
newcolor gets replaced by the color specification when needed during dpic execution.

4. Default directions and lengths: The linespec argument of element macros defines a
straight-line segment, which requires the equivalent of four parameters to be specified uniquely.
If information is omitted, default values are used. Writing
source(up_)

draws a source from the current position up a distance equal to the current lineht value,
which may cause confusion. Writing
source(0.5)

draws a source of length 0.5 units in the current pic default direction, which is one of right,
left, up, or down. The best practice is to specify both the direction and length of an element,
thus:
source(up_ elen_).

The effect of a linespec argument is independent of any direction set using the Point_ or
similar macros. To draw an element at an obtuse angle (see Section 7) try, for example,
Point_(45); source(to rvec_(0.5,0))

5. Mixing m4 and dpic code: It is easy to forget that m4 finishes before pic processing
begins. Consequently, it may be puzzling that the following mix of a pic loop and the m4
macro s_box does not appear to produce the required result:
for i=1 to 5 do {s_box(A[i]); move }

In this example, the s_box macro is expanded only once and the index i is not a number.
This particular example can be repaired by using an m4 loop:
for_(1,5,1,‘s_box(A[m4x]); move’)

Note that the loop index variable m4x is automatically defined.
Another potential problem is that macros like vec_() and rvec_() attempt to produce the
simplest output possible, depending on their arguments, in order to facilitate debugging. This
is accomplished by checking for multiplication by 0, 1, or -1 and simplifying accordingly,
and also checking for addition or subtraction of 0. However, their arguments may change
inside a pic loop, for example, causing difficulties. A recent switch in libgen.m4 (that is,
define(‘robustcode_’,1)), will avoid these changes, if you must, for robustness at the
expense of longer output expressions. The robust macros vec_r() and rvec_r() are also
provided. Better strategies may be to avoid argument-sensitive m4 macros in pic loops or to
use m4 loops instead.

55

6. Quotes: Single quote characters are stripped in pairs by m4, so the string
"‘‘inverse’’"

will become
"‘inverse’".

The cure is to add single quotes in pairs as necessary.
If text containing single quote characters causes difficulties then replace the LATEX single quote
by \char39 or disable the m4 quote characters temporarily as shown:
changequote(,) text containing single quotes changequote(‘,)

The only subtlety required in writing m4 macros is deciding when to quote macro arguments.
In the context of circuits it seemed best to assume that arguments would not be protected by
quotes at the level of macro invocation, but should be quoted inside each macro. There may
be cases where this rule is not optimal or where the quotes could be omitted, and there are
rare exceptions such as the parallel_ macro.
To keep track of paired single quotes, parentheses “(,),” braces “{, },” and brackets “[,],”
use an editor that highlights these pairs. For example, the vim editor highlights single quotes
with the command :set mps+=‘:’.

7. Dollar signs: The i-th argument of an m4 macro is $i, where i is an integer, so the following
construction can cause an error when it is part of a macro,
"0" rjust below

since $0 expands to the name of the macro itself. To avoid this problem, put the string in
quotes or write "$‘’0$".

8. Name conflicts: Using the name of a macro as part of a comment or string is a simple and
common error. Thus,
arrow right "$\dot x$" above

produces an error message because dot is a macro name. Macro expansion can be avoided by
adding quotes, as follows:
arrow right ‘"$\dot x$"’ above

Library macros intended only for internal use have names that begin with m4 or M4 to avoid
name clashes, but in addition, a good rule is to quote all LATEX in the diagram input.
If extensive use of strings that conflict with macro names is required, then one possibility is to
replace the strings by macros to be expanded by LATEX, for example the diagram
.PS
box "\stringA"

.PE

with the LATEX macro
\newcommand{\stringA}{

Circuit containing planar inductor and capacitor}

9. Current direction: Some macros, particularly those for labels, do unexpected things if
care is not taken to preset the current direction using macros right_, left_, up_, down_,
or rpoint_(·). Thus for two-terminal macros it is good practice to write, e.g.
resistor(up_ from A to B); rlabel(,R_1)

rather than
resistor(from A to B); rlabel(,R_1),

which produce different results if the last-defined drawing direction is not up. It might be
possible to change the label macros to avoid this problem without sacrificing ease of use.

56

10. Position of elements that are not 2-terminal: The linespec argument of elements
defined in [] blocks must be understood as defining a direction and length, but not the
position of the resulting block. In the pic language, objects inside these brackets are placed by
default as if the block were a box. Place the element by its compass corners or defined interior
points as described in the first paragraph of Section 6 on page 20, for example
igbt(up_ elen_) with .E at (1,0)

11. Pic error messages: Some errors are detected only after scanning beyond the end of the
line containing the error. The semicolon is a logical line end, so putting a semicolon at the
end of lines may assist in locating bugs.

12. Line continuation: A line is continued to the next if the rightmost character is a backslash
or, with dpic, if the backslash is followed immediately by the # character. A blank after the
backslash, for example, produces a pic error.

13. Scaling: Pic and these macros provide several ways to scale diagrams and elements within
them, but subtle unanticipated effects may appear. The line .PS x provides a convenient way
to force the finished diagram to width x. However, if gpic is the pic processor then all scaled
parameters are affected, including those for arrowheads and text parameters, which may not
be the desired result. A good general rule is to use the scale parameter for global scaling
unless the primary objective is to specify overall dimensions.

14. Buffer overflow: For some m4 implementations, the error message pushed back more than
4096 chars results from expanding large macros or macro arguments, and can be avoided by
enlarging the buffer. For example, the option -B16000 enlarges the buffer size to 16000 bytes.
However, this error message could also result from a syntax error.

15. m4 -I error: Some old versions of m4 may not implement the -I option or the M4PATH
environment variable that simplify file inclusion. The simplest course of action is probably
to install GNU m4, which is free and widely available. Otherwise, all include(filename)
statements in the libraries and calling commands have to be given absolute filename paths.
You can define the HOMELIB_ macro in libgen.m4 to the path of the installation directory and
change the library include statements to the form include(HOMELIB_‘’filename).

19 List of macros
The following table lists macros in the libraries, configuration files, and selected macros from example
diagrams. Some of the sources in the examples directory contain additional macros, such as for
flowcharts, Boolean logic, and binary trees.

Internal macros defined within the libraries begin with the characters m4 or M4 and, for the
most part, are not listed here.

The library in which each macro is found is given, and a brief description.

A B C D E F G H I J K L M N O P R S T U V W X Y Z

A

above_ gen string position above relative to current direction

abs_(number) gen absolute value function

ACsymbol(at position, len, ht, [n:][A]U|D|L|R|degrees)
cct draw a stack of n (default 1) AC symbols (1-cycle sine

waves); If arg 4 contains A, two arcs are used. The current
drawing direction is default, otherwise Up, Down, Left,
Right, or at degrees slant; (Section 4.2) e.g.,
ebox; {ACsymbol(at last [],,dimen_/8)}

57

adc(width, height, nIn, nN, nOut, nS)
cct Analog-digital converter with defined width, height, and

number of inputs Ini, top terminals Ni, ouputs Outi, and
bottom terminals Si

addtaps([arrowhd| type=arrowhd;name=Name], fraction, length, fraction, length, · · ·)
cct Add taps to the previous two-terminal element. arrowhd is

blank or one of . - <- -> <->. Each fraction determines
the position along the element body of the tap. A negative
length draws the tap to the right of the current direction;
positive length to the left. Tap names are Tap1, Tap2, · · ·
by default or Name1, Name2, · · · if specified (Section 6)

adjust([at position], keys) cct Ajdustment screwhead in a [] block. keys:
size=expression; angle=degrees; slotwid=expression;
circle=attributes;

along_(linear object name) gen short for between name.start and name.end

Along_(LinearObj,distance,[R])
gen Position arg2 (default all the way) along a linear object

from .start to .end (from .end to .start if arg3=R)

amp(linespec, size, attributes)cct amplifier (Section 4.2)

And, Or, Not, Nand, Nor, Xor, Nxor, Buffer
log Wrappers of AND_gate, . . . for use in the Autologix macro

AND_gate(n, [N][B], [wid, [ht]], attributes)
log ‘and’ gate, 2 or n inputs (0 ≤ n ≤ 16) drawn in the current

direction; N: negated inputs; B: box shape. Alternatively,
AND_gate(chars, [B], wid, ht, attributes), where arg1
is a sequence of letters P|N to define normal or negated
inputs. (Section 9)

AND_gen(n, chars, [wid, [ht]], attributes)
log general AND gate: n=number of inputs (0 ≤ n ≤ 16);

chars: B=base and straight sides; A=Arc;
[N]NE,[N]SE,[N]I,[N]N,[N]S=inputs or circles;
[N]O=output; C=center. Otherwise, arg1 can be a
sequence of letters P|N to define normal or negated inputs;
arg2 is as above except that [N]I is ignored. Arg 5
contains body attributes.

AND_ht log height of basic ‘and’ and ‘or’ gates in L_units

AND_wd log width of basic ‘and’ and ‘or’ gates in L_units

58

antenna(at location, T, A|L|T|S|D|P|F, U|D|L|R|degrees)
cct antenna, without stem for nonblank 2nd arg; arg3 is

A: aerial (default),
L: loop,
T: triangle,
S: diamond,
D: dipole,
P: phased,
F: fork;
arg4 specifies Up, Down, Left, Right, or angle from
horizontal (default 90) (Section 6)

arca(absolute chord linespec, ccw|cw, radius, modifiers)
gen arc with acute angle (obtuse if radius is negative), drawn

in a [] block

ArcAngle(position, position, position, radius, modifiers, label)
gen Arc angle symbol drawn ccw at arg2. Arg4 is the radius

from arg2; arg5 contains line attributes, e.g., thick
linethick/2 ->; arg6 is an optional label at mid-arc

arcd(center, radius,start degrees,end degrees)
gen Arc definition (see arcr), angles in degrees (Section 3.3)

arcdimension_(arcspec, offset, label, D|H|W|blank width, tic offset, -> | <-)
gen arcs with arrowheads for dimensioning an angle in a

technical drawing, similar to dimension_; Arg1 defines the
attributes of an invisible arc: arc invis arg1.
Arg2 is the radial displacement (possibly negative) of the
dimension arrows from the arc.
Arg3: label, normally a number or number with unit
symbol.
Arg4: if arg3 is s_box(...) or rs_box(...) and arg4 is
one of D,H,W then arg4 means:
D: blank width is the diagonal length of arg3;
H: blank width is the height of arg3 + textoffset*2;
W: blank width is the width of arg3 + textoffset*2;
otherwise arg4 is the absolute blank width.
Arg5 is -> | <- to designate a single arrowhead at the end
or start of the reference arc; otherwise both arrowheads are
drawn by default.

arcr(center,radius,start angle,end angle,modifiers,ht)
gen Arc definition. If arg5 contains <- or -> then a midpoint

arrowhead of height equal to arg6 is added. Arg5 can
contain modifiers (e.g. outlined "red"), for the arc and
arrowhead. Modifiers following the macro affect the arc
only, e.g., arcr(A,r,0,pi_/2,->) dotted ->
(Section 3.3)

arcto(position 1, position 2, radius, [dashed|dotted])
gen line toward position 1 with rounded corner toward position

2

59

arcwinding(winding diam, start degrees, end degrees, nturns, core centre rad, core width, "core
color")

cct winding drawn on an arc. The complete spline is drawn,
then parts of it are overwritten with the background color
(default white). Negative arg5 (default dimen_ puts
winding terminals at the outside.
Example: W: arcwinding(1.2,-20,20,8, -1,0.8)
(Section 6)

array(variable, expr1, expr2, . . .)
dpictools Populate a singly-subscripted array: var[1]=expr1;

var[2]=expr2;

array2(variable, expr1, expr2, . . .)
dpictools Populate a doubly-subscripted array:

var[expr1,1]=expr2; var[expr1,2]=expr3;

arraymax(data array, n, index name, value)
dpictools Find the index in array[1:n] of the first occurrence of the

maximum array element value. The value is assigned if
arg4 is nonblank; example: array(x,4,9,8,6);
arraymax(x,4,i) assigns 2 to i, and arraymax(
x,4,i,m) assigns 2 to i and 9 to m.

arraymin(data array, n, index name, value)
dpictools Find the index in array[1:n] of the first occurrence of the

minimum array element value. The value is assigned if arg4
is nonblank; see arraymax.

arrester(linespec, chars[D[L|R]], body len[:arrowhead ht], body ht[:arrowhead wid], at-
tributes)

cct Arg2 chars:
G= spark gap (default)
g= general (dots)
E= gas discharge
S= box enclosure
C= carbon block
A= electrolytic cell
H= horn gap
P= protective gap
s= sphere gap
F= film element
M= multigap
Modifiers appended to arg2:
R= right orientation
L= left orientation
D= for S, E only, create a 3-terminal composite element
with terminals A, B, G, placed as a block since Arg1 now
determines length and direction but not position.
(Section 4.2)

arrowline(linespec) cct line (dotted, dashed permissible) with centred arrowhead
(Section 4.2)

60

assign3(name, name, name, arg4, arg5, arg6)
gen Assigns $1 = arg4 if $1 is nonblank; similarly $2 = arg5

and $3 = arg6

AutoGate log Draw the tree for a gate as in the Autologix macro. No
inputs or external connections are drawn. The names of
the internal gate inputs are stacked in ‘AutoInNames’

Autologix(Boolean function sequence,[N[oconnect]][L[eftinputs]][R][V][M][;offset=value])
log Draw the Boolean expressions defined in function notation.

The first argument is a semicolon (;)-separated sequence of
Boolean function specifications using the functions And,
Or, Not, Buffer, Xor, Nand, Nor, Nxor with
variables, e.g.,
Autologix(And(Or(x1,˜x2),Or(˜x1,x2)));.
Each function specification is of the form
function(arguments) [@attributes].
Function outputs are aligned vertically but appending
@attributes to a function can be used to place it; e.g.,
Nand(˜A,B) @with .n at last [].s+(0,-2bp__).
The function arguments are variable names or nested
Boolean functions. Each unique variable var causes an
input point Invar to be defined. Preceding the variable by
a ˜ causes a NOT gate to be drawn at the input. The
inputs are drawn in a row at the upper left by default. An
L in arg2 draws the inputs in a column at the left; R
reverses the order of the drawn inputs; V scans the
expression from right to left when listing inputs; M draws
the left-right mirror image of the diagram; and N draws
only the function tree without the input array. The inputs
are labelled In1, In2, . . . and the function outputs are Out1,
Out2, Each variable var corresponds also to one of the
input array points with label Invar. Setting offset=value
displaces the drawn input list in order to disambiguate the
input connections when L is used.
In the (possibly rare) case where one or more inputs of a
normal function gate is to have a NOT-circle, an additional
first argument of the function is inserted, of the form
[charseq], where charseq is a string containing the
characters P for a normal input or N for a negated input,
the length of the string equal to the number of gate inputs.
Example:
Autologix(Xor([PN],And(x,y),And(x,y)),LRV)

B

basename_(string sequence, separator)
gen Extract the rightmost name from a sequence of names

separated by arg2 (default dot “.”)

battery(linespec,n,R) cct n-cell battery: default 1 cell, R=reversed polarity
(Section 4.2)

b_ gen blue color value

61

b_current(label, pos, In|Out, Start|End, frac)
cct labelled branch-current arrow to frac between branch end

and body (Section 4.3)

beginshade(gray value) gen begin gray shading, see shadee.g., beginshade(.5);
closed line specs; endshade

bell(U|D|L|R|degrees, size) cct bell, In1 to In3 defined (Section 6)

below_ gen string position relative to current direction

Between_(Pos1, Pos2,distance,[R])
gen Position distance from Pos1 toward Pos2. If the fourth arg

is R then from Pos2 toward Pos1.

binary_(n, [m]) gen binary representation of n, left padded to m digits if the
second argument is nonblank

bisect(function name, left bound, right bound, tolerance, variable))
dpictools Solve function(x) = 0 by the method of bisection. Like

findroot but uses recursion and is without a [] box. The
calculated value is assigned to the variable named in the
last argument (Section 2.2). Example:
define parabola { $2 = ($1)^2 - 1 };
bisect(parabola, 0, 2, 1e-8, x).

bi_trans(linespec,L|R,chars,E)
cct bipolar transistor, core left or right; chars:

BU: bulk line
B: base line and label
S: Schottky base hooks
uEn|dEn: emitters E0 to En
uE|dE: single emitter
Cn|uCn|dCn: collectors C0 to Cn; u or d add an arrow
C: single collector; u or d add an arrow
G: gate line and location
H: gate line;
L: L-gate line and location
[d]D: named parallel diode
d: dotted connection
[u]T: thyristor trigger line
arg 4 = E: envelope (Section 6.1)

bi_tr(linespec,L|R,P,E) cct left or right, N- or P-type bipolar transistor, without or
with envelope (Section 6.1)

boxcoord(planar obj, x fraction, y fraction)
gen internal point in a planar object

boxdim(name,h|w|d|v,default)
gen Evaluate, e.g. name_w if defined, else default if given, else

0. v gives sum of d and h values (Section 14)

62

BOX_gate(inputs, output, swid, sht, label, attributes)
log output=[P|N], inputs=[P|N]. . ., sizes swid and sht in

L_units (default AND_wd = 7) (Section 9)

bp__ gen big-point-size factor, in scaled inches, (*scale/72)

bswitch(linespec, [L|R],chars)
cct pushbutton switch R=right orientation (default L=left);

chars: O= normally open, C=normally closed

BUFFER_gate(linespec, [N|B], wid, ht, [N|P]*, [N|P]*, [N|P]*, attributes)
log basic buffer, dfault 1 input or as a 2-terminal element,

arg2: N: negated input, B: box gate;
arg 5: normal (P) or negated N) inputs labeled In1
(Section 9)

BUFFER_gen(chars,wd,ht,[N|P]*,[N|P]*,[N|P]*, attributes)
log general buffer, chars:

T: triangle,
[N]O: output location Out (NO draws circle N_Out);
[N]I, [N]N, [N]S, [N]NE, [N]SE input locations;
C: centre location.
Args 4-6 allow alternative definitions of respective In, NE,
and SE argument sequences

BUF_ht log basic buffer gate height in L_units

BUF_wd log basic buffer gate width in L_units

buzzer(U|D|L|R|degrees, size,[C])
cct buzzer, In1 to In3 defined, C=curved (Section 6)

C

cangle(Start, End,[d]) gen Angle in radians of the sector at arg2 with arm ends given
by arg1 and arg3 (degrees if arg4=d).

capacitor(linespec,chars,R, height, wid)
cct capacitor, chars:

F or blank: flat plate
dF flat plate with hatched fill
C curved-plate
dC curved-plate with variability arrowhead
CP constant phase element
E polarized boxed plates
K filled boxed plates
M unfilled boxes
N one rectangular plate
P alternate polarized
+ adds a polarity sign
+L polarity sign to the left of drawing direction
arg3: R=reversed polarity
arg4: height (defaults F: dimen_/3, C,P: dimen_/4, E,K:
dimen_/5)
arg5: wid (defaults F: height*0.3, C,P: height*0.4, CP:
height*0.8, E,K: height) (Section 4.2)

63

case(i, alt1, alt2, . . .) dpictools Case statement for dpic; execute alternative i. Example:
case(2, x=5, x=10, x=15) sets x to 10. Note: this is
a macro so $n refers to the n-th argument of case.

cbreaker(linespec, L|R, D|Th|TS, body name)
cct circuit breaker to left or right, D: with dots; Th: thermal;

TS: squared thermal; default body bounding box name is
Br (Section 4.2)

ccoax(at location, M|F, diameter, attributes)
cct coax connector, M: male, F: female (Section 6)

cct_init cct initialize circuit-diagram environment (reads libcct.m4)

centerline_(linespec, thickness|color, minimum long dash len, short dash len, gap len
gen Technical drawing centerline

c_fet(linespec,R,P) cct left or right, plain or negated pin simplified MOSFET

Cintersect(Pos1, Pos2, rad1, rad2, [R])
gen Upper (lower if arg5=R) intersection of circles at Pos1 and

Pos2, radius rad1 and rad2

clabel(label, label, label, relative position, block name)
cct Triple label along the drawing axis of the body of an

element in the current direction (Section 4.4). Labels are
placed at the beginning, centre, and end of the last []
block (or a [] block named or enumerated in arg5). Each
label is treated as math by default, but is copied literally if
it is in double quotes or sprintf. Arg4 can be above,
below, left, or right to supplement the default relative
position.

cm__ gen absolute centimetres

cmyktorgb(c, m, y, k, r, g, b) dpictools cmyk values in percent, i.e., 0 to 100, to rgb.

consource(linespec, V|I|tv|v|ti|i|P, R, attributes)
cct controlled source or sensor with alternate forms; V: voltage;

I: current; v: voltage type 2; tv: voltage type 3; i: current
type 2; ti: current type 3; P: proximity sensor; R: reversed
polarity. Body internal locations N, S, E, W, and C are
defined. Arg 4 can be used to modify the body or to add
internal symbols, e.g.
consource(,,,fill_(0.9); "S" at C) (Section 4.2)

64

ColoredV(box|circle|ellipse,(r,g,b)|((colorseq))[:nlines],attributes)
gen box (default), circle, or ellipse in a [] block. If arg2 is

blank then all formatting is in arg3; if parenthesized r,g,b,
the object is shaded top to bottom white to the specified
rgb color; if a double-parenthesized colorseq then the
colorseq defines the internal shading top to bottom. A
colorseq is of the form 0,r0,g0,b0,
frac1,r1,g1,b1,
frac2,r2,g2,b2,
. . .
1,rn,gn,bn
with 0 < frac1 < frac2 . . . 1. The number of colorseq lines
can be specified with the colon (default height/(line
thickness)*2). Examples: ColoredV(circle,(1,0,0));
ColoredV(ellipse,(1,0.04,1),wid 0.75 ht 1 \

outlined "magenta" "Goodbye");
ColoredV(box,((0,1,1,0, 1,0,0,1)):50,

outlined "blue" rad 0.1).

contact(chars) cct single-pole contact: O: normally open
C: normally closed (default)
I: open circle contacts
P: three position
R: right orientation
T: T contacts
U: U contacts (Section 6)

contacts(count, chars) cct multiple ganged single-pole contacts: P: three position
O: normally open
C: normally closed
D: dashed ganging line over contact armatures I: open
circle contacts
R: right orientation
T: T contacts
U: U contact lines parallel to drawing direction (Section 6)

contline(line) gen evaluates to continue if processor is dpic, otherwise to
first arg (default line)

copy3(vector1,vector2) dpictools Copy vector1 into vector named by arg2.

copythru(dpic macro name, "file name")
dpictools Implements the gpic copy filename thru macro-name

for file data separated by commas, spaces, or tabs.

corner(line thickness,attributes,turn radians)
gen Mitre (default filled square) drawn at end of last line or at

a given position. arg1 default: current line thickness; arg2:
e.g. outlined string; if arg2 starts with at position then a
manhattan (right-left-up-down) corner is drawn; arg3=
radians (turn angle, +ve is ccw, default π/2). The corner
is enclosed in braces in order to leave Here unchanged
unless arg2 begins with at (Section 7)

Cos(integer) gen cosine function, integer degrees

65

cosd(arg) gen cosine of an expression in degrees

Cosine(amplitude, freq, time, phase)
gen function a × cos(ωt + ϕ)

cross3(vec1, vec2, vec3) dpictools The 3-vector cross product vec3 = vec1 × vec2.

cross3D(x1,y1,z1,x2,y2,z2) 3D cross product of two triples

cross(at location, size|keys) gen Plots a small cross. The possible key-value pairs are:
size=expr;, line=attributes;

crossover(linespec, [L|R][:line attributes], Linename1, Linename2, . . .)
cct line jumping left or right over ordered named lines

(Section 6.1)

crosswd_ gen cross dimension

csdim_ cct controlled-source width
D

dabove(at location) darrow above (displaced dlinewid/2)

dac(width,height,nIn,nN,nOut,nS)
cct DAC with defined width, height, and number of inputs Ini,

top terminals Ni, ouputs Outi, and bottom terminals Si
(Section 9)

Darc(center position, radius, start radians, end radians, parameters)
darrow Wrapper for darc. CCW arc in dline style, with closed

ends or (dpic only) arrowheads. Semicolon-separated
parameters:
thick=value;
wid=value;
ends= x-, -x, x-x, ->, x->, <-, <-x, <->, where x is | or
(half-thickness line) !.

darc(center position, radius, start radians, end radians, dline thickness, arrowhead wid, ar-
rowhead ht, end symbols, outline attributes, inner attributes)

darrow See also Darc. CCW arc in dline style, with closed ends
or (dpic only) arrowheads. Permissible end symbols: x-,
-x, x-x, ->, x->, <-, <-x, <-> where x is | or
(half-thickness line) !. An inner arc is drawn overlaying the
outer arc. Example: darc(,,,,,,,,outlined
"red",outlined "yellow").

Darlington(L|R,chars) cct Composite Darlington pair Q1 and Q2 with internal
locations E, B, C; Characters in arg2:
E= envelope
P= P-type
B1= internal base lead
D= damper diode
R1= Q1 bias resistor; E1= ebox
R2= Q2 bias resistor; E2= ebox (require R1 or E1)
Z= zener bias diode (Section 6.1)

66

darrow(linespec, t, t, width, arrowhd wd, arrowhd ht, parameters, color attributes)
darrow See also Darrow. Double arrow, truncated at beginning

(arg2=t) or end (arg3=t), specified sizes, with arrowhead
and optional closed stem. The parameters (arg7) are x- or
-> or x-> or <- or <-x or <-> where x is | or !. The !- or
-! parameters close the stem with half-thickness lines to
simplify butting to other objects. The color attributes are,
e.g., outlined "color" shaded "color". Example:
linethick=5; darrow(down_
2,,,0.5,0.75,0.75,|,outlined "red").

Darrow(linespec, parameters) darrow Wrapper for darrow. Semicolon-separated parameters:
S;, E; truncate at start or end by dline thickness/2
thick=val; (total thicknes, ie width)
wid=val; (arrowhead width)
ht=val; (arrowhead height)
ends= x-x or -x or x- where x is ! (half-width line) or |
(full-width line).
Examples: define(‘dfillcolor’,‘1,0.85,0’)
linethick=5; rgbdraw(1,0,0,Darrow(down_
2,thick=0.5; wid=0.75; ht=0.75; ends=|->)), which
is equivalent to Darrow(down_ 2,thick=0.5; wid=0.75;
ht=0.75; ends=|->; outline="red").

darrow_init darrow Initialize darrow drawing parameters (reads library file
darrow.m4)

dashline(linespec,thickness|color|<->|->|<-, dash len, gap len,G)
gen Dashed line with dash at end (G ends with gap). Dashes

are adjusted to fit with given gap length. Dpic only.

dbelow(at location) darrow below (displaced dlinewid/2)

dcosine3D(i,x,y,z) 3D extract i-th entry of triple x,y,z

DCsymbol(at position, len, ht,U|D|L|R|degrees)
cct A DC symbol (a dashed line below a solid line). The

current drawing direction is default, otherwise Up, Down,
Left, Right, or at degrees slant; e.g., source(up_
dimen_); { DCsymbol(at last [],,,R) } (Section 4.2)

DefineCMYKColor(color-name, c, m, y, k)
dpictools Like DefineRGBColor but takes arguments in percent,

i.e., the range [0, 100]. Define dpic macro colorname
according to the postprocessor specified by dpic
command-line option. The macro evaluates to a string.

DefineHSVColor(color-name, h, s, v)
dpictools Like DefineRGBColor but takes argument h in the range

[0, 360], s in [0, 1], and v in [0, 1]. Define dpic macro
colorname according to the postprocessor specified by dpic
command-line option. The macro evaluates to a string.

67

DefineRGBColor(color-name, r, g, b)
dpictools Arguments are in the range 0 to 1. Define dpic macro

colorname according to the postprocessor specified by dpic
command-line option. The macro evaluates to a string.

definergbcolor(color-name, r, g, b)
gen Arguments are in the range 0 to 1. Define color name

according to the postprocessor. Similar to dpictools
DefineRGBColor but the color name is an m4 macro, not a
string.

delay(linespec,size,attributes)cct delay element (Section 4.2)

delay_rad_ cct delay radius

deleminit_ darrow sets drawing direction for dlines

Deltasymbol(at position, keys, U|D|L|R|degrees) (default U for up)
cct Delta symbol for power-system diagrams. keys:

size=expression; type=C|O (default C for closed; O draws
an “open” symbol);

Demux(n,label, [L][B|H|X][N[n]|S[n]][[N]OE], wid,ht,attributes)
log binary demultiplexer, n inputs

L reverses input pin numbers
B displays binary pin numbers
H displays hexadecimal pin numbers
X do not print pin numbers
N[n] puts Sel or Sel0 .. Seln at the top (i.e., to the left of
the drawing direction)
S[n] puts the Sel inputs at the bottom (default) OE
(N=negated) OE pin (Section 9)

dend(at location, line thickness|attributes)
darrow Close (or start) double line (Note specifying dends= for

Dline is a similar function. Arg2 is dline thickness or
atributes:
thick=expression; (dline thickness in drawing units)
outline=(r,g,b)|"color";

d_fet(linespec,R,P,E|S) cct left or right, N or P depletion MOSFET, envelope or
simplified (Section 6.1)

dfillcolor darrow dline fill color (default white)

diff3(vec1, vec2, vec3) dpictools The 3-vector subtraction vec3 = vec1 − vec2.

dfitcurve(Name, n, linetype, m)
dpictools Draw a spline through Name[m], . . . Name[n] with

attribute linetype dotted, for example. The calculated
control points P[i] satisfy approximately: P[0] = V[0];
P[i-1]/8 + P[i]*3/4 + P[i+1]/8 = V[i]; P[n] = V[n]. See m4
macro fitcurve.

68

dfitpoints(V,n,m,P,mp) dpictools Compute the control locations P[mP], P[mP+1]... for
the spline passing throught points V[m]...V[n]. Used by
macro dfitcurve.

diff3D(x1,y1,z1,x2,y2,z2) 3D difference of two triples

diff_(a,b) gen difference function

dimen_ cct size parameter for scaling circuit element bodies
(Section 12.1)

dimension_(linespec, offset, label, D|H|W|blank width, tic offset, <- | ->)
gen macro for dimensioning technical drawings; Arg1 defines

the attributes of an invisible line: line invis arg1.
Arg2 is the sideways displacement (possibly negative) of
the dimension arrows from the line.
Arg3: label, normally a number or number with unit
symbol but if arg3 begins with [then it is copied verbatim.
Arg4: if arg3 is s_box(...) or rs_box(...) and arg4 is
one of D,H,W then arg4 means:
D: blank width is the diagonal length of arg3;
H: blank width is the height of arg3 + textoffset*2;
W: blank width is the width of arg3 + textoffset*2;
otherwise arg4 is the absolute blank width.
Arg5 is -> | <- to designate a single arrowhead at the end
or start of the reference line; otherwise both arrowheads
are drawn by default.

diode(linespec, B|b|CR|D|G|L|LE[R]|P[R]|S|Sh|T|U|V|v|w|Z|z|chars, [R][E])
cct diode: B: bi-directional

b: bi-directional with outlined zener crossbar
CR: current regulator
D: diac
G: Gunn
L: open form with centre line
LE[R]: LED [right]
P[R]: photodiode [right]
S: Schottky
Sh: Shockley
T: tunnel
U: limiting
V: varicap
v: varicap (curved plate)
w: varicap (reversed polarity)
Z: zener
z: zener with angled centre bar
appending K to arg 2 draws open arrowheads; arg 3: R:
reversed polarity, E: enclosure (Section 4.2)

dir_ darrow used for temporary storage of direction by darrow macros

distance(Position 1, Position2)
gen distance between named positions

distance(position, position) gen distance between positions

69

dlabel(long,lat,label,label,label,chars)
cct general triple label; chars: X displacement long, lat with

respect to the drawing direction is from the centre of the
last line rather than the centre of the last []; L,R,A,B
align labels ljust, rjust, above, or below (absolute)
respectively (Section 4.4)

dleft(at position, line thickness, attributes)
darrow Double line left turn 90 degrees. Attributes can be

outline=(r, g, b)|"color"; innershade=(r, g,
b)|"color"; where rgb values in parentheses or a defined
color is specified.

Dline(linespec, parameters) darrow Wrapper for dline. The semicolon-separated parameters
are:
S;, E; truncate at start or end by dline thickness/2;
thick=val; (total thicknes, ie width);
outline=color; (e.g., "red" or (1,0,0)),
innershade=color; (e.g., (0,1,1) or "cyan"),
name=Name;,
ends=x-x or -x or x- where x is ! (half-width line) or |;
(full-width line).

dline(linespec,t,t,width,parameters)
darrow See also Dline. Double line, truncated by half width at

either end, closed at either or both ends. parameters= x-x
or -x or x- where x is ! (half-width line) or | (full-width
line).

dlinewid darrow width of double lines

dljust(at location) darrow ljust (displaced dlinewid/2)

dna_ cct internal character sequence that specifies which
subcomponents are drawn

dn_ gen down with respect to current direction

dot3(vec1, vec2) dpictools Expands to the dot (scalar) product of the two 3-vector
arguments: ($1[1] · $2[1] + $1[2] · $2[2] + $1[3] · $2[3]).

dot3D(x1,y1,z1,x2,y2,z2) 3D dot product of two triples

dot(at location,radius|keys,fill)
gen Filled circle (third arg= gray value: 0=black, 1=white).

The possible key-value pairs are: rad=expr; and
circle=attributes;

dotrad_ gen dot radius

down_ gen sets current direction to down (Section 5)

dpquicksort(array name, lo, hi, ix)
dpictools Given array a[lo:hi] and index array ix[lo:hi] = lo, lo+1,

lo+2,. . . hi, sort a[lo:hi] and do identical exchanges on ix.

70

dprot(radians, x, y) dpictools Evaluates to a rotated pair (see m4 rot_).

dprtext(degrees, text) dpictools Rotated PStricks or pgf text in a [] box.

dright(at position, line thickness, attributes)
darrow Double line right turn 90 degrees. Attributes can be

outline=(r, g, b)|"color";
innershade=(r, g, b)|"color";
where rgb values in parentheses or a defined color is
specified.

drjust(at location) darrow rjust (displaced dlinewid/2)

71

dswitch(linespec, L|R, W[ud]B chars, attributes)
cct Comprehensive IEEE-IEC single-pole switch: arg2=R:

orient to the right of drawing dir
arg4 is a key-value sequence for the body of GC and GX
options: GC keys: diam, circle;GX keys: lgth, wdth,
box, text.
arg 3: blank means WB by default
B: contact blade open
Bc: contact blade closed
Bm: mirror blade
Bo: contact blade more widely open
dB: contact blade to the right of direction
Cb: circuit breaker function (IEC S00219)
Co: contactor function (IEC S00218)
C: external operating mechanism
D: circle at contact and hinge (dD = hinge only, uD: contact
only)
DI: Disconnector, isolator (IEC S00288)
E: emergency button
EL: early close (or late open)
LE: late close (or early open)
F: fused
GC: disk control mechanism, attribs: diam=expr;
circle=circle attribs;
GX: box control mechanism, attribs: lgth=expr;
wdth=expr; box=box attr; text=char;
H: time delay closing
uH: time delay opening
HH: time delay opening and closing
K: vertical closing contact line use WdBK for a
normally-closed switch
L: limit
M: maintained (latched)
MM: momentary contact on make
MR: momentary contact on release
MMR: momentary contact on make and release
O: hand operation button
P: pushbutton
Pr[T|M]: proximity (touch-sensitive or magnetically
controlled)
R: time-delay operating arm
Sd: Switch-disconnector
Th: thermal control linkage
Tr: tripping
W: baseline with gap
Y: pull switch
Z: turn switch (Section 4.2)

72

dtee([L|R], line thickness, attributes)
darrow Double arrow tee junction with tail to left, right, or

(default) back along current direction, leaving the current
location at the tee centre; e.g., dline(right_,,t);
dtee(R); { darrow(down_,t) }; darrow(right_,t).
The attributes are thick=expr; (line thickness in drawing
units), innershade=(r,g,b)|"color";
outline=(r,g,b)|"color";.

dtor_ gen degrees to radians conversion constant

dturn(degrees ccw,line thickness, attributes)
darrow Tturn dline arg1 degrees left (ccw). Attributes can be

outline=(r, g, b)|"color"; innershade=(r, g,
b)|"color"; where rgb values in parentheses or a defined
color is specified.

E

earphone(U|D|L|R|degrees, size)
cct earphone, In1 to In3 defined (Section 6)

ebox(linespec,lgth,wdth,fill value, box attributes)
cct two-terminal box element with adjustable dimensions and

fill value 0 (black) to 1 (white). lgth (length) and wdth
(width) are relative to the direction of linespec.
Alternatively, argument 1 is the linespec and argument 2 is
a semicolon-separated sequence of key=value terms. The
possible keys are lgth, wdth, text, box, e.g.,
lgth=0.2; text="XX"; box=shaded "green"
(Section 4.2)

E__ gen the constant e

e_ gen .e relative to current direction

e_fet(linespec,R,P,E|S) cct left or right, N or P enhancement MOSFET, normal or
simplified, without or with envelope (Section 6.1)

elchop(Name1,Name2) gen chop for ellipses: evaluates to chop r where r is the
distance from the centre of ellipse Name1 to the
intersection of the ellipse with a line to location Name2;
e.g., line from A to E elchop(E,A)

eleminit_(linespec) cct internal line initialization

elen_ cct default element length

ellipsearc(width, height, startangle, endangle, rotangle, cw|ccw, line attributes)
gen Arc of a rotated ellipse in a [] block. Angles are in

radians. Arg5 is the angle of the width axis; e.g.,
ellipsearc(2,1,0,pi_,pi_/4,,dashed ->). Internal
locations are Start, End, C (for centre).

73

em_arrows(type|keys, angle, length)
cct Radiation arrows: type N|I|E [D|T]:

N: nonionizing,
I: ionizing,
E: simple;
D: dot on arrow stem;
T: anchor tail;
keys: type=chars as above;
angle=degrees; (absolute direction)
lgth=expr;
sep=expr; arrow separation (Section 4.2)

endshade gen end gray shading, see beginshade

Equidist3(Pos1, Pos2, Pos3, Result, distance)
gen Calculates location named Result equidistant from the first

three positions, i.e. the centre of the circle passing through
the three positions. If arg5 is nonblank, it is returned
equated to the radius.

expe gen exponential, base e
F

f_box(boxspecs,text,expr1,· · ·)
gen like s_box but the text is overlaid on a box of identical size.

If there is only one argument then the default box is
invisible and filed white (Section 14)

Fector(x1,y1,z1,x2,y2,z2) 3D vector projected on current view plane with top face of
3-dimensonal arrowhead normal to x2,y2,z2

Fe_fet(linespec,R,chars) cct FET with superimposed ferroelectric symbol. Args 1 to 3
are as for the mosfet macro (Section 6.1)

FF_ht cct flipflop height parameter in L_units

FF_wid cct flipflop width parameter in L_units

fill_(number) gen fill macro, 0=black, 1=white (Section 6.1)

findroot(function name, left bound, right bound, tolerance, variable))
dpictools Solve function(x) = 0 by the method of bisection. The

calculated value is assigned to the variable named in the
last argument (Section 2.2). Example: define parabola
{ $2 = ($1)^2 - 1 }; findroot(parabola, 0, 2,
1e-8, x).

fitcurve(V, n, attributes, m (default 0))
gen Draw a spline through positions V[m], . . . V[n]: Works only

with dpic.

FlipFlop(D|T|RS|JK,label,boxspec,pinlength)
log flip-flops, boxspec e.g., ht x wid y (Section 9)

74

FlipFlopX(boxspec, label, leftpins, toppins, rightpins, bottompins, pinlength)
log General flipflop. Arg 1 modifies the box (labelled Chip)

default specification. Each of args 3 to 6 is null or a string
of pinspecs separated by semicolons (;). A Pinspec is
either empty or of the form [pinopts]:[label[:Picname]].
The first colon draws the pin. Pins are placed top to
bottom or left to right along the box edges with null
pinspecs counted for placement. Pins are named by side
and number by default; eg W1, W2, ..., N1, N2, ...,
E1, ..., S1, ... ; however, if :Picname is present in a
pinspec then Picname replaces the default name. A
pinspec label is text placed at the pin base. Semicolons are
not allowed in labels; use, e.g., \char59{} instead. To put
a bar over a label, use lg_bartxt(label). The pinopts are
[N|L|M][E]; N: pin with not circle; L: active low out; M:
active low in; E: edge trigger (Section 9).
Optional arg 7 is the length of pins

foreach_(‘variable’,actions,value1, value2, . . .)
gen Clone of Loopover_ by a different name: Repeat actions

with variable set successively to value1, value2, . . ., setting
macro m4Lx to 1, 2, . . ., terminating if variable is nul

for_(start,end,increment,‘actions’)
gen integer for loop with index variable m4x (Section 8)

FTcap(chars) cct Feed-through capacitor; example of a composite element
derived from a two-terminal element. Defined points:
.Start, .End, .C, .T1, .T2, T
Arg 1: A: type A (default), B: type B, C: type C (Section 6)

fuse(linespec, type, wid, ht, attributes)
cct fuse symbol, type= A|B|C|D|S|HB|HC|SB or dA=D

(Section 4.2)
G

gap(linespec,fill,A) cct gap with (filled) dots, A=chopped arrow between dots
(Section 4.2)

gen_init gen initialize environment for general diagrams (customizable,
reads libgen.m4)

g_fet(linespec,R,P,shade spec)
cct left or right, N or P graphene FET, without or with

shading (Section 6.1)

g_ gen green color value

G_hht log gate half-height in L_units

geiger(linespec, r, diameter, R, body attributes, body name)
cct Wrapper that calls source with identical arguments except

arg2, which is blank or r for right orientation.

75

gpolyline_(fraction, location, ...)
gen internal to gshade

graystring(gray value) gen evaluates to a string compatible with the postprocessor in
use to go with colored, shaded, or outlined attributes.
(PSTricks, metapost, pgf-tikz, pdf, postscript, svg). The
argument is a fraction in the range [0, 1]; see rgbstring

grid_(x,y) log absolute grid location

ground(at location, T|stem length, N|F|S|L|P[A]|E, U|D|L|R|degrees)
cct ground, without stem for 2nd arg = T;

N: normal,
F: frame,
S: signal,
L: low-noise,
P: protective,
PA: protective alternate,
E: European; up, down, left, right, or angle from horizontal
(default -90)
(Section 6)

gshade(gray value,A,B,...,Z,A,B)
gen (Note last two arguments). Shade a polygon with named

vertices, attempting to avoid sharp corners

gyrator(box specs,space ratio,pin lgth,[N][V])
cct Gyrator two-port wrapper for nport, N omits pin dots; V

gives a vertical orientation (Section 6)
H

hatchbox(boxspec,hashsep,hatchspec,angle) or hatchbox(keys)
gen If Arg1 contains keys then a box is drawn in the current

direction or as specified by boxdir; otherwise the box is
drawn to the right. The hatch lines are at angle with
respect to the current direction (default 45 degrees).
Defined keys are:
wid=expr;
ht=expr;
box=attributes; (e.g. dashed outline "color")
hatchsep=expr;
hatchspec=attributes;
angle=degrees;
boxdir=degrees;
e.g., hatchbox(outlined "blue",,dashed outlined
"green" thick 0.4);
also define mycolor {rgbstring(1,0.2,0.5)};
hatchbox(box=dashed outlined mycolor)

Header(1|2,rows,wid,ht,box attributes)
log Header block with 1 or 2 columns and square Pin 1: arg1

= number of columns; arg2 = pins per column; arg3,4 =
custom wid, ht; arg5 = e.g., fill_(0.9) (Section 6)

76

HeaderPin(location, type, Picname,n|e|s|w,length)
log General pin for Header macro; arg 4 specifies pin direction

with respect to the current drawing direction)

heatere(linespec, keys, [R][T])
cct Heater element with curved sides (Section 4.2). R means

right orientation; T truncates leads to the width of the
body. The keys for the body are
lgth=expr; wdth=expr; (default lgth*2/5);
cycles=expr;line=attributes; (e.g., dotted, dashed,
outlined)

heater(linespec, ndivisions|keys, wid, ht, boxspec|[E[R][T]])
cct Heater element (Section 4.2). If arg 5 contains E, draws an

heatere(linespec, keys, [R][T]), otherwise a
heatert(linespec, nparts, wid, ht, boxspec)

heatert(linespec, nparts|keys, wid, ht, boxspec)
cct Two-terminal rectangular heater element (Section 4.2).

The keys for the body are parts=expr; lgth=expr;
wdth=expr; (default lgth*2/5); box=body attributes;
(e.g., dotted, dashed, outlined, shaded). Args 3–5
are unused if any key is given

heatsink(at position, keys, U|D|L|R|degrees)
cct Heatsink symbol drawn beside an element. keys:

lgth=expr; hght=expr; fin=attributes; base=attributes;
fincount=expr; Arg3: drawing direction (default R)

hexadecimal_(n, [m]) gen hexadecimal representation of n, left padded to m digits if
the second argument is nonblank

hex_digit(n) gen hexadecimal digit for 0 ≤ n < 16

H_ht log hysteresis symbol dimension in L_units

histbins(data-array name, n, min, max, nbins, bin array name)
dpictools Generate the distribution of n values in data-array. If

given, arg3 and arg4 specify maximum and minimum data
values, otherwise they are calculated. Bins have index 0 to
arg5-1.

hlth gen current line half thickness in drawing units

hoprad_ cct hop radius in crossover macro

hsvtorgb(h, s, v, r, g, b) dpictools hsv color triple to rgb; h has range 0 to 360.

ht_ gen height relative to current direction
I

ifdpic(if true,if false) gen test if dpic has been specified as pic processor

ifgpic(if true,if false) gen test if gpic has been specified as pic processor

77

ifinstr(string,string,if true,if false)
gen test if the second argument is a substring of the first; also

ifinstr(string,string,if true,string,string,if true, . . . if
false)

ifmfpic(if true,if false) gen test if mfpic has been specified as pic post-processor

ifmpost(if true,if false) gen test if MetaPost has been specified as pic post-processor

ifpgf(if true,if false) gen test if Tikz PGF has been specified as pic post-processor

ifpostscript(if true,if false) gen test if Postscript (dpic -r) has been specified as pic
output format

ifpsfrag(if true,if false) gen Test if either psfrag or psfrag_ has been defined. For
postscript with psfrag strings, one or the other should be
defined prior to or at the beginning of the diagram

ifpstricks(if true,if false) gen test if PSTricks has been specified as post-processor

ifroff(if true,if false) gen test if troff or groff has been specified as post-processor

ifxfig(if true,if false) gen test if Fig 3.2 (dpic -x) has been specified as pic output
format

igbt(linespec,L|R,[L][[d]D])cct left or right IGBT, L=alternate gate type, D=parallel
diode, dD=dotted connections

inductor(linespec, W|L, cycles, M[n]|P[n]|K[n], loop wid)
cct inductor, arg2: (default narrow), W: wide, L: looped;

arg3: number of arcs or cycles (default 4);
arg4: M: magnetic core, P: powder (dashed) core, K:
long-dashed core, n=integer (default 2) number of core
lines named M4Core1, M4Core2, . . .;
arg5: loop width (default L, W: dimen_/5; other:
dimen_/8) (Section 4.2)

in__ gen absolute inches

inner_prod(linear obj,linear obj)
gen inner product of (x,y) dimensions of two linear objects

integrator(linespec,size) cct integrating amplifier (Section 4.2)

intersect_(line1.start,line1.end, line2.start,line2.end)
gen intersection of two lines

Intersect_(Name1,Name2) gen intersection of two named lines

Int_ gen corrected (old) gpic int() function

78

IOdefs(linespec,label,[P|N]*,L|R)
log Define locations label1, . . . labeln along the line; P: label

only; N: with NOT_circle; R: circle to right of current
direction

J

jack(U|D|L|R|degrees,chars [;keys])
cct arg1: drawing direction, normally R or L; character

sequence arg2: R: right orientation, X external make or
break contact points, one or more L[M][B] for L and
auxiliary contacts with make or break points; S[M][B] for
S and auxiliary contacts; C[M][B] for a centre contact
(Section 6)

j_fet(linespec,L|R,P,E) cct left or right, N or P JFET, without or with envelope
(Section 6.1)

jumper(linespec, chars|keys) cct Two-terminal solder jumper with named body parts. The
chars character sequence specifies the jumper components,
and normally begins with C and ends with D. The
character E is an empty (blank) gap, J is a filled gap, B is a
box component. The components are named T1, T2, . . .
Examples: CED is a simple open jumper (the default); CJD
closed; CEBED three-contact open; CJBED three-contact
open and closed. The keys are: type=chars as previously;
body=attributes (e.g. fill_(0.5)); wdth=expr;
name=chars (the body name) (Section 4.2)

K

KelvinR(cycles,[R],cycle wid)cct IEEE resistor in a [] block with Kelvin taps T1 and T2
(Section 6)

L

lamp(linespec, [R][T]) cct Two-terminal incandescent lamp. T truncates leads to the
body width. (Section 4.2)

langle(Start, End) gen Angle in radians from horizontal of the line from Start to
End.

larrow(label,->|<-,dist) cct arrow dist to left of last-drawn 2-terminal element
(Section 4.3)

lbox(wid, ht, attributes) gen box oriented in current direction, arg 3= e.g. dashed
shaded "red"

LCintersect(line name, Centre, rad, [R], [Line start, End])
gen First (second if arg4 is R) intersection of a line with a

circle. Solves |V.start + tV | = radius for t where V is the
line. If arg1 is blank then the line start and end are given
in arg5 and arg6.

LCtangent(Pos1, Centre, rad, [R])
gen Left (right if arg4=R) tangent point of line from Pos1 to

circle at Centre with radius arg3

left_ gen left with respect to current direction (Section 5)

79

LEintersect(line name, Centre, ellipse wid, ellipse ht, [R], [Line start, End])
gen First (second if arg5 is R) intersection of a line with an

ellipse. If arg1 is blank then the line start and end are
given in arg6 and arg7.

length3(vector) dpictools Euclidean length of 3-vector argument.

length3D(x,y,z) 3D Euclidean length of triple x,y,z

LEtangent(Pos1, Centre, ellips wid, ellipse ht, [R])
gen Left (right if arg5=R) tangent point of line from Pos1 to

ellipse at Centre with given width and height

lg_bartxt log draws an overline over logic-pin text (except for xfig)

lg_pin(location, label, Picname, n|e|s|w[L|M|I|O][N][E], pinno, optlen)
log comprehensive logic pin;

label: text (indicating logical pin function, usually),
Picname: pic label for referring to the pin (line),
n|e|s|w: orientation (north, south, east, west),
L: active low out,
M: active low in,
I: inward arrow,
O: outward arrow,
N: negated,
E: edge trigger

lg_pintxt log reduced-size text for logic pins

lg_plen log logic pin length in in L_units

LH_symbol([U|D|L|R|degrees][I],keys)
log logic-gate hysteresis symbol; I: inverted. The keys are:

lgth=expr;, wdth=fraction; i.e. body width =fraction ×
height

lin_ang(line-reference[,d]) gen the angle of a line or move from .start to .end of a linear
object (in degrees if arg2=d)

linethick_(number) gen set line thickness in points

lin_leng(line-reference) gen length of a line, equivalent to line-reference.len with dpic

ljust_ gen ljust with respect to current direction

llabel(label, label, label, relative position, block name)
cct Triple label on the left of the body of an element with

respect to the current direction (Section 4.4). Labels are
placed at the beginning, centre, and end of the last []
block (or a [] block named or enumerated in arg5). Each
label is treated as math by default, but is copied literally if
it is in double quotes or defined by sprintf. Arg4 can be
above, below, left, or right to supplement the default
relative position.

80

loc_(x, y) gen location adjusted for current direction

log10E_ gen constant log10(e)

loge gen logarithm, base e

log_init log initialize environment for logic diagrams (customizable,
reads liblog.m4)

loop(initial assignments, test, loop end, statements)
dpictools C-like loop. Commas in arg3 and arg4 must be in quotes

or parentheses. Example:
loop(i=1, i<=3, i+=1, print i) prints 1, 2, 3.

Loopover_(‘variable’,actions,value1, value2, . . .)
gen Repeat actions with variable set successively to value1,

value2, . . ., setting macro m4Lx to 1, 2, . . ., terminating if
variable is nul

lpop(xcoord, ycoord, radius, fill, zero ht)
gen for lollipop graphs: filled circle with stem to

(xcoord,zeroht)

lp_xy log coordinates used by lg_pin

lswitch(linespec, L|R, chars)
cct knife switch R=right orientation (default L=left); chars:

[O|C][D][K][A] O=opening arrow; C=closing arrow;
D=dots; K=closed switch; A=blade arrowhead
(Section 4.2)

lthick gen current line thickness in drawing units

lt_ gen left with respect to current direction

LT_symbol(U|D|L|R|degrees,keys)
log logic-gate triangle symbol. The keys are: wdth=expr;

L_unit log logic-element grid size
M

m4_arrow(linespec,ht,wid) gen arrow with adjustable head, filled when possible

m4dupstr(string,n,‘name’) gen Defines name as n concatenated copies of string.

m4lstring(arg1,arg2) gen expand arg1 if it begins with sprintf or ", otherwise arg2

m4xpand(arg) gen Evaluate the argument as a macro

m4xtract(‘string1’,string2) gen delete string2 from string1, return 1 if present

manhattan gen sets direction cosines for left, right, up, down

81

Magn(length, height, U|D|L|R|degrees)
cct magnetic action symbol.

Max(arg, arg, . . .) gen Max of an arbitrary number of inputs

memristor(linespec, wid, ht, attributes)
cct memristor element (Section 4.2)

microphone(A|U|D|L|R|degrees, size, attributes)
cct microphone; if arg1 = A: upright mic, otherwise arg1 sets

direction of standard microphone with In1 to In3 defined
(Section 6)

Min(arg, arg, . . .) gen Min of an arbitrary number of inputs

Mitre_(Line1,Line2,length,line attributes)
gen e.g., Mitre_(L,M) draws angle at intersection of lines L

and M with legs of length arg3 (default linethick
bp__/2); sets Here to intersection (Section 7)

mitre_(Position1,Position2,Position3,length,line attributes)
gen e.g., mitre_(A,B,C) draws angle ABC with legs of length

arg4 (default linethick bp__/2); sets Here to Position2
(Section 7)

mm__ gen absolute millimetres

mosfet(linespec,L|R,chars,E) cct MOSFET left or right, included components defined by
characters, envelope. arg 3 chars:
[u][d]B: center bulk connection pin
D: D pin and lead
E: dashed substrate
F: solid-line substrate
[u][d]G: G pin to substrate at source
[u][d]H: G pin to substrate at center
L: G pin to channel (obsolete)
[u][d]M: G pin to channel, u: at drain end, d: at source
end
[u][d]Mn: multiple gates G0 to Gn
[d]Py: parallel diode, d=reversed
[d]Pz: parallel zener diode, d=reversed
O: diode connection dots
Q: connect B pin to S pin
R: thick channel
[u][d]S: S pin and lead u: arrow up, d: arrow down
[d]T: G pin to center of channel d: not circle
X: XMOSFET terminal
Z: simplified complementary MOS (Section 6.1)

Mux_ht cct Mux height parameter in L_units

82

Mux(n,label, [L][B|H|X][N[n]|S[n]][[N]OE], wid, ht, attributes)
log binary multiplexer, n inputs, L reverses input pin numbers,

B display binary pin numbers, H display hexadecimal pin
numbers, X do not print pin numbers, N[n] puts Sel or Sel0
.. Seln at the top (i.e., to the left of the drawing direction),
S[n] puts the Sel inputs at the bottom (default) OE (N:
negated) OE pin (Section 9)

Mux_wid cct Mux width parameter in L_units

Mx_pins log max number of gate inputs without wings
N

NAND_gate(n, [N][B], [wid, [ht]], attributes)
log ‘nand’ gate, 2 or n inputs (0 ≤ n ≤ 16); N: negated inputs;

B: box shape. Alternatively, NAND_gate(chars, [B], wid,
ht, attributes), where arg1 is a sequence of letters P|N to
define normal or negated inputs. (Section 9)

N_diam log diameter of ‘not’ circles in L_units

NeedDpicTools gen executes copy "HOMELIB_/dpictools.pic" if the file has
not been read

neg_ gen unary negation

ne_ gen .ne with respect to current direction

n_ gen .n with respect to current direction

norator(linespec,width,ht,attributes)
cct norator two-terminal element (Section 4.2)

NOR_gate(n,N) log ‘nor’ gate, 2 or n inputs; N: negated input. Otherwise, arg1
can be a sequence of letters P|N to define normal or
negated inputs. (Section 9)

NOT_circle log ‘not’ circle

NOT_gate(linespec,[B][N|n],wid,height, attributes)
log ‘not’ gate. When linespec is blank then the element is

composite and In1, Out, C, NE, and SE are defined;
otherwise the element is drawn as a two-terminal element.
arg2: B: box gate, N: not circle at input and output, n: not
circle at input only (Section 9)

NOT_rad log ‘not’ radius in absolute units

NPDT(npoles,[R]) cct Double-throw switch; npoles: number of poles; R: right
orientation with respect to drawing direction (Section 6)

83

nport(box spec;other commands, nw,nn,ne,ns,space ratio,pin lgth,style, other commands)
cct Default is a standard-box twoport. Args 2 to 5 are the

number of ports to be drawn on w, n, e, s sides. The port
pins are named by side, number, and by a or b pin, e.g.,
W1a, W1b, W2a, . . . Arg 6 specifies the ratio of port width
to interport space (default 2), and arg 7 is the pin length.
Set arg 8 to N to omit the dots on the port pins.
Arguments 1 and 9 allow customizations (Section 6)

N_rad log radius of ‘not’ circles in L_units

nterm(box spec;other commands, nw,nn,ne,ns,pin lgth,style, other commands)
cct n-terminal box macro (default three pins). Args 2 to 5 are

the number of pins to be drawn on W, N, E, S sides. The
pins are named by side and number, e.g. W1, W2, N1, . . .
Arg 6 is the pin length. Set arg 7 to N to omit the dots on
the pins. Arguments 1 and 8 allow customizations, e.g.
nterm(,,,,,,N,"a" at Box.w ljust,"b" at
Box.e rjust, "c" at Box.s above)

nullator(linespec,width,ht,attributes)
cct nullator two-terminal element (Section 4.2)

nw_ gen .nw with respect to current direction

NXOR_gate(n,N) log ‘nxor’ gate, 2 or n inputs; N: negated input. Otherwise,
arg1 can be a sequence of letters P|N to define normal or
negated inputs. (Section 9)

O

opamp(linespec,label, label, size|keys, chars, other commands)
cct operational amplifier with −, + or other internal labels and

specified size, drawn in a [] block. chars: P add power
connections V1 and V2, R swap In1, In2 labels, T truncated
point. The internally defined positions are W, N, E, S, C,
Out, NE, SE, In, In2, and the (obsolete) positions E1 = NE,
E2 = SE. Instead of a size value, arg4 can be a key-value
sequence. The keys are: lgth=expr;, wdth=expr;,
body=attributes;, e.g., body=shaded "color". (Section 6)

open_arrow(linespec,ht,wid) gen arrow with adjustable open head

OR_gate(n,[N][B], wid, ht,attributes)
log Or gate, n inputs (0 ≤ n ≤ 16); arg2: N: negated inputs; B:

box gate. Otherwise, arg1 can be a sequence of letters P|N
to define normal or negated inputs. (Section 9)

84

OR_gen(n,chars,[wid,[ht]], attributes)
log General OR gate: n=number of inputs (0 ≤ n ≤ 16);

chars:B: base and straight sides;
A: arcs;
[N]NE,[N]SE,[N]I,[N]N,[N]S: inputs or circles;
[N]P: XOR arc;
[N]O: output; C=center.
Otherwise, arg1 can be a sequence of letters P|N to define
normal or negated inputs. If arg5 contains shaded
rgbstring(...) the arguments of rgbstring may not
contain parentheses.

OR_rad log radius of OR input face in L_units
P

parallel_(‘elementspec’,‘elementspec’. . .)
cct Parallel combination of two-terminal elements in a []

block. Each argument is a quoted elementspec of the form
[Sep=val;][Label:]element;[attributes] where an
attribute is of the form
[llabel(. . .);]|[rlabel(. . .);]|[b_current(. . .);].
An argument may also be series_(. . .) or
parallel_(. . .) without attributes or quotes. Sep=val; in
the first branch sets the default separation of all branches
to val; in a later element Sep=val; applies only to that
branch. An element may have normal arguments but
should not change the drawing direction. (Section 5.1)

pconnex(R|L|U|D|degrees,chars, attributes)
cct power connectors, arg 1: drawing direction; chars:

R (right orientation)
M|F (male, female)
A[B]|AC (115V 3-prong, B: default box, C: circle)
P (PC connector)
D (2-pin connector)
G|GC (GB 3-pin)
J (110V 2-pin) (Section 6)

pc__ gen absolute points

perpto(Pos1, Line, Point) gen Point is the label for the point on Line of the perpendicular
from Point to Line.

PerpTo(Pos1, Pos2, Pos3) gen The point between Pos2 and Pos3 of intersection of the
perpendicular to Pos1, i.e., the perpendicular projection of
Pos1 onto the line from Pos2 to Pos3.

pi_ gen π

plug(U|D|L|R|degrees,[2|3][R])
cct Phone plug; arg1: drawing direction; arg2: R right

orientation, 2|3 number of conductors (Section 6)

pmod(integer, integer) gen +ve mod(M, N) e.g., pmod(−3, 5) = 2

85

point_(angle) gen (radians) set direction cosines

Point_(integer) gen sets direction cosines in degrees (Section 5)

polar_(x,y) gen rectangular-to polar conversion

polygon(n,keys) gen Regular polygon in a [] block. The keys are line=line
attributes; (e.g., dashed shaded "blue"), rot=degrees;
(angle of first internal vertex V[0]), side|rad=expression;
size by side length or by radius. radv=expression; radius
of rounded vertices. If this is nonzero then any fill has to
be by rgbfill(r,g,b,polygon(...)). The internal
defined points are the centre C and vertices V[0] . . . V[n].

posarray(Name, Position1, Position2, . . .)
dpictools Populate a singly-subscripted array of positions:

Name[1]:Position1; Name[2]=Position2;

posarray2(Name, expr, Position1, Position2, . . .)
dpictools Populate a doubly-subscripted array of positions:

Name[expr,1]=Position1; Name[expr,2]=Position2;
....

potentiometer(linespec,cycles,fractional pos,length,· · ·)
cct resistor with taps T1, T2, . . . with specified fractional

positions and lengths (possibly neg) (Section 6)

print3D(x,y,z) 3D write out triple for debugging

prod_(a,b) gen binary multiplication

project(x,y,z) 3D 3D to 2D projection onto the plane perpendicular to the
view vector View3D with angles defined by
setview(azimuth, elevation, rotation).

Proxim(size, U|D|L|R|degrees, attributes)
cct proximity detector with fillable body.

proximity(linespec) cct proximity detector (= consource(,P))

psset_(PSTricks settings) gen set PSTricks parameters

PtoL(position, U|D|L|R|degrees, length)
gen Evaluates to from position to position + Rect_(length,

angle) from the polar-coordinate data in the arguments

pt__ gen TEX point-size factor, in scaled inches, (*scale/72.27)

ptrans(linespec, [R|L]) cct pass transistor; L= left orientation (Section 6.1)

86

pushkey_(string, key, default value,[N])
gen Key-value definition. If string contains the substring

key=expr then macro m4key is defined using pushdef() to
expand to (expr), or to (default value) if the substring is
missing. Arg 1 can contain several such substrings
separated by semicolons. If arg4 is nonblank, the
parentheses are omitted. (Section 13.1)

pushkeys_(string, key sequence)
gen Multiple key-value definitions. Arg2 is a

semicolon-separated sequence of terms of the form
key:default-value[:N] which must contain no semicolons
and the default values contain no colons. A key may not be
the tail of another key. Macro pushkey_ is applied to each
of the terms in order. Quote arg2 for robustness and, if an
argument depends on a previous argument, add quotes to
delay expansion; for example
pushkeys_(‘$1’,‘hght:0.5; wdth:m4‘’hght/2’).
(Section 13.1)

pvcell(linespec, width, height, attributes)
cct PV cell

px__ gen absolute SVG screen pixels
R

randn(array name, n, mean, stddev)
dpictools Assign n Gaussian random numbers in array

name[1], name[2], . . . name[n] with given mean and
standard deviation.

rarrow(label,->|<-,dist) cct arrow dist to right of last-drawn 2-terminal element
(Section 4.3)

Rect_(radius,angle) gen (deg) polar-to-rectangular conversion

rect_(radius,angle) gen (radians) polar-rectangular conversion

reed(linespec, width, height, box attribues, [R][C])
cct Enclosed reed two-terminal contact; R: right orientation; C:

closed contact; e.g., reed(,,dimen_/5,shaded
"lightgreen" (Section 6)

87

relaycoil(chars, wid, ht, R|L|U|D|degrees, attributes)
cct chars: X: or default: external lines from A2 and B2;

AX: external lines at positions A1,A3;
BX: external lines at positions B1,B3;
NX: no lines at positions A1,A2,A3,B1,B2,B3;
SO: slow operating;
SOR: slow operating and release;
SR: slow release;
HS: high speed;
S: diagonal slash;
NAC: unaffected by AC current;
AC: AC current;
ML: mechanically latched;
PO: polarized;
RM: remanent;
RH: remanent;
TH: thermal;
EL: electronic (Section 6)

relay(number of poles, chars, attributes)
cct relay: n poles (default 1),

chars: O: normally open,
C: normally closed,
P: three position, default double throw,
L: drawn left (default),
R: drawn right,
Th: thermal. (Section 6)

resetdir_ gen resets direction set by setdir_

resetrgb gen cancel r_, g_, b_ color definitions

88

resistor(linespec, cycles, chars, cycle wid)
cct resistor, number of cycles given by arg2 (default 3), chars:

AC: general complex element,
E: ebox,
ES: ebox with slash,
EX: ebox with full-size X,
F: FDNR (frequency-dependent negative resistor),
Q: offset,
H: squared,
LD: light-dependent,
LDE: light-dependent ebox,
N: IEEE (default),
B: not burnable,
T: thermistor,
V: varistor variant,
R: right-oriented with respect to drawing direction;
Arg4: cycle width (default dimen_/6.)
Alternative invocation:
resistor(linespec, keys)
The keys are: semicolon (;)-separated sequence of
key=value pairs. Allowable keys are:
type=chars; as above,
wdth=expression; body width,
cycles=integer expression; (default 3),
lgth=expression; body length (default (cycles)*(wdth)),
body=attributes; for a box body (types E, ES, AC),
env=attributes; for the envelope (types T, LD).
(Section 4.2) (Section 13.1)

resized(factor,‘macro name’,args)
cct scale the element body size by factor

restorem4dir([‘stack name’])
gen Restore m4 direction parameters from the named stack;

default ‘savm4dir_’

reversed(‘macro name’,args)
cct reverse polarity of 2-terminal element

rgbdraw(color triple, drawing commands)
gen color drawing for PSTricks, pgf, MetaPost, SVG

postprocessors; (color entries are 0 to 1), see setrgb
(Section 6.1). Exceptionally, the color of SVG arrows other
than the default black has to be defined using the
outlined string and shaded string constructs.

rgbfill(color triple, closed path)
gen fill with arbitrary color (color entries are 0 to 1); see

setrgb (Section 6.1)

89

rgbstring(color triple or color name)
gen evaluates to a string compatible with the postprocessor in

use to go with colored, shaded, or outlined attributes.
(PSTricks, metapost, pgf-tikz, pdf, postscript, svg). The
arguments are fractions in the range [0, 1]; For example,
box outlined rgbstring(0.1,0.2,0.7) shaded
rgbstring(0.75,0.5,0.25). For those postprocessors
that allow it, there can be one argument which is the name
of a defined color. This macro can be fragile when used as
an m4 macro argument. Then something like the following
delays expansion:
define rgbpurp {rgbstring(0.5,0,1)};
curve(,,,rail=outlined rgbpurp)

rgbtocmyk(r, g, b, c, m, y, k) dpictools rgb to cmyk values in the range 0 to 100.

rgbtohsv(r, g, b, h, s, v) dpictools rgb color triple to hsv with h range 0 to 360.

RightAngle(Pos1, Pos2, Pos3, line len, attributes)
gen Draw a right-angle symbol at Pos2, of size given by arg4.

Arg5 = line attributes, e.g., outlined "gray" or e.g. to
add a dot, ;dot(at last line.c)

right_ gen set current direction right (Section 5)

rjust_ gen right justify with respect to current direction

rlabel(label, label, label, relative position, block name)
cct Triple label on the right of the body of an element with

respect to the current direction (Section 4.4). Labels are
placed at the beginning, centre, and end of the last []
block (or a [] block named or enumerated in arg5). Each
label is treated as math by default, but is copied literally if
it is in double quotes or defined by sprintf. Arg4 can be
above, below, left, or right to supplement the default
relative position.

rot3Dx(radians,x,y,z) 3D rotates x,y,z about x axis

rot3Dy(radians,x,y,z) 3D rotates x,y,z about y axis

rot3Dz(radians,x,y,z) 3D rotates x,y,z about z axis

rotbox(wid,ht,attributes,[r|t=val])
gen box oriented in current direction in [] block; attributes:

e.g. dotted shaded "green". Defined internal locations:
N, E, S, W (and NE, SE, NW, SW if arg4 is blank). If arg4
is r=val then corners have radius val. If arg4 is t=val then
a spline with tension val is used to draw a “superellipse,”
and the bounding box is then only approximate.

rotellipse(wid,ht,attributes) gen ellipse oriented in current direction in [] block; e.g.
Point_(45); rotellipse(,,dotted fill_(0.9)).
Defined internal locations: N, S, E, W.

90

Rot_(position, degrees) gen rotate position by degrees

rot_(x, y, angle) gen rotate x,y by theta radians

round(at location,line thickness,attributes)
gen filled circle for rounded corners; attributes=colored

"gray" for example; leaves Here unchanged if arg1 is blank
(Section 7)

rpoint_(linespec) gen set direction cosines

rpos_(position) gen Here + position

r_ gen red color value

rrot_(x, y, angle) gen Here + vrot_(x, y, cos(angle), sin(angle))

rs_box([angle=degrees;] text,expr1,· · ·)
gen like s_box but the text is rotated by text_ang(default 90)

degrees, unless the first argument begins with
angle=decimal number;, in which case the number defines
the rotation angle. Two or more args are passed to
sprintf(). If the first argument begins with angle=expr;
then the specified angle is used. The examples
define(‘text_ang’,45); rs_box(Hello World) and
rs_box(angle=45; Hello World) are equivalent
(Section 14), (Section 15)

rsvec_(position) gen Here + position

r_text(degrees,text,at position)
gen Rotate text by arg1 degrees (provides a single command

for PSTricks, PGF, or SVG only) placed at position in
arg3. The first argument is a decimal constant (not an
expression) and the text is a simple string without quotes.
(Section 14), (Section 15)

rtod__ gen constant, degrees/radian

rtod_ gen constant, degrees/radian

rt_ gen right with respect to current direction

rvec_(x,y) gen location relative to current direction

rvec_r(x,y) gen Robust location relative to current direction for use in dpic
loops

S

91

sarrow(linespec,keys) gen Single-segment, single-headed special arrows with keys:
type=O[pen] (default) | D[iamond] | C[rowfoot] | DI
(disk) | P[lain] | PP[lain] | R[ight] | L[eft] ;
wdth=expression; (default arrowwid)
lgth=expression; (default arrowht)
head=head attributes; (e.g., shaded)
shaft=shaft attributes; (default: head attributes)
hook=[L|R|LR] (left, right, or double hook, default none)
name=Name; (default Sarrow_) The PP key creates a
doubled plain arrowhead (Section 13.1)

savem4dir([‘stack name’]) gen Stack m4 direction parameters in the named stack (default
‘savm4dir_’)

s_box(text,expr1,· · ·) gen generate dimensioned text string using \boxdims from
boxdims.sty. Two or more args are passed to sprintf()
(default 90) degrees (Section 14)

sbs(linespec, chars, label) cct Wrapper to place an SBS thyristor as a two-terminal
element with [] block label given by the third argument
(Section 6.1)

sc_draw(dna string, chars, iftrue, iffalse)
cct test if chars are in string, deleting chars from string

scr(linespec, chars, label) cct Wrapper to place an SCR thyristor as a two-terminal
element with [] block label given by the third argument
(Section 6.1)

scs(linespec, chars, label) cct Wrapper to place an SCS thyristor as a two-terminal
element with [] block label given by the third argument
(Section 6.1)

s_dp(name,default) gen depth of the most recent (or named) s_box (Section 14)

series_(elementspec, elementspec, . . .)
cct Series combination in a [] block of elements with

shortened default length. Each argument is an elementspec
of the form
[Sep=val;][Label:]element;[attributes] where an
attribute is of the form
[llabel(. . .);]|[rlabel(. . .);]|[b_current(. . .);].
An argument may also be series_(. . .) or parallel_(. . .)
without attributes or quotes. An element may have normal
arguments but should not change the drawing direction.
Internal points Start, End, and C are defined (Section 5.1)

se_ gen .se with respect to current direction

setdir_(R|L|U|D|degrees, defaultU|D|R|L|degrees)
gen store drawing direction and set it to up, down, left, right,

or angle in degrees (reset by resetdir_). The directions
may be spelled out, i.e., Right, Left, . . . (Section 5.1)

92

setkey_(string, key, default,[N])
gen Key-value definition, like pushkey_() but the resulting

macro is defined using define() rather than pushdef().
(Section 13.1)

setkeys_(string, key sequence)gen Multiple key-value definition using define() rather than
pushdef(). See macro pushkeys_. (Section 13.1)

setrgb(red value, green value, blue value,[name])
gen define colour for lines and text, optionally named (default

lcspec); (Section 6.1)

setview(azimuth degrees,elevation degrees, rotation degrees)
3D Set projection viewpoint for the project macro. The view

vector is obtained by looking in along the x axis, then
rotating about −x, −y, and z in that order. The
components view3D1, view3D2, and view3D3 are defined,
as well as positions UPx_, UPy_, and UPz_ which are the
projections of unit vectors (1,0,0), (0,1,0), and
(0,0,1) respectively onto the plane.

sfgabove cct like above but with extra space

sfgarc(linespec,text,text justification,cw|ccw, height scale factor,arc attributes)
cct Directed arc drawn between nodes, with text label and a

height-adjustment parameter. Example: sfgarc(from B
to A,-B/M,below,,1.1,outlined "red")

sfgbelow cct like below but with extra space

sfg_init(default line len, node rad, arrowhd len, arrowhd wid), (reads libcct.m4)
cct initialization of signal flow graph macros

sfgline(linespec,text,sfgabove|sfgbelow|ljust|rjust,line attributes)
cct Directed straight line chopped by node radius, with text

label, e.g., sfgline(,K/M,,dashed colored "orange")

sfgnode(at location,text,above|below,circle attributes)
cct small circle default white interior, with text label. The

default label position is inside if the diameter is bigger
than textht and textwid; otherwise it is sfgabove.
Options such as color, fill, or line thickness can be given,
e.g., thick 0.8 outlined "red" shaded "orange".

sfgself(at location, U|D|L|R|degrees, text label, text justification, cw|ccw, scale factor,
[-> | <- | <->], attributes)

cct Self-loop drawn at an angle from a node, with text label,
specified arrowheads, and a size-adjustment parameter.
The attributes can set thickness and color, for example.

shade(gray value,closed line specs)
gen Fill arbitrary closed curve. Note: when producing pdf via

pdflatex, line thickness changes within this macro must be
made via the linethick environment variable rather than
by the thickness line attribute

93

shadebox(box attributes, shade width)
gen Box with edge shading. Arg2 is in points. See also shaded

shadedball(radius, highlight radius, highlight degrees, initial gray, final gray | (rf,gf,bf))
3D Shaded ball in [] box. The highlight is by default at

radius*3/5 and angle 110 deg (or arg2 deg); if setlight has
been invoked then its azimuth and elevation arguments
determine highlight position. Arg5 can be a parenthesized
rgb color.

ShadedPolygon(vertexseq, line attributes, degrees, colorseq)
gen Draws the polygon specified in arg1 and shades the interior

according to arg4 by drawing lines perpendicular to the
angle in arg3. The vertexseq is a colon (:) separated
sequence of vertex positions (or names) of the polygon in
cw or ccw order. A colorseq is of the form 0, r0,g0,b0,
frac1,r1,g1,b1, frac2,r2,g2,b2, . . . 1,rn,gn,bn with
0 < frac1 < frac2 . . . 1

ShadeObject(drawroutine, n, colorseq)
dpictools Fill an area in a [] block with graded color defined by

colorseq, an indexed sequence of rgb colors: frac0,r0,g0,b0,
frac1,r1,g1,b1, . . . fracn,rn,gn,bn with
0 ≤ frac0 < frac1 < frac2 < . . . fracn ≤ 1.
(Often frac0 = 0 and fracn = 1.) The dpic macro
drawroutine(frac, r, g, b)
typically draws a colored line and must be defined
according to the area to be filled. This routine is called
n+1 times for frac = frac0, frac0 + 1/n × (fracn−frac0),
frac0 + 2/n × (fracn−frac0), . . . fracn
(i.e., often frac = 0, 1/n, 2/n, . . . 1)
with rgb arguments interpolated in hsv space between
colorseq points (which are specified in rgb-space). Example
(shade a box with 101 graded-color lines):
B: box
define HorizShade { line right B.wid \

from (0,-($1)*B.ht) \
outlined rgbstring($2,$3,$4) };

ShadeObject(HorizShade, B.ht/lthick, 0,1,0,0,
1,0,0,1) at B.

shadowed(box|circle|ellipse|line, position spec, keys)
gen Object with specified shadow. possspec is e.g., with .w at

... or at position. The keys are attrib=object
attributes; shadowthick=expr; (default linethick*)5/4),
shadowcolor=string; (default "gray"),
shadowangle=expr; (default −45) for box only: rad=expr;

shielded(‘two-terminal element’, L|U, line attributes)
cct shielding in a [] box for two-terminal element. Arg2=

blank (default) to enclose the element body; L for the left
side with respect to drawing direction, R for right. Internal
points .Start, .End, and .C are defined

s_ht(name,default) gen height of the most recent (or named) s_box (Section 14)

94

SIdefaults gen Sets scale = 25.4 for drawing units in mm, and sets pic
parameters lineht = 12, linewid = 12, moveht = 12,
movewid = 12, arcrad = 6, circlerad = 6, boxht =
12, boxwid = 18, ellipseht = 12, ellipsewid = 18,
dashwid = 2, arrowht = 3, arrowwid = arrowht/2,

sign_(number) gen sign function

sinc(number) gen the sinc(x) function

sind(arg) gen sine of an expression in degrees

s_init(name) gen initialize s_box string label to name which should be
unique (Section 14)

Sin(integer) gen sine function, integer degrees

sinusoid(amplitude, frequency, phase, tmin, tmax, linetype)
gen draws a sinusoid over the interval (tmin, tmax); e.g., to draw

a dashed sine curve, amplitude a, of n cycles of length x
from A, sinusoid(a,twopi_*n/x,-pi_/2,0,x,dashed)
with .Start at A

sl_box(stem linespec, keys, stem object)
SLD One-terminal SLD element: argument 1 is a linespec to

define the stem or, in the case of a zero-length stem, one of
U, D, L, R, or an angle in degrees, optionally followed by
at position. The position is Here by default.
Argument 2 contains semicolon (;)-separated key-value
attributes of the head: name=Name (default Head);
lgth=expr; wdth=expr; text="text", box=box pic
attributes.
If argument 3 is null then a plain stem is drawn; if it is of
the form S:keys or Sn:keys an n-line slash symbol is
overlaid on the stem; otherwise the keys are for an overlaid
breaker, so that a C specifies a default closed breaker, O an
open breaker, X, /, or \ for these marks, or sl_ttbox
key-value pairs defining box attributes for the breaker
(default name Br)
(Section 11)

sl_breaker(linespec, type=[A|C][D];ttbox args)
SLD Two-terminal SLD element: type A (the default) is for a

box breaker; type C for a curved breaker; adding a D puts
drawout elements in the input and output leads. Otherwise,
the arguments are as for sl_ttbox (Section 11)

95

sl_busbar(linespec, np, keys) SLD Composite SLD element drawn in a [] block. A busbar is
essentially a thick straight line drawn along the linespec
with positions evenly distributed along it. For example,
line right_; sl_busbar(, up_ 4.5, 5) with .P3 at
Here.
Argument 1 is a linespec to define the direction and length
of the busbar (but not its position, since it is drawn in a [
] block).
Argument 2 is the number np of evenly spaced positions
P1, P2, . . . Pnp along the line with P1 and Pnp indented
from the ends of the line.
Argument 3 contains semicolon (;)-separated key-value
attributes of the line: port=D (for a dot at each port
position); line=pic line attributes. indent=indent
distance. (Section 11)

sl_ct(atposition,keys,R|L|U|D|degrees)
SLD Composite SLD element drawn in a [] block:

The keys are as follows: type=L|N|S[n] (default L; Sn
draws an n-line slash symbol, default 2); N means no stem);
scale=expr (default 1.0); grnd=expr attached
ground at given angle (type S or N)); sep=expr;
stemlgth=expr; wdth=expr; direct=U|D|L|R|degrees
(drawing direction).
Key stemlgth is the length of the leads at the start,
centre, and end, with labeled ends Tstart, Tc, and Tend.
The L (default) variant also defines internal labels Internal
labels L and C are included.
Key sep is the type-S separation from the head to the
centre of the slash symbol.
Key scale allows scaling (default scale 1.0) but, with dpic,
the scaled directive can also be used. (Section 11)

sl_disk(stem linespec, keys, breaker)
SLD One-terminal SLD element: argument 1 is a linespec to

define the stem or, in the case of a zero-length stem, one of
U, D, L, R, or an angle in degrees, optionally followed by
at position. The position is Here by default.
Argument 2 contains semicolon (;)-separated key-value
attributes of the head: name=Name (default Head);
text="text"; diam=expr; circle=circle pic attributes.
Argument 3 is null for no breaker in the stem, C for a
default closed breaker, O for an open breaker, X, /, or \
for these marks, or sl_ttbox key-value pairs defining box
attributes for the breaker (default name Br) (Section 11)

sl_drawout(linespec, keys, R) SLD Two-terminal SLD element: argument 1 is a linespec as for
ordinary two-terminal elements.
Argument 2 contains semicolon (;)-separated key-value
body attributes:
type=T (for truncated leads); lgth=expr, wdth=expr
(body size); name=Name (default Body); line=pic line
attributes; (e.g., thick 2)
Argument 3 is R to reverse the direction of the drawn
chevrons. (Section 11)

96

sl_generator(stem linespec, keys, breaker)
SLD One-terminal SLD element: argument 2 is

type=AC|WT|BS|StatG|PV|Y|Delta and, if type=PV, the
SL_box keys; otherwise, the sl_disk body keys.
Argument 3 is null for no breaker in the stem, C for a
default closed breaker, O for an open breaker, X, /, or \
for these marks, or sl_ttbox key-value pairs defining box
attributes for the breaker (default name Br) (Section 11)

sl_grid(stem linespec, keys, breaker)
SLD One-terminal SLD element: argument 1 is a linespec to

define the stem or, in the case of a zero-length stem, one of
U, D, L, R, or an angle in degrees, optionally followed by
at position. The position is Here by default.
Argument 2 contains semicolon (;)-separated key-value
attributes of the head: name=Name (default Head);
lgth=expr; wdth=expr.
Argument 3 is null for no breaker in the stem, C for a
default closed breaker, O for an open breaker, X, /, or \
for these marks, or sl_ttbox key-value pairs defining box
attributes for the breaker (default name Br) (Section 11)

sl_inverter(ttbox args) SLD Two-terminal SLD element: the arguments are as for
sl_ttbox (Section 11)

sl_lamp(stem linespec, keys, breaker)
SLD One-terminal SLD element: the arguments are as for

sl_disk (Section 11)

sl_load(stem linespec, keys, breaker)
SLD One-terminal SLD element: argument 1 is a linespec to

define the stem or, in the case of a zero-length stem, one of
U, D, L, R, or an angle in degrees, optionally followed by
at position. The position is Here by default.
Argument 2 contains semicolon (;)-separated key-value
attributes of the head: name=Name (default Head);
lgth=expr; wdth=expr; head=arrowhead pic attributes.
Argument 3 is null for no breaker in the stem, C for a
default closed breaker, O for an open breaker, X, /, or \
for these marks, or sl_ttbox key-value pairs defining box
attributes for the breaker (default name Br) (Section 11)

sl_meterbox(stem linespec, keys, breaker)
SLD One-terminal SLD element: argument 1 is a linespec to

define the stem or, in the case of a zero-length stem, one of
U, D, L, R, or an angle in degrees, optionally followed by
at position. The position is Here by default.
Argument 2 contains semicolon (;)-separated key-value
attributes of the head: name=Name (default Head);
lgth=expr; wdth=expr; text="text", box=box pic
attributes.
Argument 3 is null for no breaker in the stem, C for a
default closed breaker, O for an open breaker, X, /, or \
for these marks, or sl_ttbox key-value pairs defining box
attributes for the breaker (default name Br) (Section 11)

97

sl_reactor(stem linespec, keys, breaker keys, breaker keys)
SLD Two-terminal SLD element: argument 1 is a linespec as for

ordinary two-terminal elements.
Argument 2 contains semicolon (;)-separated key-value
body attributes: name=Name (default Body); diam=expr.
Argument 3 is null for no breaker in the input lead, C for a
default closed breaker, O for an open breaker, X, /, or \ for
these marks, or key-value pairs as above defining breaker
attributes except that the default breaker name is BrI.
Argument 4 defines the breaker in the output lead as for
argument 3 except that the default breaker name is BrO.
(Section 11)

sl_rectifier(ttbox args) SLD Two-terminal SLD element: the arguments are as for
sl_ttbox (Section 11)

sl_slash(at position, keys,[n:]R|L|U|D|degrees)
SLD Slash symbol for SLD elements: draws n slashes in a []

block. The keys are lines=line attributes, e.g., dotted
thick expr; size=expr (default ht dimen_/3).
(Section 11)

sl_transformer3(linespec, keys, breaker keys, symbol keys)
SLD Composite (block) SLD element: argument 1 is a linespec

that can be used to set the direction and distance between
primary terminals but not position.
Argument 2 contains semicolon (;)-separated key-value
body attributes: name=Name (default Body); type=S|C
(default S); scale=expr (body size factor, default 1.0);
direct=L|R (default L) direction of the tertiary circle and
terminal relative to the drawing direction; body=circle
attributes.
Argument 3 is colon (:)-separated sequence of up to three
breaker attribute specifications for the input, output, and
teriary breaker in order. A null or blank means no breaker,
tt_breaker specifications otherwise. Default breaker
names are BrI and BrO as for sl_transformer, and Br
for the third breaker.
Argument 4 is colon (:)-separated sequence of up to three
symbol specifications for the input, output, and teriary
circle in order. A null or blank means no symbol; Y for a
Y-symbol; Delta for a ∆ symbol; otherwise, other
customization commands expanded in a {} pair.
(Section 11)

98

sl_transformer(linespec, keys, input breaker keys, output breaker keys, input circle inner object,
output circle inner object)

SLD Two-terminal SLD element: argument 1 is a linespec as for
ordinary two-terminal elements.
Argument 2 contains semicolon (;)-separated key-value
body attributes: name=Name (default Body); scale=expr
(body size factor, default 1.0); type=I|S|A[R] (default I).
Additional type I keys are cycles=integer (default 4);
core=A|M[n]|P[n]|K[n], n=integer (default 2 lines).
Additional type S keys are body=circle pic attributes e.g.,
shaded "color".
Type A keys are body=circle pic attributes. Type AR means
right orientation.
Argument 3 is null for no breaker in the input lead, C for a
default closed breaker, O for an open breaker, X, /, or \ for
these marks, or key-value pairs as above defining breaker
attributes except that the default breaker name is BrI.
Argument 4 defines the breaker in the output lead as for
argument 3 except that the default breaker name is BrO.
Argumentss 5 and 6 for the input and output circles
respectively are: Y for a Y-symbol; YN for a Y-symbol with
ground; Delta for a ∆ symbol; otherwise, other
customization commands expanded in a {} pair.
(Section 11)

sl_ttbox(linespec, keys, input breaker keys, output breaker keys)
SLD Two-terminal SLD element: argument 1 is a linespec as for

ordinary two-terminal elements.
Argument 2 contains semicolon (;)-separated key-value
body attributes: name=Name (default Body); lgth=expr;
wdth=expr; text="text"; box=box pic attributes;
supp=additional rotbox commands.
Argument 3 is null for no breaker in the input lead, C for a
default closed breaker, O for an open breaker, X, /, or \ for
these marks, or key-value pairs as above defining breaker
attributes except that the default breaker name is BrI.
Argument 4 defines the breaker in the output lead as for
argument 3 except that the default breaker name is BrO.
(Section 11)

s_name gen the value of the last s_init argument (Section 14)

sourcerad_ cct default source radius

slantbox(wid, height, x offset, y offset, attributes)
dpictools Trapezoid formed from a box with top corners displaced

right by x offset and right corners displaced up by y offset.

99

source(linespec, char or chars, diameter,R, body attributes, body name)
cct Source; arg2 blank or:

AC: AC source;
B: bulb;
F: fluorescent;
G: generator;
H: step function;
I: current source;
i: alternate current source;
ii: double arrow current source;
ti: truncated-bar alternate current source;
dci: DC current source;
L: lamp;
N: neon;
NA: neon 2;
NB: neon 3;
P: pulse;
Q: charge;
R: ramp; S: sinusoid;
SC: quarter arc, SCr right orientation;
SE: arc, SEr right orientation;
T: triangle;
U: square-wave;
V: voltage source;
v: alternate voltage source;
tv: truncated-bar alternate voltage source;
dcv: DC voltage source;
X: interior X;
other: custom interior label or waveform;
arg 4: R: reversed polarity;
arg 5 modifies the circle (body) with e.g., color or fill;
arg 6 names the body [] block (Section 4.2)

speaker(U|D|L|R|degrees,size,H,attributes)
cct speaker, In1 to In7 defined; H: horn (Section 6)

sprod3(scalar, vec1, vec2) dpictools Multiplied vector by scalar arg1: vec2 = vec1 * arg1.

sprod3D(a,x,y,z) 3D scalar product of triple x,y,z by arg1

sp_ gen evaluates to medium space for gpic strings

sqrta(arg) gen square root of the absolute value of arg; i.e.,
sqrt(abs(arg))

SQUID(n, diameter, initial angle, ccw|cw)
cct Superconducting quantum interface device with n junctions

labeled J1, ... Jn placed around a circle with initial
angle -90 deg (by default) with respect to the current
drawing direction. The default diameter is dimen_

s_ gen .s with respect to current direction

100

stackargs_(‘stackname’,args)
gen Stack arg 2, arg 3, ... onto the named stack up to a blank

arg

stackcopy_(‘name 1’,‘name 2’)
gen Copy stack 1 into stack 2, preserving the order of pushed

elements

stackdo_(‘stackname’,commands)
gen Empty the stack to the first blank entry, performing arg 2

stackexec_(‘name 1’,‘name 2’,commands)
gen Copy stack 1 into stack 2, performing arg3 for each

nonblank entry

stackprint_(‘stack name’) gen Print the contents of the stack to the terminal

stackreverse_(‘stack name’) gen Reverse the order of elements in a stack, preserving the
name

stacksplit_(‘stack name’,string,separator)
gen Stack the fields of string left to right separated by

nonblank separator (default .). White space preceding the
fields is ignored.

sum3(vec1, vec2, vec3) dpictools The 3-vector sum vec3 = vec1 + vec2.

sum3D(x1,y1,z1,x2,y2,z2) 3D sum of two triples

sum_(a,b) gen binary sum

sus(linespec, chars, label) cct Wrapper to place an SUS thyristor as a two-terminal
element with [] block label given by the third argument
(Section 6.1)

svec_(x,y) log scaled and rotated grid coordinate vector

s_wd(name,default) gen width of the most recent (or named) s_box (Section 14)

switch(linespec,L|R,[C|O][D],[B|D])
cct SPST switch (wrapper for bswitch, lswitch, and dswitch),

arg2: R: right orientation (default L for left);
if arg4=blank (knife switch): arg3 = [O|C][D][A], O:
opening, C: closing, D:dots, A: blade arrowhead;
if arg4=B (button switch): arg3 = O|C: O: normally open,
C: normally closed;
if arg4=D: arg3 = same as for dswitch (Section 4.2)

sw_ gen .sw with respect to current direction
T

101

tapped(‘two-terminal element’, [arrowhd | type=arrowhd;name=Name], fraction, length, frac-
tion, length, · · ·)

cct Draw the two-terminal element with taps in a [] block (see
addtaps). arrowhd = blank or one of . - <- -> <->.
Each fraction determines the position along the element
body of the tap. A negative length draws the tap to the
right of the current direction; positive length to the left.
Tap names are Tap1, Tap2, · · · by default or Name1,
Name2, · · · if specified. Internal block names are .Start,
.End, and .C corresponding to the drawn element, and the
tap names (Section 6)

ta_xy(x, y) cct macro-internal coordinates adjusted for L|R

tbox(text,wid,ht,<|>|<>,attributes)
cct Pointed terminal box. The text is placed at the rectangular

center in math mode unless the text begins with " or
sprintf in which case the arument is used literally. Arg 4
determines whether the point is forward, backward, or both
with respect to the current drawing direction. (Section 6)

tconn(linespec, chars|keys, wid)
cct Terminal connector drawn on a linespec, with head

enclosed in a []block. The permissible chars are: > | >>
| < | << | A | AA | M | O | OF. Type O draws a node
(circle); OF a filled circle. Type M is a black bar; A is an
open arc end; type AA a double open arc. Type > (the
default) is an arrow-like output connector; < and « input
connectors. Arg 3 is arrowhead width or circle diameter
when key-value pairs are not used. If keys are specified,
they are type=chars as previously; wdth=expr; lgth=expr;
sep=expr; head=attributes except lgth, wdth. The key
sep= is the double-head separation (Section 6)

testexpr(variable, expr1, expr2, . . .)
dpictools Set the variable given by arg1 to the index of the first

true alternative in a sequence of logical expressions, e.g.,
testexpr(i, 1>2, 1<2) sets i to 2. The variable is set
to 0 if no test is true.

tgate(linespec, [B][R|L]) cct transmission gate, B= ebox type; L= oriented left
(Section 6.1)

thermocouple(linespec, wid, ht, L|R [T])
cct Thermocouple drawn to the left (by default) of the linespec

line. A T argument truncates the leads so only the two
branches appear. R= right orientation. (Section 4.2)

thicklines_(number) gen set line thickness in points

thinlines_(number) gen set line thickness in points

threeD_init 3D initialize 3D transformations (reads lib3D.m4)

102

thyristor(linespec,[SCR|SCS|SUS|SBS|IEC][chars])
cct Composite thyristor element in []block, types:

SCR: silicon controlled rectifier (default),
SCS: silicon controlled switch,
SUS: silicon unilateral switch,
SBS: silicon bilateral switch,
IEC: type IEC.
Chars to modify or define the element:
K: open arrowheads,
A: arrowhead,
F: half arrowhead,
B: bidirectional diode,
E: adds envelope,
H: perpendicular gate (endpoint G),
N: anode gate (endpoint Ga),
U: centre line in diodes,
V: perpendicular gate across arrowhead centre,
R: right orientation,
E: envelope (Section 6.1)

thyristor_t(linespec, chars, label)
cct Wrapper to place a thyristor as a two-terminal element

with [] block label given by the third argument
(Section 6.1)

tikznode(Tikz node name, position)
pgf insert Tikz code to define a zero-size Tikz node at

location(default Here) to assist with inclusion of pic code
output in Tikz diagrams. This macro must be invoked in
the outermost pic scope. (Section 15.1)

tline(linespec,wid,ht) cct transmission line, manhattan direction (Section 4.2)

ToPos(position, U|D|L|R|degrees, length)
gen Evaluates to from position - Rect_(length, angle) to

position from the polar-coordinate data in the arguments

transformer(linespec,L|R,np,[A|P][W|L][D1|D2|D12|D21],ns)
cct 2-winding transformer or choke with terminals P1, P2, TP,

S1, S2, TS:
arg2: L: left, R: right,
arg3: np primary arcs,
arg5: ns secondary arcs,
arg4: A: air core,
P: powder (dashed) core,
W: wide windings,
L: looped windings,
D1: phase dots at P1 and S1 end;
D2: at P2 and S2 end;
D12: at P1 and S2 end;
D21 at P2 and S1 end (Section 6)

tr_xy_init(origin, unit size, sign)
cct initialize tr_xy

103

tr_xy(x, y) cct relative macro internal coordinates adjusted for L|R

tstrip(R|L|U|D|degrees, nterms, chars)
cct terminal strip, chars: I (invisible terminals), C (default

circle terminals), D (dot terminals), O (omitted separator
lines), wid=value; total strip width, ht=value; strip height,
box=shaded etc.; (Section 6)

ttmotor(linespec, string, diameter, brushwid, brushht)
cct motor with label (Section 4.2)

twopi_ gen 2π
U

ujt(linespec,R,P,E) cct unijunction transistor, right, P-channel, envelope
(Section 6.1)

unit3D(x,y,z) 3D unit triple in the direction of triple x,y,z

up__ gen up with respect to current direction

up_ gen set current direction up (Section 5)
V

variable(‘element’, chars, [+|-]angle, length, at position)
cct Overlaid arrow or line to indicate variable 2-terminal

element: The chars are
A: arrow,
P: preset,
L: linear,
N: symmetric nonlinear,
C: continuous,
S: setpwise;
u changes the nonlinearity direction. The angle is absolute
but preceding it with a sign makes the angle (often -30 or
-45) relative to the element drawing direction.
If arg5 is blank the symbol is placed over the last [] block
(Section 4.2)

Vcoords_(position) gen The x, y coordinate pair of the position

Vdiff_(position,position) gen Vdiff_(A,B) evaluates to A-(B) with dpic, A-(B.x,B.y)
with gpic

vec_(x,y) gen position rotated with respect to current direction

vec_r(x,y) gen Robust position rotated with respect to current direction
for use in dpic loops

vec3(vector) dpictools Expands to the threee components of the vector
argument separated by commas.

104

View3D 3D The view vector (triple) defined by setview(azimuth,
elevation, rotation). The project macro projects onto the
plane through (0,0) and orthogonal to this vector.

vlength(x,y) gen vector length
√

x2 + y2

vperp(linear object) gen unit-vector pair CCW-perpendicular to linear object

Vperp(position name, position name)
gen unit-vector pair CCW-perpendicular to line joining two

named positions

vrot_(x,y,xcosine,ycosine) gen rotation operator

vscal_(number,x,y) gen vector scale operator

Vsprod_(position, expression) gen The vector in arg 1 multiplied by the scalar in arg 2

Vsum_(position,position) gen Vsum_(A,B) evaluates to A+B with dpic, A+(B.x,B.y) with
gpic

W

while_(‘test’,‘actions’) gen Integer m4 while loop

wid_ gen width with respect to current direction

winding(L|R, winding diam, pitch, nturns, core wid, "core color")
cct core winding drawn in the current direction; R:

right-handed The complete spline is drawn in the current
drawing direction, then parts of it are overwritten with the
background core color (default white). Arg 1 contains R
for right-handed winding. (Section 6)

w_ gen .w with respect to current direction

XOR_gate(n,N) log ‘xor’ gate, 2 or n inputs; N: negated input. Otherwise, arg1
can be a sequence of letters P|N to define normal or
negated inputs. (Section 9)

XOR_off log XOR and NXOR offset of input face
X

xtal(linespec,keys) cct Quartz crystal. The keys are type=N (default) or type=R
(round);
type N keys:
lgth=expr (body length);
wdth=expr (body width);
bxwd=expr (body inner box width);
box= box attributes (shaded . . .);
type R keys:
outerdiam=expr;
innerdiam=expr;
outer= outer circle attributes (dotted . . .);
inner= inner circle attributes (shaded . . .) (Section 4.2)

105

xtract(string, substr1, substr2, . . .)
gen returns substrings if present

Y

Ysymbol(at position, keys, U|D|L|R|degrees) (default U for up)
cct Y symbol for power-system diagrams. keys:

size=expression; type=G
Z

zabs(complex value) dpictools Absolute value of complex value
√

(val.x2 + val.y2

zarg(complex value) dpictools Angle of complex value atan2(val.y, val.x)

Zcos(complex value) dpictools Complex cosine
(cos(val.x) ∗ cosh(val.y), − sin(val.x) ∗ sinh(val.y))

Zdiff(complex value, complex value)
dpictools Complex subtraction (val1.x − val2.x, val1.y − val2.y)

Zexp(complex value) dpictools Complex exponential ((cos(val.y), sin(val.y)) ∗ eval.x)

Zinv(complex value) dpictools Complex inverse ((val.x, −val.y)/zabs(val))

Zprod(complex value, complex value)
dpictools Complex multiplication (val1.x ∗ val2.x − val1.y ∗

val2.y, val1.y ∗ val2.x + val1.x ∗ val2.y)

Zsin(complex value) dpictools Complex sine
(sin(val.x) ∗ cosh(val.y), cos(val.x) ∗ sinh(val.y))

Zsum(complex value, complex value)
dpictools Complex addition (val1.x + val2.x, val1.y + val2.y)

References
[1] J. D. Aplevich. Drawing with dpic, 2022. Dpic source distribution https://gitlab.com/

aplevich/dpic.

[2] J. Bentley. More Programming Pearls. Addison-Wesley, Reading, Massachusetts, 1988.

[3] GNU contributors. Gnu m4 1.4.19 macro processor. GNU, 2021. https://www.gnu.org/
software/m4/manual/m4.html.

[4] D. Girou. Présentation de PSTricks. Cahiers GUTenberg, 16, 1994. http://cahiers.
gutenberg.eu.org/cg-bin/article/CG_1994___16_21_0.pdf.

[5] M. Goossens, S. Rahtz, and F. Mittelbach. The LATEXGraphics Companion. Addison-Wesley,
Reading, Massachusetts, 1997.

[6] J. D. Hobby. A user’s manual for MetaPost, 1990.

[7] IEC. International standard database snapshot 2007-01, graphical symbols for diagrams, 2007.
IEC-60617.

[8] IEEE. Graphic symbols for electrical and electronic diagrams, 1975. Std 315-1975, 315A-1986,
reaffirmed 1993.

106

https://gitlab.com/aplevich/dpic
https://gitlab.com/aplevich/dpic
https://www.gnu.org/software/m4/manual/m4.html
https://www.gnu.org/software/m4/manual/m4.html
http://cahiers.gutenberg.eu.org/cg-bin/article/CG_1994___16_21_0.pdf
http://cahiers.gutenberg.eu.org/cg-bin/article/CG_1994___16_21_0.pdf

[9] B. W. Kernighan. PIC—A graphics language for typesetting, user manual. Technical Report
116, AT&T Bell Laboratories, 1991. http://doc.cat-v.org/unix/v10/10thEdMan/pic.pdf.

[10] B. W. Kernighan and D. M. Richie. The M4 macro processor. Technical report, Bell Laboratories,
1977.

[11] Thomas K. Landauer. The Trouble with Computers. MIT Press, Cambridge, Massachusetts,
1995.

[12] W. Lemberg. Gpic man page, 2005. http://www.manpagez.com/man/1/groff/.

[13] O. Mas. Pycirkuit 0.5.0. Python Software Foundation, 2019. https://pypi.org/project/
pycirkuit/.

[14] E. S. Raymond. Making pictures with GNU PIC, 1995. In GNU groff source distribution, also
in the dpic package and at http://www.kohala.com/start/troff/gpic.raymond.ps.

[15] T. Rokicki. DVIPS: A TEX driver. Technical report, Stanford, 1994.

[16] R. Seindal et al. GNU m4, 1994. http://www.gnu.org/software/m4/manual/m4.html.

[17] T. Tantau. Tikz & pgf, 2013. CTAN, http://mirrors.ctan.org/graphics/pgf/base/doc/
pgfmanual.pdf.

[18] T. Thurston. Drawing with MetaPost, 2023. CTAN, https://www.ctan.org/pkg/
drawing-with-metapost.

[19] T. Van Zandt. PSTricks: Postscript macros for generic tex, 2007. CTAN, http://mirrors.
ctan.org/graphics/pstricks/base/doc/pst-user.pdf.

107

http://doc.cat-v.org/unix/v10/10thEdMan/pic.pdf
http://www.manpagez.com/man/1/groff/
https://pypi.org/project/pycirkuit/
https://pypi.org/project/pycirkuit/
http://www.kohala.com/start/troff/gpic.raymond.ps
http://www.gnu.org/software/m4/manual/m4.html
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
http://mirrors.ctan.org/graphics/pgf/base/doc/pgfmanual.pdf
https://www.ctan.org/pkg/drawing-with-metapost
https://www.ctan.org/pkg/drawing-with-metapost
http://mirrors.ctan.org/graphics/pstricks/base/doc/pst-user.pdf
http://mirrors.ctan.org/graphics/pstricks/base/doc/pst-user.pdf

	Contents, Version 10.8.4
	Introduction
	Using the macros
	Quick start
	Using m4
	Processing with dpic and Tikz PGF or PSTricks
	Processing with gpic
	Simplifications

	Including the libraries

	Pic essentials
	Manuals
	The linear objects: line, arrow, spline, arc
	Positions
	The planar objects: box, circle, ellipse, and text
	Compound objects
	Other language facilities

	Two-terminal circuit elements
	Circuit and element basics
	The two-terminal elements
	Branch-current arrows
	Labels

	Placing two-terminal elements
	Series and parallel circuits

	Composite circuit elements
	Semiconductors

	Corners
	Looping
	Logic gates
	Automatic structures

	Integrated circuits
	Single-line diagrams
	Two-terminal SLD elements
	One-terminal and composite SLD elements

	Element and diagram scaling
	Circuit scaling
	Pic scaling

	Writing macros
	Macro arguments

	Interaction with LaTeX
	PSTricks and other tricks
	Tikz with pic

	Web documents, pdf, and alternative output formats
	Developer's notes
	Bugs
	Misconfiguration
	Pic objects versus macros
	Commas
	Default directions and lengths
	Mixing m4 and dpic code
	Quotes
	Dollar signs
	Name conflicts
	Current direction
	Position of elements that are not 2-terminal
	Pic error messages
	Line continuation
	Scaling
	Buffer overflow
	m4 -I error

	List of macros
	A
	above_
	abs_
	ACsymbol
	adc
	addtaps
	adjust
	along_
	Along_
	amp
	And, Or, Not, Nand, Nor, Xor, Nxor, Buffer
	AND_gate
	AND_gen
	AND_ht
	AND_wd
	antenna
	arca
	ArcAngle
	arcd
	arcdimension_
	arcr
	arcto
	arcwinding
	array
	array2
	arraymax
	arraymin
	arrester
	arrowline
	assign3
	AutoGate
	Autologix

	B
	basename_
	battery
	b_
	b_current
	beginshade
	bell
	below_
	Between_
	binary_
	bisect
	bi_trans
	bi_tr
	boxcoord
	boxdim
	BOX_gate
	bp__
	bswitch
	BUFFER_gate
	BUFFER_gen
	BUF_ht
	BUF_wd
	buzzer

	C
	cangle
	capacitor
	case
	cbreaker
	ccoax
	cct_init
	centerline_
	c_fet
	Cintersect
	clabel
	cm__
	cmyktorgb
	consource
	ColoredV
	contact
	contacts
	contline
	copy3
	copythru
	corner
	Cos
	cosd
	Cosine
	cross3
	cross3D
	cross
	crossover
	crosswd_
	csdim_

	D
	dabove
	dac
	Darc
	darc
	Darlington
	darrow
	Darrow
	darrow_init
	dashline
	dbelow
	dcosine3D
	DCsymbol
	DefineCMYKColor
	DefineHSVColor
	DefineRGBColor
	definergbcolor
	delay
	delay_rad_
	deleminit_
	Deltasymbol
	Demux
	dend
	d_fet
	dfillcolor
	diff3
	dfitcurve
	dfitpoints
	diff3D
	diff_
	dimen_
	dimension_
	diode
	dir_
	distance
	distance
	dlabel
	dleft
	Dline
	dline
	dlinewid
	dljust
	dna_
	dn_
	dot3
	dot3D
	dot
	dotrad_
	down_
	dpquicksort
	dprot
	dprtext
	dright
	drjust
	dswitch
	dtee
	dtor_
	dturn

	E
	earphone
	ebox
	E__
	e_
	e_fet
	elchop
	eleminit_
	elen_
	ellipsearc
	em_arrows
	endshade
	Equidist3
	expe

	F
	f_box
	Fector
	Fe_fet
	FF_ht
	FF_wid
	fill_
	findroot
	fitcurve
	FlipFlop
	FlipFlopX
	foreach_
	for_
	FTcap
	fuse

	G
	gap
	gen_init
	g_fet
	g_
	G_hht
	geiger
	gpolyline_
	graystring
	grid_
	ground
	gshade
	gyrator

	H
	hatchbox
	Header
	HeaderPin
	heatere
	heater
	heatert
	heatsink
	hexadecimal_
	hex_digit
	H_ht
	histbins
	hlth
	hoprad_
	hsvtorgb
	ht_

	I
	ifdpic
	ifgpic
	ifinstr
	ifmfpic
	ifmpost
	ifpgf
	ifpostscript
	ifpsfrag
	ifpstricks
	ifroff
	ifxfig
	igbt
	inductor
	in__
	inner_prod
	integrator
	intersect_
	Intersect_
	Int_
	IOdefs

	J
	jack
	j_fet
	jumper

	K
	KelvinR

	L
	lamp
	langle
	larrow
	lbox
	LCintersect
	LCtangent
	left_
	LEintersect
	length3
	length3D
	LEtangent
	lg_bartxt
	lg_pin
	lg_pintxt
	lg_plen
	LH_symbol
	lin_ang
	linethick_
	lin_leng
	ljust_
	llabel
	loc_
	log10E_
	loge
	log_init
	loop
	Loopover_
	lpop
	lp_xy
	lswitch
	lthick
	lt_
	LT_symbol
	L_unit

	M
	m4_arrow
	m4dupstr
	m4lstring
	m4xpand
	m4xtract
	manhattan
	Magn
	Max
	memristor
	microphone
	Min
	Mitre_
	mitre_
	mm__
	mosfet
	Mux_ht
	Mux
	Mux_wid
	Mx_pins

	N
	NAND_gate
	N_diam
	NeedDpicTools
	neg_
	ne_
	n_
	norator
	NOR_gate
	NOT_circle
	NOT_gate
	NOT_rad
	NPDT
	nport
	N_rad
	nterm
	nullator
	nw_
	NXOR_gate

	O
	opamp
	open_arrow
	OR_gate
	OR_gen
	OR_rad

	P
	parallel_
	pconnex
	pc__
	perpto
	PerpTo
	pi_
	plug
	pmod
	point_
	Point_
	polar_
	polygon
	posarray
	posarray2
	potentiometer
	print3D
	prod_
	project
	Proxim
	proximity
	psset_
	PtoL
	pt__
	ptrans
	pushkey_
	pushkeys_
	pvcell
	px__

	R
	randn
	rarrow
	Rect_
	rect_
	reed
	relaycoil
	relay
	resetdir_
	resetrgb
	resistor
	resized
	restorem4dir
	reversed
	rgbdraw
	rgbfill
	rgbstring
	rgbtocmyk
	rgbtohsv
	RightAngle
	right_
	rjust_
	rlabel
	rot3Dx
	rot3Dy
	rot3Dz
	rotbox
	rotellipse
	Rot_
	rot_
	round
	rpoint_
	rpos_
	r_
	rrot_
	rs_box
	rsvec_
	r_text
	rtod__
	rtod_
	rt_
	rvec_
	rvec_r

	S
	sarrow
	savem4dir
	s_box
	sbs
	sc_draw
	scr
	scs
	s_dp
	series_
	se_
	setdir_
	setkey_
	setkeys_
	setrgb
	setview
	sfgabove
	sfgarc
	sfgbelow
	sfg_init
	sfgline
	sfgnode
	sfgself
	shade
	shadebox
	shadedball
	ShadedPolygon
	ShadeObject
	shadowed
	shielded
	s_ht
	SIdefaults
	sign_
	sinc
	sind
	s_init
	Sin
	sinusoid
	sl_box
	sl_breaker
	sl_busbar
	sl_ct
	sl_disk
	sl_drawout
	sl_generator
	sl_grid
	sl_inverter
	sl_lamp
	sl_load
	sl_meterbox
	sl_reactor
	sl_rectifier
	sl_slash
	sl_transformer3
	sl_transformer
	sl_ttbox
	s_name
	sourcerad_
	slantbox
	source
	speaker
	sprod3
	sprod3D
	sp_
	sqrta
	SQUID
	s_
	stackargs_
	stackcopy_
	stackdo_
	stackexec_
	stackprint_
	stackreverse_
	stacksplit_
	sum3
	sum3D
	sum_
	sus
	svec_
	s_wd
	switch
	sw_

	T
	tapped
	ta_xy
	tbox
	tconn
	testexpr
	tgate
	thermocouple
	thicklines_
	thinlines_
	threeD_init
	thyristor
	thyristor_t
	tikznode
	tline
	ToPos
	transformer
	tr_xy_init
	tr_xy
	tstrip
	ttmotor
	twopi_

	U
	ujt
	unit3D
	up__
	up_

	V
	variable
	Vcoords_
	Vdiff_
	vec_
	vec_r
	vec3
	View3D
	vlength
	vperp
	Vperp
	vrot_
	vscal_
	Vsprod_
	Vsum_

	W
	while_
	wid_
	winding
	w_
	XOR_gate
	XOR_off

	X
	xtal
	xtract

	Y
	Ysymbol

	Z
	zabs
	zarg
	Zcos
	Zdiff
	Zexp
	Zinv
	Zprod
	Zsin
	Zsum

	References .

