
Drawing with dpic1

Dwight Aplevich
2025.08.01

Contents
1 Introduction 2

2 Dpic usage 2
2.1 Options 3
2.2 Error messages 4

3 Dpic programming 5
3.1 Character set 5
3.2 Blocks 5

3.2.1 Positioning blocks . . . 6
3.2.2 Defining scope 6

3.3 Dpic macros 7
3.3.1 Finding roots 8
3.3.2 Composing statements . 9
3.3.3 Branching 9
3.3.4 Looping 10
3.3.5 Evaluating arguments . 11
3.3.6 Hiding variables 11
3.3.7 Complex numbers . . . 12

3.4 M4 macros 12
3.4.1 M4 branching 13
3.4.2 Extending pic: perpen-

diculars 13
3.4.3 Setting directions 14

3.5 Subscripts 15
3.5.1 Assigning an array of

numbers 15
3.6 Splines 16

3.6.1 Curve fitting 16
3.7 Text 17
3.8 Postprocessor commands and

color 17
3.8.1 Color 18
3.8.2 Filling with color 19
3.8.3 External files 20

4 SVG, PDF, and Postscript output 20

4.1 SVG text 21
4.2 Bounding boxes 22

5 Pic processor differences 23
5.1 Command-line options 23
5.2 Output formats 23
5.3 “.” and “\” lines 24
5.4 for-loop and if bodies 24
5.5 Closing braces and nul elements 24
5.6 End of line 25
5.7 Logic 25
5.8 Defaults for line, spline,

arrow, move 25
5.9 Arc defaults 26
5.10 Strings 26
5.11 print arg, 27
5.12 command arg, 28
5.13 Operating system commands . 28
5.14 copy 28
5.15 plot 28
5.16 fill 29
5.17 Scaling 29
5.18 Arrowheads 29
5.19 Compass corners and justified

text 30
5.20 continue 31
5.21 Subscripted variables and labels 31
5.22 Nul and multiply labeled objects 31
5.23 Splines 31
5.24 Arithmetic 32
5.25 Vector arithmetic 32
5.26 exec 32
5.27 Functions 32

6 References 33

7 Appendix A: dpic man page 34

8 Appendix B: dpic grammar 47
1Manual revised 31 July 2025. Copyright © 2025 J. D. Aplevich, all rights reserved. This document is

made available under the Creative Commons attribution licence version 3.0
(http://creativecommons.org/licenses/by/3.0/); you are free to copy and distribute this document
provided proper attribution is given by identifying the author.

1

1 Introduction

This document is meant for persons using dpic to produce diagrams for LATEX documents or
web files. You are assumed to have basic knowledge of the pic language [3, 4] but, for reference,
a dpic language summary is included here in Appendix A (Section 7) and the context-free dpic
input grammar is given in Appendix B (Section 8).

The pic “little language” is particularly suited for easily creating line diagrams such as electric
circuits, and many persons use a set of macros called Circuit_macros, which are processed
using the m4 macro processor and dpic. The pic language itself allows macro definitions, and
both pic and m4 macros will be described.

Many other software tools can produce line diagrams and the choice of tool is often subjective
or a matter of prior familiarity. Dpic is relatively easy to learn and can include sophisticated
formatted diagram text using LATEX. Dpic will also produce SVG output for web files but
the advantage of employing a word processor for text is not then directly available. A route
to sophisticated text in SVG is to use LATEX to produce a pdf file, followed by a pdf-to-svg
converter.

Dpic accepts gpic input for the most part but there are minor differences. The outputs of
gpic and dpic are quite different but both can serve as preprocessors that create diagrams for
inclusion in LATEX documents.

Dpic usage will be reviewed, some programming examples that illustrate dpic extensions of
the pic language will be given, and then the differences among pic translators will be itemized,
particularly the differences between gpic and dpic.

There had better be a disclaimer: the temptation to change the pic language has been resisted
most of the time so that valid diagrams can be processed with minimal changes using the orig-
inal Documenter’s Workbench (ATT) pic, with gpic, or dpic. There are exceptions: embedded
word-processor commands principally, but also minor differences in defaults for valid pic input,
a few gpic constructs that dpic does not implement directly, and a few dpic extensions that
gpic does not implement. For details, see Section 5.

2 Dpic usage

In the following, items in square brackets [] are optional and items separated by a vertical
line | are alternatives. To produce .tex output (for LATEX, PSTricks, TikZ-PGF, mfpic pro-
cessing):

dpic [options] file.pic > file.tex
or

cat file.pic | dpic [options] > file.tex

To produce other formats:
dpic [-d|e|f|g|h|m|p|r|s|t|v|x] [-z] file.pic > file[.tex|eps|pdf|mp|fig|svg]

2

2.1 Options

Dpic accepts the following options:

(none) Latex picture-environment output (very limited font-based drawing commands)
-d PDF output
-e pict2e output
-f Postscript output with psfrag strings
-g TikZ-PGF output
-h write out these options and quit
-m mfpic output
-p PSTricks output
-r raw Postscript output
-s MetaPost output
-t eepicemu output
-v SVG output
-x xfig 3.2 output
-z safe mode (disabled sh, copy, and print to file)

The -p option produces output for postprocessing by the LATEX package PSTricks. Similarly,
the -g option produces output for the TikZ-PGF packages and makes pdf production via
pdflatex a one-step process.

Mfpic and MetaPost output are provided for compatibility.

The -r option produces Postscript .eps files, in which font changes or typesetting must be
done explicitly. The -f option writes Postscript strings in psfrag format for tex or latex
typesetting.

The -d option produces PDF files. This format is most useful for diagrams containing graphics
only, since there is no simple way to change or manipulate fonts for labels. The Courier fixed-
width font is employed by default. To produce PDF files containing significant text content,
use an option such as TikZ with pdflatex.

The -v option produces SVG for inserting figures into web documents or for further processing
by the Inkscape graphics editor, for which SVG is the native format. When the SVG output
is used directly in a web document, then any required text formatting generally must be
included explicitly. One other possibility for SVG output is that an SVG library of elements
can be drawn with dpic, and Inkscape used to place and connect copies of the elements. Then
Inkscape can export the graphics as eps for processing by LATEX or as pdf for processing by
pdflatex. Inkscape will also export a tex file from which labels can be formatted and overlaid
on the imported eps or pdf. A third possibility is to produce the graphic without text and
then overlay the text elements.

The -z option disables the commands that access external files. These commands can be
permanently disabled by the use of a compile-time option.

In all cases, arbitrary postprocessor commands (that is, arbitrary PSTricks, SVG, Postscript,
or other code) can be inserted into the dpic output directly from the source. This possibility
adds considerable power for manipulating diagram elements.

3

The use of output formats meant to be processed by LATEX is quite different from the other
formats. If a word processor is not part of the process, the selection and formatting of diagram
text requires the insertion of postprocessor commands into the output. Dpic knows nothing
of text formatting except for SVG output, for which basic sizing and placement are provided.

The file Examples.txt contains a minimal example of each of these options except -z. Consult
the appropriate manual for processing mfpic, PSTricks, MetaPost, pgf, or psfrag output.

Invoking dpic without options produces basic LATEX drawing commands by default. LATEX
line slopes, for example, are very limited and you must ensure that lines and arrows are drawn
only at acceptable slopes. Dpic sets the maximum slope integer to be 6 for LATEX, 453 for
eepic, and 1000 for pict2e. To see the effect of the slope limitations, process the following:

.PS
dtor = atan2(0,-1)/180
for d = 0 to 360 by 2 do {

line from (0,0) to (cos(d*dtor),sin(d*dtor))
}

line from (-1.2,0) to (1.2,0)
line from (0,-1.2) to (0,1.2)
.PE

2.2 Error messages

The following is an example of an error message:

*** dpic ERROR: in macro "A", file "B.pic" line 16:
x = y
Variable not found
Search failure for "y"

Dpic displays the input file name with the number of the line to which scanning has progressed.
The name of the current macro is also given if one is being executed. Most often, scanning
stops on or near the offending line, which is displayed up to where reading ceased. However,
the source of the problem might be a considerable distance from the indicated line number if
the error is in a for loop or a macro. In the above example, line 16 of file B.pic happens to be

A(5)
which invokes macro A, so one has to find the definition of A and look for the line

x = y
within it.

Syntax error messages show the offending line and state the lexical object that was found at
or immediately before the error, together with expected (permissible) objects. Other errors
are signaled according to the circumstances.

4

3 Dpic programming

Pic is a simple language with a good ratio of power to complexity, so surprisingly sophisticated
diagrams can be produced in several areas of application. Arbitrary postprocessor commands
can be included in the output and several of the postprocessors are powerful drawing languages
in their own right, so it can be argued that dpic has all the power of these languages. However,
if you find yourself writing extensive postprocessor code then you might ask why you are not
programming exclusively in that language. Similarly, pic floating-point operations and macro
facilities enable complex numerical computations; the price is the inefficiency of number-
crunching in an interpreted language. However, it can be convenient to calculate plotted
values in the same source as graphing them and, although pic was developed for simplicity,
its implementations are Turing-complete so arbitrarily complex computation is possible in
principle.

The pic language is very suitable for line diagrams with basic color. Elaborate fills and
cropping are the domain of the postprocessors, but can be included easily with the use of
macros.

The following sections are intended to help you become familiar with dpic language syntax,
which is simple but somewhat unusual. Some of these details are exclusive to dpic and are
not described in the GNU manual but are discussed in Section 5 of this document.

3.1 Character set

Dpic input employs ordinary ASCII characters. The characters LF (\n) and CR (\r) have
identical effect, and ETX (\003) is reserved for internal use. Characters outside the range of
0 to 127 are allowed in strings but receive no special treatment.

3.2 Blocks

The basic planar objects in pic are box, circle, and ellipse, the placing of which is done
according to the current drawing direction or by explicit placement such as

box at position
which places the object so that its center is at position. Then the current drawing position
Here is set to be the north, south, east, or west compass point of the object depending on the
current drawing direction.

A block (also called a composite object) is a group of elements enclosed by square brackets,
such as

Q: [B: [A: arc]; circle].

5

3.2.1 Positioning blocks

A block is placed by default as if it were a box, after which the compass points (Q.n, Q.sw, . . .
in the previous example) and exit point (current drawing position) Here are automatically
defined as for a box of the same size and position.

A block can also be positioned by specifying the location of one of its defined points. A defined
point is one of the following:

1. A compass corner .center, .n, .ne, . . . of the block, e.g.,
Q: [B: [A: arc]; circle] with .ne at position

2. A defined point of a labeled object or position within the block, preceded by a dot, e.g.,
Q: [B: [A: arc]; circle] with .B.A.ne at position

3. A defined point of an enumerated object in the block, preceded by a dot (but make sure
there is a space after the dot if it is followed by a number), e.g.,

Q: [B: [A: arc]; circle] with . 1st circle at position
Even better, put braces around the ordinal value, which can now be any expression, e.g.,

. . . with .{10-9}th circle at . . .

4. A displacement (x,y) from the lower left corner of the block, e.g.,
Q: [B: [A: arc]; circle] with (0.5,0.2) at position

Reference to a defined point may correspond to drilling down through several block layers, as
the second example above shows.

3.2.2 Defining scope

Variables defined within a block are accessible only within the block itself or its sub-blocks.
Thus, the statement x = 5 creates the variable x and assigns it a value. If the statement is
x := 5 then x must already have been defined either in the block or in a scope containing the
block. Limiting the scope to a block avoids name conflicts but occasionally results in subtle
behavior. The code

x = 5
[x = x + 2; print x]
print x

prints 7 on the first line and 5 on the second because the assignment within brackets creates
variable x with scope within the brackets. However, Dpic allows a second line of the form

[x += 2; print x]
which changes the previously defined variable x and the value 7 is printed twice.

Locations inside a block are accessible from outside as shown in the previous section, but the
values of variables are not; thus, an error results from

Q: [v = 5]; y = Q.v
The := assignment operator in

v = 0; Q: [v := 5]; y = v

6

works around this problem, but this method requires the internal name v to be known and
defined in advance of the block.

Variable values can be exported by the use of macro arguments as shown later in Section 3.3
or, if you must, by using the following trick:

Q: [v = 5; w = 6
Origin: (0,0); Export: (v,w)]

v = Q.Export.x - Q.Origin.x
w = Q.Export.y - Q.Origin.y

This method works because all locations (Origin and Export) inside the block will be trans-
lated by the same amount no matter where the block is positioned.

3.3 Dpic macros

Macros can be used to turn the basic dpic language into a powerful tool for producing line
drawings. A macro extends the language and serves to

• specialize the pic language in order to draw components from an application area
• abbreviate long sequences of repetitive commands
• substitute particular values in commands by the use of macro arguments
• provide conditional text replacement depending on the value of macro arguments
• provide recursive looping

Macro definitions are not local to blocks so care must be taken to avoid conflicts with macro
names.

The pic language includes basic macro facilities, but the m4 macro processor [2, 5] makes a
good companion to the language, so both will be mentioned. General-purpose macro defi-
nitions can be stored in files external to the diagram source and read in automatically. In
particular, the author has written a package called Circuit_macros [1] for drawing electric
circuits and other diagrams using dpic and m4, from which examples will be taken.

A dpic macro is defined by the statement
define name { contents }

where name may begin with a lowercase or uppercase letter. The form
define name X contents X

is also allowed, where X is any character except {. Then any separate appearance of name in
the following lines is replaced by the contents characters, including newlines. If the name is
given arguments of the form

name(x, y, z, . . .)
then, in the macro body, $n expands to the nth argument, which may be nul.

The line
undefine name

deletes the macro definition.

7

Dpic skips white space immediately preceding macro arguments so that, for example,
name(x,
y, z)

is equivalent to
name(x,y,z)

In a macro invocation, the arguments are separated by commas. An argument may contain
commas if they are between () parentheses, [] brackets, or in strings. A double quote
character within a string must be preceded by a backslash. Thus, for example, the macro
invocation

name(ABc"\"t,"(,DE,F))
has one argument.

In a dpic macro, the value of $+ is the number of arguments given to the macro on invocation.
Thus if x is a macro name, the values of $+ when the macro is invoked as x, x(), x(8), x(8,9),
and x(,,) are respectively 0, 1, 1, 2, and 3.

To check whether an argument is null, put it in a string; for example,
if "$3" == "" then { . . . }

Values internal to a scope can be passed back through macro arguments with the := operator;
thus, executing the following

define m {[v = 5; $1 := v]}; y = 0; m(y)
gives y the internal value of v. Notice that y must be defined prior to macro expansion.

The use of macros will be illustrated in the following examples, for which source is included
with this distribution and in the Circuit_macros distribution [1].

3.3.1 Finding roots

A root finder is a powerful tool for determining where lines or curves intersect in diagrams,
and can be implemented using a macro. Consider the trivial example in which we wish to find
the root of x2 −1 between 0 and 2. First, define a macro called bisect by reading in a library
file containing definitions using a command such as

copy "filename"
or by writing a definition such as given below, which employs the method of bisection, a
suitably robust (but not particularly fast) algorithm. Define the two-argument macro corre-
sponding to the function of which we want to calculate the root:

define parabola { $2 = ($1)^2 - 1 }
In general, many statements might be required to calculate the function, but the essential
statement is to assign the function value to the name given by the second argument. Then
call the bisect macro using a command such as

bisect(parabola, 0, 2, 1e-8, x)
where the second and third arguments define the search interval, the fourth argument specifies
the solution precision, and the fifth argument is the name of the variable to be set to the root.
A basic version of bisect is given by

8

define bisect {
x_m = $2; x_M = $3
x_c = (x_m+x_M)/2
if (abs(x_m-x_M) <= $4) then { $5 = x_c } else {

$1(x_m,f_m)
$1(x_c,f_c)
if (sign(f_c)==sign(f_m)) then { bisect($1,x_c,x_M,$4,$5) } \
else { bisect($1,x_m,x_c,$4,$5) } }

}

This macro repeatedly calls parabola and then itself, halving the search interval until it is
smaller than the prescribed precision. The Circuit_macros library version operates essentially
as above but avoids name clashes by appending the value of the first argument to the internal
names.

x

y

z

A somewhat more sophisticated use of a root finder is
shown at the right. Drawing the spiral on the surface
of the sphere requires knowing the points of transi-
tion of the curve from visible to hidden and back. A
root finder provides a method that is both simple and
adaptable to other shapes. The source file Spiral.m4
makes use of both m4 macros and pic macros.

3.3.2 Composing statements

Dpic macro arguments can be expanded almost anywhere. Suppose that circles A and B have
been defined, with intersections at positions AB and BA found using the macro cintersect
from Circuit_macros, for example. Then the boundary of the region within both circles might
be drawn using the macro shown, invoked as lozenge(A,B):

define lozenge {
arc from $1$2 to $2$1 with .c at $2
arc from $2$1 to $1$2 with .c at $1 } A

B
AB

BA

shade(0.5,lozenge(A,B))

3.3.3 Branching

Pic has a basic if-statement of the form
if expression then { if-true } else { if-false }

but lacks a case statement. Multiple branches can be defined by nested if statements but
there is another way. The macro

define case { exec sprintf("$%g",floor($1+0.5)+1); }
adds 1 to its rounded first argument to determine which alternative among the remaining
arguments should be executed. The semicolon (or a newline) forces dpic to perform the exec
statement before leaving the macro.

9

For example,
case(2,

print "A",
print "B")

executes the second alternative (the third argument) and prints B.

3.3.4 Looping

The pic language includes a basic for-loop, such as the following:
for x = 1 to 10 by 2 do { print x }

but there is no explicit language element (except macro recursion) for executing a block of code
an indefinite number of times. However, the for variable can be reset within the executable
code, as in the following example where the first macro argument is printed and doubled
repeatedly until it becomes greater than the second argument:

define series { x = $1; for done = 0 to 1 do { print x; x *= 2
done = (x > $2) } }

If this trick seems like an abuse of language, it can be disguised somewhat by the definition
of a C-like loop. For example, suppose we wish to write

loop(i=0, i<3, i+=1, drawing commands . . .)

Then the following defines a suitable mechanism with a loop depth index to allow nesting:
ld__ = 0
define loop { ld__+= 1; $1
for lx__[ld__]=0 to 1 do {
if $2 then { lx__[ld__]=0; $4; $3 } else {lx__[ld__]=1}}

ld__-= 1; }

However, loop() is a macro, so references to arguments in the body will refer to loop()
arguments, which may not be desired. In that case, use a for loop. The following prototypical
example shows how to implement the previous example using a repeat-until structure that
executes the drawing commands 1 or more times:

i = 0; define finished {($1 >= 3)}
for done = 0 to 1 do {
drawing commands . . .
i += 1
done = finished(i) }

To execute the drawing code 0 or more times as in a while loop, change the for line to
for done = 1 to !finished(i) do {

If such loops are nested, the loop variables and stopping criteria have to be defined so they
do not clash.

10

3.3.5 Evaluating arguments

A macro argument is referenced as $n, where n must be an integer and may not be an integer
expression. Consequently, the following does not work in a dpic macro:

for j=1 to $+ do { c[j] = $j }
Instead, use the dpic statement

exec string
which executes the contents of string as if it were the current input line. Since

sprintf("format",expression,. . .)
behaves like a string, the following works:

for j=1 to $+ do { exec sprintf("c[j] = $%g",j); }

Macro arguments are passed verbatim, as for example, function(x,y+z), inside which $1 is
replaced by x and $2 is replaced by y+z. To pass arguments by value, use exec sprintf
..., for example, exec sprintf("function(%g,%g)",x,y+z). The recursive calls near the
bottom of the sorting algorithm shown are another example:

dpquicksort(a,lo,hi,ix)
Given array a[lo:hi] and index
array ix[lo:hi] = lo,lo+1,lo+2,...hi, sort
a[lo:hi] and do identical exchanges on ix
define dpquicksort { [if $3 > $2 then {

pivot = $1[($2+($3))/2]
loop(lo = $2; hi = $3, lo <= hi,

loop(,$1[lo] < pivot, lo += 1)
loop(,$1[hi] > pivot, hi -= 1)
if lo < hi then {

tmp = $1[lo]; $1[lo] := $1[hi]; $1[hi] := tmp
tmp = $4[lo]; $4[lo] := $4[hi]; $4[hi] := tmp }

if lo <= hi then { lo += 1; hi -= 1 })
if hi > $2 then { exec sprintf("dpquicksort($1,%g,%g,$4)",$2,hi) }
if lo < $3 then { exec sprintf("dpquicksort($1,%g,%g,$4)",lo,$3) }
}] }

3.3.6 Hiding variables

As mentioned in Section 3.2.2, locations inside a block are accessible from outside, but the
values of variables are not. Therefore, a block can be used to hide variables internal to a
macro, as in the following example:

define rgbtohsv { $4=0; $5=0; $6=0; [
r = $1; g = $2; b = $3
maxc = max(max(r,g),b)
minc = min(min(r,g),b)
if maxc==minc then { $4 := 0 } \
else {if maxc == r then { $4 := pmod(60*((g-b)/(maxc-minc)),360) } \
else {if maxc == g then { $4 := 60*((b-r)/(maxc-minc)) + 120 } \
else { $4 := 60*((r-g)/(maxc-minc)) + 240 }}}

11

if maxc == 0 then { $5 := 0 } else { $5 := 1 - (minc/maxc) }
$6 := maxc
] }

The three assignments in the first line of the example ensure that the variables exist when the
:= assignments are performed.

This is not the full story, however. Macro arguments are called by name rather than by value;
should the fourth argument, for example, be literally x[minc], then the interior variable minc
prevails. A block is only a partial solution to the problem of hiding variables, and care must
be exercised in choosing the names of arguments. A more robust solution is to call by value
using exec; thus,

exec sprintf("rgbtohsv(%g, %g, %g, h, s, v)",expr1,expr2,expr3)

In this case however, the last three arguments remain vulnerable to name clashes and should
be named with care.

When, as in the example, no drawing commands appear in a [] block, then the block has
zero size but has position Here so the block can affect the diagram bounding box if Here
happens to be outside the intended bounding box of drawn elements. An alternative to this
complication is to omit the [] brackets and rename the local variables to avoid name clashes.
For example, r above could be r_rgbtohsv and so on for other variables.

3.3.7 Complex numbers

A complex number is an ordered pair of real numbers like a position, so it is natural to do
complex algebra using macros such as the following example, which evaluates the product of
two complex-number arguments:

define Zprod { ($1.x*$2.x - $1.y*$2.y, $1.y*$2.x + $1.x*$2.y) }

3.4 M4 macros

M4 is a simple but powerful macro language originally distributed with Unix systems [2], but
free versions are available for other operating systems. The use of this language requires an
extra processing step, but the power and flexibility of the macros easily make up for it. The
macro definitions are read before the text to be processed, typically by a system command
such as

m4 configurationfile.m4 diagram.m4 | dpic -g > diagram.tex

An m4 macro is defined as follows:
define(‘name’,‘contents’)

so that distinct occurrences of name will be replaced by contents in the following text. This
basic description is a vast simplification of the power that results from conditional substitution,
recursion, file inclusion, integer arithmetic, shell commands, and multiple input and output
streams. The online manual [5] is a good source of details.

12

A general rule might be that floating point computation is in the domain of dpic macros but
text substitution is often better done in m4 macros.

When m4 reads text, it strips off pairs of single quotes: thus, ‘text’ becomes text. If text
is read again, as when it is a macro argument, for example, then the process is repeated.
The single quotes serve to delay the evaluation of macros within text, as in macro definitions
described above. Therefore, to avoid m4 changing dpic macro definitions or LATEX, enclose
them in single-quote pairs.

Some simple applications of m4 macros are illustrated in the subsections that follow.

3.4.1 M4 branching

As an illustration of m4 macros, suppose that commands that are specific to the postprocessor
must be generated. Then the macro

ifpgf(‘pgf-specific commands’,‘other commands’)
for example, should expand to its first argument if pgf is to be the postprocessor, otherwise it
should expand to the second argument. To implement this, ifpgf is defined in the statement

define(‘ifpgf’,‘ifelse(m4postprocessor,pgf,‘$1’,‘$2’)’)
which tests for equality of the character sequences m4postprocessor and pgf. However, if
m4postprocessor is a macro, it is replaced by the macro text before the test is performed, and
if the macro text is pgf, then the first argument of ifpgf is evaluated. In the Circuit_macros
package, m4 is required to read a postprocessor-specific file before anything else, and that file
contains the required definition of m4postprocessor.

The built-in macro ifelse can have multiple branches, as illustrated below:
ifelse(m4postprocessor,pstricks,‘PSTricks code’,
m4postprocessor,pgf,‘TikZ PGF code’,
m4postprocessor,mfpic,‘Mfpic code’,
m4postprocessor,mpost,‘MetaPost code’,
m4postprocessor,xfig,‘Xfig code’,
m4postprocessor,postscript,‘Postscript code’,
m4postprocessor,pdf,‘PDF code’,
m4postprocessor,svg,‘SVG code’,
‘default code’)

3.4.2 Extending pic: perpendiculars

The Circuit_macros vperp macro illustrates how m4 macros can extend the pic language.
The purpose is to generate a pair of values representing the unit vector perpendicular to a
given line, say.

define(‘vperp’,
‘define(‘m4pdx’,‘(‘$1’.end.x-‘$1’.start.x)’)dnl
define(‘m4pdy’,‘(‘$1’.end.y-‘$1’.start.y)’)dnl
-m4pdy/vlength(m4pdx,m4pdy),m4pdx/vlength(m4pdx,m4pdy)’)

13

The macro can be invoked as vperp(A) where A is the name of a line. Another invocation
might be vperp(last line). First, two macros (beginning with m4 to avoid name clashes) are
defined as the x-distance dx and y-distance dy of the end of the line from the start. The macro
evaluates to the pair −dy/

√
(dx)2 + (dy)2, dx/

√
(dx)2 + (dy)2, where the denominators are

calculated by the macro vlength.

3.4.3 Setting directions

The pic language defines the concept of the current drawing direction, which is limited to up,
down, left, and right. Two-terminal circuit elements, for example, might have to be drawn
in any direction, which calls for the ability to define diagrams without knowing their final
orientation and to rotate the result at will. This capability can be added to the basic pic
language by judicious use of macros.

First, instead of specifying positions in the usual way, such as in
line from (x1,y1) to (x2,y2)

for example, let us agree to write
line from vec_(x1,y1) to vec_(x2,y2)

where vec_(x1,y1) evaluates to
(a*x1 + b*y1, c*x1 + d*y1)

Then if a and d are cos(theta), b is -sin(theta), and c is sin(theta), this transformation
corresponds to rotating the argument vector by an angle theta. To produce relative coordi-
nates, the macro rvec_(x,y) evaluates to

Here + vec_(x,y),
so writing

line to rvec_(x1,y1)
draws a line from the current position Here to a point (x1,y1) defined with respect to rotated
coordinates relative to Here.

The Circuit_macros package makes extensive use of versions of the above two macros. The
angle and transformation constants are set using macros

Point_(degrees), point_(radians), or setdir_([U|D|L|R|degrees],default)
which have angles as arguments.

This usage is illustrated by the macro lbox, which draws a pic-like box oriented in the current
direction. It can be defined as

define(‘lbox’,
‘define(‘m4bwd’,ifelse(‘$1’,,boxwid,‘($1)’))dnl
define(‘m4bht’,ifelse(‘$2’,,boxht,‘($2)’))dnl
line from rvec_(m4bwd,0) to rvec_(m4bwd,m4bht/2) \

then to rvec_(0,m4bht/2) \
then to rvec_(0,-m4bht/2) \
then to rvec_(m4bwd,-m4bht/2) \
then to rvec_(m4bwd,0) ‘$3’ ’)

14

The macro is invoked as lbox(width, height, type); for example,
Point_(20); lbox(,,fill 0.9)

draws a light gray-filled box of default size at an angle of 20 degrees from the horizontal. In
the macro, the width and height of the box are first defined, using default values if the first
and second arguments are not given. Then a line is drawn to outline the box, and the fill
0.9 argument is appended to the line command to fill the box. A slightly more elaborate
version that encloses the box in [,] brackets is given by the Circuit_macros rotbox macro.

3.5 Subscripts

Dpic names and labels may have a single subscript of the form [expression] or a double
subscript of the form [expression,expression]. The expression values are rounded to the
nearest integer. Thus, x, x[4], and x[4,2] are distinct variable names that can be employed
in expressions as usual. Similarly, P and P[3] are distinct labels. Writing the subscript as
[position] for any defined position is allowed and is the same as [position.x, position.y].

Subscripted variables can simplify the storage and manipulation of sequential data, and sub-
scripted labels aid in drawing sequences of objects.

3.5.1 Assigning an array of numbers

We can assign an array of numbers to subscripted variables using statements such as
x[1] = 47
x[2] = 63
...

and so on but generating the subscripts is inconvenient, particularly when these statements
are obtained by editing a data file. One way of entering the data is to employ the m4 macro
definition

define(‘inx’,‘define(‘m4x’,ifdef(‘m4x’,‘incr(m4x)’,1))m4x’)
Then, writing

x[inx] = 47
x[inx] = 63
...

and processing with m4 automatically generates the required subscripts. The macro sets m4x
to 1 if it is not yet defined, otherwise it increments m4x, and then it evaluates to m4x. On
completion of the assignments, m4x has the value of the last subscript.

Another way of assigning variables to a subscripted variable is by the definition
define array {

for i=2 to $+ do { exec sprintf("$1[%g] = $%g",i-1,i); } }
which equates the subscripted first argument to the values in argument 2, 3, . . . so that, for
example,

array(x,9,-4,7,4.2,0,0,7.9,0,0,10,11,12,13,14,10)
assigns the second to sixteenth arguments to x[1] to x[15] respectively.

15

Dpic does not define vector operations, but it is easy to write macros for them. For example,
macros can be used to define 3-dimensional vectors, transform them, and to project them onto
a drawing plane.

3.6 Splines

Dpic implements standard pic splines by default, as on the left in the following figure, which
shows the result of the command

spline up 1.5 then right 2 then down 1.5

x = .2

.6

1.0

1.4

A straight line is drawn along the first half of the first segment and the last half of the last
segment. The curve is tangent to the centres of the segments. The dpic result of including an
expression after spline, as in

spline x up 1.5 then right 2 then down 1.5
is shown on the right of the figure, as the tension parameter x varies from 0.2 to 1.4. The
curve begins at the start of the first segment and terminates at the end of the last segment.
The tension parameter can be varied to assist in fitting a multisegment spline to a curve. It
turns out, for example, that the optimum tension for approximating a circle using four splines
is the value 0.551784.

3.6.1 Curve fitting

Splines are drawn with respect to control points, but only pass through the first and last
point. Suppose that a sequence of points X[0], X[1], . . . X[n] has been given, and a spline is
to be found to pass through each point. The control points P[0], P[1], . . . P[n] have to be
calculated. These points satisfy the following equations:

P[0] = X[0]
P[i-1]/8 + P[i]*3/4 + P[i+1]/8 = X[i] for i = 1 to n-1
P[n] = X[n]

The Circuit_macros fitcurve macro performs the required calculations and draws the spline
to pass through the given points.

16

3.7 Text

Pic interpreters are not wordprocessors, but generate output compatible with LATEX in the case
of dpic and groff or LATEX in the case of gpic. Dpic also generates output formats in which
font choice and formatting, if any, must be done according to the context, as for example,
postscript output containing psfrag strings, or SVG output formatted by macros or by hand.
The result is that the size and position of text may need to be adjusted by hand for the
particular workflow and postprocessor to be employed.

The dpic textht environment variable (see Section 7) often gives dpic a good estimate of
the actual height of embedded text, but the width of the text is more difficult to estimate.
Consequently, text is sometimes truncated by the figure bounding box at the left or right
edge of the figure. Setting the width of strategic strings by hand, e.g., "text" wid 0.65 can
serve as a quick cure in specific cases, but is better done automatically as described in the
Circuit_macros documentation [1]. Briefly summarized, LATEX can write the exact height,
width, and depth of formatted text (or anything that creates a box) to a file. The file is read
by dpic during a second processing of the diagram, so that the width x and height y are known
numerical values in the phrase

"text" wid x ht y
Text in PDF and SVG output is mentioned further in Section 4.1.

Justified text deserves special mention. The second line in
A: circle rad 0.01 at (0,0)
S: "Hello" at A
box wid S.wid ht S.ht at S

produces a greeting centered at A as expected. The bounding box of the text is also centered
at A but has default height and width textht and textwid (that is, zero in most cases)
respectively. The revised version

S: "Hello" wid 24.7/72 ht 7.6/72 at A
(where the formatted size in points has been obtained automatically or by measurement)
produces a correct bounding box. There are minor differences in the way gpic and dpic handle
justification, as discussed in Section 5.19.

3.8 Postprocessor commands and color

Arbitrary postprocessor commands can be interspersed with pic statements to achieve effects
such as gradient fills, clipping, and transformations. There are two ways of passing commands
into dpic output.

Dpic lines beginning with the backslash \ are passed through to the output without modifi-
cation. This method works well for LATEX statements and commands to postprocessors that
rely on TeX macro processing.

The second method is the form
command "text"

or
command sprintf("format",expression,. . .)

both of which pass the contents of the string into the output stream without the enclosing
quotes. The string need not start with a backslash.

17

Both of the above methods add considerable power to the pic language, but there are two
issues. The first is that if a postprocessor transformation changes the size of a drawn element,
the pic processor will not know the new size parameters unless they are explicitly calculated.
The second is the challenge of designing a single macro that produces appropriate postproces-
sor code to have identical effect with different postprocessors.

The Circuit_macros library contains several routines that produce equivalent or nearly equiv-
alent results for several postprocessors. It is probably a good rule to stick with one or two
postprocessors such as Tikz-pgf or PSTricks.

Dpic defines a number of internal variables for controlling actions that depend on output
format. Internal variables optTeX, opttTeX, optpict2e, optPSTricks, optPDF, optPGF,
optMFpic, optPS, optPSfrag, optMpost, optSVG, and optxfig have numerical values 1 to
12 respectively, and variable dpicopt is given the value corresponding to the output format
specified on the command line. Therefore, conditional drawing with a case statement as
described on page 9, or with if as in the following can be performed:

if (dpicopt==optPS) || (dpicopt==optPDF) then {
drawing commands for postscript or pdf }\

else { drawing commands for latex-related formats }

The variable optsafe is set to true if option -z has been specified or if dpic has been compiled
to allow only safe mode.

3.8.1 Color

From version 18, gpic allows coloured lines and filled objects as follows, and dpic allows them
where the postprocessor supports them:

object outlined string
object shaded string
object colored string

where string specifies a colour compatible with the postprocessor. For planar objects, the
third case is equivalent to

object outlined string shaded string
For the linear objects line, arrow, spline, dpic treats

colored string
to be the same as

outlined string
but fill can be added by explicitly writing

outlined string shaded string
Arrowheads on linear objects are colored by dpic the same as the line using the outlined
attribute.

The original pic language did not include the outlined or shaded attributes. Current pro-
cessors recognize these but know nothing about color except as strings attached to drawing
elements. What the string should contain depends on the postprocessor.

18

3.8.2 Filling with color

Basic pic shapes such as boxes, circles, and ellipses can be colored and filled using, for example,
ellipse shaded "color" outlined "color"

and, if the two colors are the same, this can be abbreviated as
ellipse colored "color"

where the color strings are compatible with the postprocessor. The m4 macro
rgbstring(red fraction,green fraction,blue fraction)

evaluates to a string compatible with the postprocessor (for postprocessors that allow it; that
is, Tikz PGF, PSTricks, SVG, MetaPost, PDF, and raw Postscript) so that the following
produces a circle filled in gold, for example:

circle shaded rgbstring(1,0.84,0).

More elaborate options can also be invoked. For example, with Tikz PGF output, the com-
mand

box shaded "orange, opacity=0.5"
sets the opacity of the fill, and with PSTricks output, the sequence

box shaded "lightgray,fillstyle=hlines*,linecolor=blue,
hatchwidth=0.5pt,hatchsep=5pt,hatchcolor=red,hatchangle=45"

produces a hatched multicoloured fill and is equivalent to
command "\pscustom[fillcolor=lightgray,fillstyle=hlines*,linecolor=blue,"
command "hatchwidth=0.5pt,hatchsep=5pt,hatchcolor=red,hatchangle=45]{%"

box
command "}%"

One limitation of the pic language is that it lacks the concept of a path composed of different
basic curves such as lines, splines, and arcs. Dpic, however, extends the shaded and outlined
directives to linear objects such as lines or splines where the output postprocessor allows.
Consider, for example, the following macro:

define slantbox { [# wid, ht, xslant, yslant, attributes
w = $1 ; h = $2 ; xs = $3 ; ys = $4
NE: (w+xs,h+ys)/2 ; SE: (w-xs,-h+ys)/2
SW: (-w-xs,-h-ys)/2 ; NW: (-w+xs,h-ys)/2
N: 0.5 between NW and NE ; E: 0.5 between NE and SE
S: 0.5 between SE and SW ; W: 0.5 between SW and NW
C: 0.5 between SW and NE
line $5 from N to NE then to SE then to SW then to NW then to N
] }

This macro implements a version of the xslanted and yslanted attributes recently introduced
for gpic boxes, for example

box wid 0.1 ht 0.5 xslanted 0 yslanted 0.1 \
shaded "Dandelion" outlined "black"

The slantbox macro defines the implied compass corners N, S, NE, Its fifth argument can
be used to fill or otherwise specify the line. For example, the command

slantbox(0.1,0.5,0,0.1,shaded "Dandelion" outlined "black")
is equivalent to the gpic example. The above macro can be modified easily to produce arbitrary

19

polygons, for example. The color Dandelion is automatically defined for PSTricks by the
LATEX line

\usepackage[dvipsnames]{pstricks}
For TikZ-PGF, try

\usepackage[usenames,dvipsnames]{xcolor}
\usepackage{tikz}

3.8.3 External files

Dpic can send print output to a file (operating system permitting) using the command
print arg > "filename"

which creates the named file, or
print arg >> "filename"

which appends output to the named file if it exists and creates the file if not. If the -z option
has been invoked or dpic was compiled in safe mode, both of these give warning messages
rather than writing to the file.

External files can be used to implement forward referencing. For example, sometimes the final
size of a diagram component is required in order to draw a background object that will be
overlaid by the component. One solution is to process the diagram twice. In the following
code fragment, an assignment to x is written to an external file so that the required value of
x will be known after the file is read on the second pass.

x = default value
print "" » "datafile" # Make sure the file exists
copy "datafile" # On second pass, read x = required value
... draw objects and calculate required value y ...
print sprintf("x = %g",y) > "datafile" # Write out the assignment

4 SVG, PDF, and Postscript output

The -r (raw Postscript), -v (SVG), -d (PDF), and -x (xfig) options of dpic produce output
that is not intended to be processed directly by LATEX or, in some cases, printed on paper.

As a “little language,” Pic and its interpreters leave text sizing and formatting to word pro-
cessors, which are flavours of LATEX in the case of dpic, and groff or LATEX in the case of gpic.
Text formatting is specified by the text content itself or by the string contents of command
lines. The exception to this is that text is also a graphical element; its size and location
is sometimes required, and the interpreter must also be able to stack multiple text strings
vertically.

In most cases, placing text using
"Text" wid x ht y at location

is sufficient. LATEX can write the height and width of the formatted text (which can be
anything that produces a TeX box) to an external file, which is passed to the pic processor
for use on a second pass over a diagram, as described in detail in reference [1], so the values

20

of x and y can be obtained automatically and macros can generate the above line without
intervention by hand.

Other output formats, however, require different treatment. This is specially true of SVG
output for the web.

4.1 SVG text

In contrast with the various dpic LATEX output formats for which text size is established by
postprocessor commands, the size of SVG text has to be set by the pic interpreter, (at least
until an automatic way of returning formatted sizes from renderer back to pic interpreter is
established).

0 50 1000

50

100

X
One issue is that the formatted height of text is generally a
fraction of the nominal size. For example, the Times letter X
at 100 bp placed on a 100 bp by 100 bp grid is shown at the
right. The height of the X is approximately 66 bp or 0.66 of the
nominal height. This ratio depends on the font. Consequently,
a language issue arises: if the attribute ht y is to be used to
set text size, should the value of y be the nominal height (the
point size) or the formatted height of the text? Dpic treats y as
the true graphical height in drawing units. Thus for example,
"text" ht 10*(scale/72) produces output 10bp high.

To assist with the above and similar issues when the -v option is invoked, dpic performs the
equivalent of

dpPPI = 96
dptextratio = 0.66

in the outermost scope of the diagram. These are ordinary variables that can be referenced or
changed as usual. The variable dpPPI is given the inital value 96 which is pixels per inch on a
20-inch wide computer monitor of 1920 pixels width. On such a monitor, dpic output should
be close to true size. This parameter can be changed using the assignment

dpPPI := value
for different screen resolution, and dptextratio can be similarly changed. (For xfig output,
the following are defined under the -x option: xdispres = 80; xfigres = 1200.)

When dpic sees the ht y attribute attached to SVG text, it sets the nominal text size to
y/dptextratio expressed in points. Otherwise, dpic uses the current value of the environment
variable textht, which has default value 11/72 × 0.66, to set the default size to 11 bp.

The Circuit_macros configuration file svg.m4 contains a macro svg_font that can simplify
font specification, and a macro svgfontratio that can be used to set dptextratio and textht
automatically for common HTML fonts.

SVG text is compatible with the colored attribute; thus
"P" colored "red"

produces a red “P”.

Dpic sets the width of text to the current value of textwid by default but, as always, it is
best not to rely on default behaviour. Specify the object (text in this case) completely using

21

wid expression ht expression. In the absence of an automatic means of determining it, text
width can be measured approximately when displayed full-size on a monitor. Fortunately on
many diagrams, knowing the width is unnecessary or is required for only a few key strings. In
principle, this process might be automated using suitable macros and scripting (JavaScript,
probably).

A second issue is that because SVG text has to be treated specially, the resulting drawing-
coordinate defined points of the text and the exit position Here are not identical to those for
text intended for LaTeX.

4.2 Bounding boxes

The bounding box of a diagram is not always known exactly or even defined exactly, since it
can depend on the context in which the diagram is to be used. Within a diagram, different line
widths, mitred joints, splines, colored output, overpainting, arbitrary text, arbitrary Postscript
or SVG, and other complications are allowed; consequently dpic can only provide an estimate
of the exact bounding box.

Strategic move commands can be used to enlarge the bounding box as illustrated at the end
of the discussion below.

Dpic uses the constant-width Courier font in pdf files, thus allowing the width of strings to
be calculated from their height, which is specified by textht with default 11 pt, or by the
“height expression” attribute. The string width is calculated from the height and character
count, but can be set explicitly by using width expression as the rightmost string attribute.

Psfrag output is another special case. If textht is set to a nonzero value, then its value
relative to 11 bp is given as a scale factor to the psfrag \tex command. An alternative way
of changing the diagram text height is to set it in the main document; for example, {\small
\includegraphics{file.eps}}.

Postscript bounding boxes: For a while, the dpic %%BoundingBox output line simply gave
the nominal bounding box determined by line ends and other control points. The use of dpic
in server mode has induced a change that correctly defines the bounding box for very basic
diagrams. More explicitly, consider

.PS
box with .sw at 0,0
.PE

which draws a box with southwest corner line centres intersecting at Postscript coordinates
0,0 and northeast intersection at 54,36. Dpic -r augments this nominal bounding box by half
of the last linethick value (default linethick is 0.8 bp) in the outermost diagram scope to
produce the Postscript bounding-box definitions

%%BoundingBox: -1 -1 55 37
%%HiResBoundingBox: -0.4 -0.4 54.4 36.4

22

The %%BoundingBox line contains integer values that enclose the high-resolution coordinates.

PDF bounding boxes: PDF includes a MediaBox element which serves approximately the same
purpose as the postscript BoundingBox, and is calculated the same way. By default, dpic puts
the lower left corner of PDF output at coordinates (0, 0).

Manual bounding box adjustment: It may be necessary to adjust the bounding box manually.
To zero the automatic adjustment, put linethick=0 at the end of the outermost scope. Then
arbitrary margins can be added to the nominal box as shown below, where 2, 1, 1, and 0
points are added to the left, bottom, right, and top margins respectively:

.PS
Diagram: [

drawing commands
]
linethick = 0
move from Diagram.sw-(2,1)/72*scale to Diagram.ne+(1,0)/72*scale
.PE

5 Pic processor differences

Differences among processors, and between dpic and gpic particularly, are summarized below.
These differences result from incomplete language definition and from different implementation
contexts. Normally, the only changes required to process correct pic or gpic input with dpic
are changes to {. . .} instead of X. . .X syntax as explained below, together with text formatting
if the original code was written for groff. Sometimes, differences in default behavior (such as
for arcs or object placement) must be considered. The remaining items are reasonably small
syntactical differences or relate to the use of LATEX or the other dpic output formats.

5.1 Command-line options

They are completely different, of course. Type dpic -h to see a list of dpic options.

5.2 Output formats

Gpic -t output consists of a sequence of \special statements contained in the TeX box
\box\graph. The \special statements are automatically copied into the .dvi file for inter-
pretation by a printer driver such as dvips.

Dpic does not generate tpic specials. See the option list in Section 2 for output formats.

23

5.3 “.” and “\” lines

Gpic passes lines beginning with . through to the output, thereby allowing arbitrary Troff
macros to be interspersed with pic drawing commands. Some programs that generate pic
output automatically insert the Troff line

.ps 11
on the assumption that the text point size should be 11. Dpic ignores non-continuation
lines beginning with . within pictures. Some programs (e.g., pstoedit) add Troff comment
lines beginning with .\" outside the .PS, .PE delimiters. These lines must be dealt with
separately. Both gpic and dpic pass lines beginning with \ to the output.

5.4 for-loop and if bodies

In gpic, a for loop has the form
for variable = expr1 to expr2 [by [*]expr3] do X body X

where X is any character not occurring in body, but { body } is also allowed. In dpic only the
latter is allowed. Similarly, the required form of an if statement for dpic is

if expr then { if-true } [else { if-false }]

The test for termination of the multiplicative form of the for loop is not identical for dpic and
gpic but the effects are identical for positive parameters.

Both gpic and dpic allow the loop index variable to be changed within the loop, so infinite
repetition or control of termination by a test are possible.

5.5 Closing braces and nul elements

In some cases where the contents of {. . . } are scanned, a semicolon or newline must be
inserted prior to the closing brace to ensure that the contents of the braces are completely
executed before exit. Such a case occurred in the definition of the case macro on page 9.
Similarly, a semicolon or newline is required in the following if test with an else clause:

if (sh "test -f fileA.pic")==0 then { copy "fileA.pic"; }\
else { copy "fileB.pic" }

The semicolon ensures that the copy command completes before exiting the first pair of braces.

In the following lines, gpic ignores the {} braces enclosing the trivial for-loop in the first line
and the if-test in the second line. Consequently, the "x" labels are misplaced. Dpic places
the labels correctly. The cure for gpic is to put a semicolon or newline between the rightmost
braces.

{for i=1 to 1 do {line right}}; "x"
move; i=1; {if i==1 {line right}}; "x"

Gpic gives error messages if there is nothing or nothing more than newlines or semicolons
between “{ }” braces or “[]” brackets. These constructs do not occur often in hand-
generated code (although [] is sometimes convenient) but m4 or other macros containing
conditional expansion can generate them unless care is taken to avoid them. Dpic allows both
items, with [] generating a block of zero size.

24

5.6 End of line

The line end is significant in the pic grammar. However, dpic ignores line ends following then,
{, :, else, or end of line. Both the CR (octal 015) and NL (octal 012) characters are treated
as line ends.

If the last character of a line is \ (but not within a string), then reading is continued on the
next line. Dpic allows this to occur within keywords or constants. Strings can contain multiple
lines.

The # character begins a comment which ends at the end of the line.

The construction
if condition then { if-true }
else { if-false }

produces an error with all pic interpreters. To avoid this error, write
if condition then { if-true } \
else { if-false }

5.7 Logic

Dpic and gpic give slightly different default precedencies to the logical operators !, &&, ||,
==, !=, >=, <=, <, and >, so judicious use of parentheses may sometimes be in order. Dpic also
requires comparisons and logical operations to be put in parentheses in numerical expressions;
e.g.,

x = ("text1" == "text2")

The construct x<A,B> is intended to have the same meaning as (x between A and B) but,
in some obscure circumstances, all pic interpreters have difficulty determining whether the <
character is part of such an expression or is a logical comparison operator. Dpic treats < as a
comparison in the expression following if so the form (x between A and B) should be used
in such expressions, e.g.

if (0.5 between A and B).y < 2 then { . . . }

5.8 Defaults for line, spline, arrow, move

Dpic treats the defaults for linear objects consistently with planar objects with respect to the
at modifier. Gpic treats them differently:

In dpic, line at Here means line with .center at Here.
In gpic, line at Here means line with .start at Here.

In dpic, the location corresponding to last line is last line.c.
In gpic, the location corresponding to last line is last line.start.

25

With dpic, last line.wid returns the arrowhead width of the line or the default arrowhead
width if the line has not been given an arrowhead; similarly for .ht and for the other linear
objects including move and, of course, arrow.

The compass corners of multisegmented linear objects are not defined in descriptions of the
pic grammar; reasonable positions are returned but they should be used with care.

5.9 Arc defaults

Gpic and dpic employ different algorithms for picking a default radius and centre. The best
practice is to specify arcs completely. There is also ambiguity in the pic language. The
statement

arc cw rad x from A to B
does not define a unique arc. There are two arcs that satisfy this specification, with centres
on opposite sides of the line joining A and B. Dpic will choose one by attempting to minimize
the angle between the current direction and the initial tangent of the arc. Instead, use

arc cw from A to B with .c at C
or, for example,

right; arc cw rad x from A to B

5.10 Strings

Strings are arbitrary character sequences between double quotes. Equivalently, a string is
produced by the C-like sprintf function

sprintf("format" [, expression, . . .])
The C snprintf function is used for implementing this; therefore, the precision of default
formats such as %g may vary by machine and compiler. To produce transportable results,
specify the precision completely, e.g., %8.5f. As in C, the pair %% in the format string prints
the percent character. Only the f, e, g formatting parameters are valid, since expressions are
stored as floating-point numbers, e.g.

line sprintf("%g%g0", 2, 0) above
is equivalent to

line "200" above

Similarly,
command sprintf("\pscircle(%g,%g){%g}",0,0,0.5)

places a line containing the formatted string without the quotes into the output. The numerical
sprintf arguments can be arbitrary expressions in place of the constants shown.

Dpic allows strings to be concatenated by the + operator; thus,
"abc" + sprintf(" def%g",2)

is equivalent to "abc def2".

In a macro, a dollar sign followed by an integer in a string will expand to the corresponding
macro argument if it is defined. Separate the dollar sign from the integer to avoid expansion,
as in the TeX strings "{\$}1", "$\$ 1$", or "${0}$", for example.

Both dpic and gpic treat \ as an escape character prior to the double-quote character in a

26

string, so "\"" is a length-one string containing the double quote. Otherwise, the backslash
is an ordinary string character. For example, the characters \\"u in a string are output
as \"u to produce ü when processed by LATEX. A string with a backslash as last character
has to be generated using a macro; for example, if we write define charstr {"$1"} then
charstr(abc\) evaluates to a string containing the required final backslash.

Gpic implements the attribute aligned of an object to rotate attached strings by sending
commands to postprocessor grops or gropdf, which translate troff output to postscript or
pdf respectively. The bounding box of the rotated string is unknown. Dpic does not define this
attribute but allows the user to rotate text directly when permitted by the postprocessor. For
example, the Circuit_macros macro rs_box rotates text for PSTricks or TikZ-PGF output
and calculates the bounding box. For SVG output, svg_rot() has a similar function. The
following simple pic macro accomplishes the same goal for PSTricks and Tikz PGF but the
resulting text bounding box is not calculated.

dprtext(degrees,text)
define dprtext {[

if dpicopt==optPSTricks then {
sprintf("\rput[c]{%g}(0,0)",$1)+"{$2}"} else {

if dpicopt==optPGF then {
sprintf("\pgftext[rotate=%g]",$1)+"{$2}" }}

]}

Then, for example, dprtext(45,Hello) at position places the text “Hello” rotated 45◦ at
the specified position.

A string cannot be assigned to a variable name; the nearest equivalent is to define a macro
containing the string as the body.

Both dpic and gpic allow logical comparison of strings. Put the comparison in parentheses if
it is to be used in an expression.

String height and width are unscaled on final output from dpic since these may depend on
later formatting by LATEX.

Gpic does not allow newlines in strings; dpic does, with an upper limit of 4095 characters.

5.11 print arg, . . .

Dpic allows only one argument, which may be an expression, position, or string. To print
several quantities at once, use

print sprintf(. . .)
to generate a string and, if the string is complicated, remember that string1 + string2 + . . .
evaluates to one string.

27

5.12 command arg, . . .

Arbitrary commands are sent to the standard output stream. Dpic allows only one argument,
which is a string or sprintf(. . .).

5.13 Operating system commands

With dpic, the required form for a shell (operating system) command is
sh "shell command"

or
sh sprintf("format",expression,. . .).

The value returned by the operating system can be captured by putting the command in
parentheses; for example,

if (sh "shell command") == 0 then {...}

5.14 copy

Dpic supports the command
copy "filename"

but does not directly support the gpic commands
copy [filename] thru X body X [until word]
copy [filename] thru macro [until word]

These functions and many more are readily implementable with dpic in any Unix-like envi-
ronment. For example, a basic implementation of copy filename thru macro is given by the
following macro:

copythru(macro_name,"filename")
Implements copy filename thru macro_name
for data separated by commas, spaces, or tabs
define copythru { sh "sed -e ’s/^[\t]*/$1(/’ -e ’s/[\t]*$/)/’ \

-e ’s/[, \t][\t]*/,/g’ $2 > copy_tmp__"
copy "copy_tmp__"
sh "rm -f copy_tmp__" }

The lines of the filename file are changed to calls of the macro_name macro and written into a
temporary file, which is then read by dpic. Such usage is not as simple as a built-in function
but allows greater flexibility of data because the copythru macro can be replaced by one
customized to suit. For example, the sh command might invoke another program to generate
the data.

5.15 plot

The plot command is deprecated in gpic and not allowed in dpic.

28

5.16 fill

In gpic, a fill value of 0 means white, 1 means black. Dpic uses 0 as black and 1 as white as
do Postscript and the original ATT pic.

The pic language specifies fill only for box, ellipse, and circle. With dpic, the shaded directive
fills a path defined by a linear object, where allowed by the postprocessor. The concept
of a path containing several arbitrary linear objects does not exist in the pic language but
can be implemented using postprocessor commands inserted into command string statements.
Arbitrary paths can also be constructed using a single spline and the continue statement.

5.17 Scaling

Dpic implements a scaled attribute, so that
box scaled 1.2

produces a box with dimensions scaled by 1.2, and
[box; line scaled 3; circle] scaled 0.5

scales all objects within the block by 0.5. The latter can be used when different parts of a
diagram require different scaling. For example, if file component.pic contains a component
scaled by 25.4, then the following allow it to be used:

[copy "component.pic"] scaled 1/25.4
As always, line thicknesses are not scaled.

If the overall picture width exceeds environmental variable maxpswid or the height exceeds
maxpsht then both dpic and gpic scale the width or height to the value of the respective envi-
ronmental variable, while preserving the picture aspect ratio. Dpic issues a warning message
if this scaling occurs. However, if one or two terms are appended to the initial diagram line as

.PS x or .PS x y
then the diagram width is scaled to x if nonzero, or the height is scaled to y if present.

5.18 Arrowheads

Pic processors provide a limited variety of built-in arrowhead shapes. Dpic draws arrowheads
according to the environment variable arrowhead as shown below.

arrowhead = 0
arrowhead = 3

default

Any other value of arrowhead produces the default filled head shown but also results in a
head shape native to the postprocessor in some cases. The default value of arrowhead is 1 in
conformance with other pic processors. Postprocessor parameters can be changed using lines
of the form

command "postprocessor commands"

Changing the line thickness does not affect arrowhead size parameters, which have to be
changed explicitly by either of the following methods. The line thickness is specified in points

29

but the arrowhead size parameters are in drawing units:

Method 1 (global change within the current block):
linethick = 2 # default 0.8 (bp)
arrowht = 0.18 # default 0.1 (in)
arrowwid = 0.09 # default 0.05 (in)
arrowhead = 0 # default 1
arrow

Method 2 (put a type 0 arrowhead on the current object):
arrow -> 0 thick 2 ht 0.18 wid 0.09

There is a subtle language problem concerning arrowheads. Let us agree that the following
examples should all produce an arrow of length 1 inch and arrowhead width 1 millimetre:

.PS
arrow right 1 width 1/25.4

.PE

.PS
scale = 25.4
arrow right 25.4 width 1

.PE

.PS 1
arrow right 1/4 width 1/25.4

.PE

The original (ATT) pic fails on the second example, insisting that arrowhead dimensions be
given in inches. Gpic fails on the third by scaling the arrowhead on final output. Although it
might be argued that this is a feature, it causes serious awkwardness when diagrams are to be
scaled to exact final dimensions using the .PS x construction, since the effective scale factor
is unknown until the .PE line is processed. Dpic generates the same arrow in all three cases,
treating arrowhead parameters like line thickness (unscaled) parameters on final output.

5.19 Compass corners and justified text

Dpic consistently requires a dot before compass corners, so the gpic line
x at center of last box

should be written for dpic as
x at .center of last box

Justification is performed by the postprocessor, and combining justified text with drawing
elements requires special consideration. The lines

S: "Hello" wid 24.7/72 ht 7.6/72 at A ljust
box wid S.wid ht S.ht at S

produce a box of the correct size but centered at A because the location (A) and a justification
command are given to the postprocessor. This behavior could be easily changed but would

30

affect much legacy code and has been kept for dpic, which will produce a justified box using
box wid S.wid ht S.ht with .w at S.w

Gpic and dpic place justified text slightly differently. In the previous example, gpic places
the text with its left edge exactly at A, with similar effect for right justification. Dpic uses
the environment variable textoffset, which is 2.5 bp by default, to place the left edge of
the text at A + (textoffset,0) with a similar gap for other relative positioning. Assigning
textoffset = 0 sets the gap added by dpic to zero.

5.20 continue

In dpic, the continue command appends a linear drawn object to the previous drawn object
as if then had been used in the original command, but calculations can be performed to
determine size or placement of the appended part as in, for example,

line up right
calculations

continue down
more calculations

continue up left

The keyword continue can also be used slightly differently. The line drawn by
move to (0,0); line right 1 then to (Here,(2,1))

terminates at (0,1) since Here is the position (0,0), whereas the following terminates at
(1,1) since Here is (1,0):

move to (0,0); line right 1; continue to (Here,(2,1))

5.21 Subscripted variables and labels

Dpic allows subscripted variables and labels, as described in Section 3.5.

5.22 Nul and multiply labeled objects

Gpic accepts the following code:
A:
B: C: Here
D: E: box

which shows a label without an object and multiple labels for positions and objects. Dpic
admits only unique labels but allows the first line followed by a position or object because line
ends are ignored after the colon.

5.23 Splines

Gpic extends the ATT pic grammar to make line 0.5 legal and mean “a line of length 0.5
in the current direction.” All linear objects are treated similarly. Dpic does the same except

31

for splines. In the statement
spline x from A to B then to C . . .

the parameter x is a tension parameter, normally between 0 and 1, to control the spline
curvature. If x is not present as in the normal pic grammar, the curve starts with a straight
line halfway along the first segment and ends with a straight line along the second half of the
last segment. When x is present however, dpic draws the spline from the start of the first
segment to the end of the last segment.

5.24 Arithmetic

In an expression, gpic allows terms of the form x*-y, whereas dpic produces an error message.
Use x*(-y) or the equivalent.

Dpic allows the assignment operators +=, -=, *=, /=, %=, which do not create a new variable but
update the value of the variable already defined. Thus, the assignment x += 1 is equivalent
to x := x + 1.

5.25 Vector arithmetic

The dpic grammar permits the following:
X: Y + Z

where Y and Z are defined positions. Gpic requires
X: Y + (Z.x,Z.y)

Dpic also allows scalar postmultiplication:
X: Y*2/3 (but not X: 2/3*Y)

5.26 exec

In dpic the contents of a string can be executed using
exec string

or
exec sprintf(format string, args)

as if the string were the next line of input. This enables the programmed generation of names
and labels, for example:

for i=1 to 10 do exec sprintf("A%g: x%g,y%g",i,2*i,3*i)

5.27 Functions

A few additional mathematical functions are defined in dpic: abs, acos, asin, expe, floor,
loge, sign, tan, and pmod.

32

6 References

[1] J. D. Aplevich. M4 macros for electric circuit diagrams in latex documents, 2015. Avail-
able with the CTAN Circuit_macros distribution: http://www.ctan.org/tex-archive/
graphics/circuit_macros/doc/Circuit_macros.pdf.

[2] B. W. Kernighan and D. M. Richie. The M4 macro processor. Technical report, Bell
Laboratories, 1977. https://wolfram.schneider.org/bsd/7thEdManVol2/m4/m4.pdf.

[3] B. W. Kernighan and D. M. Richie. PIC—A graphics language for typesetting, user
manual. Technical Report 116, AT&T Bell Laboratories, 1991. http://doc.cat-v.org/
unix/v10/10thEdMan/pic.pdf.

[4] E. S. Raymond. Making pictures with GNU PIC. In GNU groff source distribution; also
http://www.kohala.com/start/troff/gpic.raymond.ps.

[5] R. Seindal et al. GNU m4, 1994. http://www.gnu.org/software/m4/manual/m4.html.

33

http://www.ctan.org/tex-archive/graphics/circuit_macros/doc/Circuit_macros.pdf
http://www.ctan.org/tex-archive/graphics/circuit_macros/doc/Circuit_macros.pdf
https://wolfram.schneider.org/bsd/7thEdManVol2/m4/m4.pdf
http://doc.cat-v.org/unix/v10/10thEdMan/pic.pdf
http://doc.cat-v.org/unix/v10/10thEdMan/pic.pdf
http://www.kohala.com/start/troff/gpic.raymond.ps
http://www.gnu.org/software/m4/manual/m4.html

DPIC(1) DPIC(1)

7 Appendix A: dpic man page

NAME

dpic - convert pic-language input to LaTeX-compatible and other formats

SYNOPSIS

dpic [-defghmprstvx] [-z] [infile] [> outfile]

Typically, infile is of the form name [.pic] but if this file is not given then the stan-
dard input is used. Outfile is typically of the form name .[tex|eps|pdf|fig|mp|svg]
but if it is not given then the standard output is used.

OPTIONS

(none) LaTeX picture-environment output (very limited font-based drawing com-
mands)
-d PDF output, basic strings
-e pict2e output
-f Postscript output, strings in psfrag format
-g TikZ-pgf output
-h write help message and quit
-m mfpic output (see mfpic documentation)
-p PSTricks output
-r raw Postscript output, no automatic string formatting
-s MetaPost output
-t eepicemu output (slightly less limited than LaTeX picture output)
-v svg output
-x xfig 3.2 output
-z safe mode (access to external files disabled)

DESCRIPTION

Dpic accepts a tight subset of the pic drawing language accepted by GNU pic (some-
times named gpic) or AT&T pic, and emits lower-level drawing commands for inser-
tion into LaTeX documents, for processing by the xfig or Inkscape drawing tools, or
for direct display as encapsulated Postscript, PDF, or SVG. LaTeX-compatible out-
put can contain arbitrary text for formatting. Commands to be passed through to the
postprocessor (PSTricks, Tikz-pgf, etc.) can be included. Dpic returns EXIT_SUCCESS
(normally 0) if messages no more severe than warnings were generated, otherwise
EXIT_FAILURE (normally 1).

A few pic-language extensions unique to dpic are implemented for specific purposes.

34 2025.08.01

DPIC(1) DPIC(1)

LANGUAGE SUMMARY

Input consists of a sequence of ASCII text lines. The characters LF (\n) and CR (\r)
have identical effect, and ETX (\003) is reserved for internal use. Characters outside
the range of 0 to 127 are allowed in strings but receive no special treatment.

The first line of a picture is .PS and the last is .PE, with lines between these two con-
verted into low-level drawing commands for the postprocessor chosen by the option.
Lines outside of .PSPE pass through dpic unchanged.

Coordinates
Coordinate axes in the pic language point to the right and up. The drawing units are
inches by default but the statement

scale = 25.4

at the beginning of the diagram has the effect of changing the units to millimetres.

Drawn objects
The primitive drawn objects consist of the planar objects box, circle, ellipse;
the linear objects line, arrow, move, spline; and arc, which has characteristics
of both planar and linear objects. A block is a pair of square brackets enclosing other
objects: [anything] and is a planar object. The complete diagram is contained
implicitly in a block.

A string is a planar object similar to a box, but the pic language also allows strings
to be attached to other objects as overlays, in which case they are part of the object.

The current drawing position Here is always defined. Initially and at the beginning of
a block, Here is 0,0. Similarly, the current direction, which can be any of up, down,
left, right, is set as right initially.

Each drawn object has an entry point and exit point that depend on the current
direction. The entry point is placed by default at the current position. Objects can
also be placed explicitly with respect to absolute coordinates or relative to other
objects. The exit point becomes the new current position.

Labels
A label in pic is an alphameric sequence that starts with an uppercase letter. Dpic
allows variables and labels to be subscripted; thus T and T[5] are distinct labels; the
subscript value in brackets can be any expression, comma-separated expression pair,
or a defined position, but expressions are rounded to the nearest integer value. A
label gives a symbolic name to a position or drawn object; for example,

Post: Here + (1,2)
Bus[23]: line right 4

Defined points
Once drawn, a linear object has defined points .start, .center, and .end, which
can be referenced as known positions, for example,

35 2025.08.01

DPIC(1) DPIC(1)

L: line; line up 0.5 from L.c

where .center has been abbreviated as .c

The defined points for a planar object are the compass points on its periphery given by
.n, .s, .e, .w, .nw, .ne, .se, .sw, together with .center, .top, .bottom,
.right, .left. For an arc, these points correspond to the circle of which the arc is
a part, with the addition of .start and .end.

A block has defined points similar to a box, but can also have others in its interior.
For the example

A: [circle; Q: [line; circle]; T: Q.n]

the defined points are as follows:

The points of the outer block as if it were a box, for example, A.ne

A position defined in the block, for example, A.T

The defined points of labeled objects inside the block, preceded by a dot, for example,
A.Q (the centre of block Q), or A.Q.ne (the northeast point of Q).

The defined points of enumerated objects inside the block, preceded by a dot (but
make sure there is a space after the dot if it is followed by a number rather than
an expression in braces), for example, A.Q. 1st circle.n or (better) A.Q.{1}st
circle.n

Language elements
The source lines defining a picture are separated by newline characters or semicolons.
Newlines are significant except after then, ;, :, {, else, or newline.

A line is continued to the next if the rightmost character is a backslash.

Non-continuation lines beginning with a period are ignored, except for .PS and .PE
lines.

The pic source may be commented by placing each comment to the right of a #
character (unless the # is in a string).

The language elements include the following:

A drawing command with optional label, for example, box or A: box

A position-label definition, for example A: position

An assignment to a variable, for example x = 5

A direction (to change the default), for example, up

Branching is performed by

if expr then { dotrue } else { dofalse }.

36 2025.08.01

DPIC(1) DPIC(1)

The looping facility is

for variable = expr to expr [by [*] incr] do { anything }.

The loop variable is incremented by 1 by default, otherwise by incr (which may be
a negative expression) unless it is preceded by the asterisk, in which case the loop
variable is multiplied by incr. The loop variable may be changed by statements in
the loop, thereby controlling the number of loop repetitions.

Braces occur in several contexts. When used independently of other language ele-
ments, as

{ anything }

the left brace saves the current position and direction, and the right brace restores
them to the saved values after the enclosed lines have been processed.

Arbitrary postprocessor commands can be generated using

command string,

which inserts the contents of string into the output. The string contents must be
compatible with the chosen postprocessor. Similarly, any line that begins with a
backslash is copied literally to the output.

The line

exec string

executes the contents of string as if it were a normal input line.

To execute operating-system shell commands, use

sh string

and to read lines from an external file, use

copy string

These commands are disabled by the dpic option -z or by a compile-time switch.

The command

print expr|position|string [> string | >> string]

prints or appends its argument to the file named in the string on the right, or by
default to the standard error. Printing to a file is disabled by the -z option.

Macros
The pic language includes macro definition and expansion, using either

define name { anything },

or

37 2025.08.01

DPIC(1) DPIC(1)

define name X anything X,

where X is any character except {. When name appears alone or with arguments
in parentheses as name(arg, ...) then it is replaced by the contents between the
delimiters in the macro definition. Arguments are separated by commas except that
a comma in an argument is ignored within a string, parentheses, or brackets. In this
substitution, occurrences of $1 are replaced literally by the first argument (not by its
value, if any), and so on for other arguments. dpic ignores white space (spaces, new
lines, and tab characters) that directly precede an argument in a macro invocation.

The value $+ in a macro is the number of arguments given to the macro.

A macro definition can be deleted by

undefine name

Macro definitions are global, which may require judicious undefinition of macros if
there is a risk of name clashes.

Drawing commands
An object is drawn using the following general format:

[Label :] object [attributes] [placement] [strings]

The items following object can occur in any order but the order can make a difference
to the drawn result since lines are read and interpreted from left to right. Defaults
are assumed for all drawing parameters as necessary. For example, the sequence

circle "Chew"; arrow; box "Swallow"
line; arc cw ->; ellipse "Digest"

draws a simple flow diagram using default sizes for all objects, with centered words
in the circle, box, and ellipse.

Attributes
An attribute is a keyword or keywords followed by expressions as appropriate. Attributes
are used to set parameters that control the placement, size, and appearance of objects.

The dimension attributes are the following, showing valid abbreviations:

height|ht|width|wid|radius|rad|diameter|diam|scaled expr

When appended to linear objects, height and width apply to arrowhead dimensions.
The scaled attribute scales the object by expr.

The postprocessed size of a string is unknown in advance to the pic processor, but
once known, the bounding box dimensions can be specified explicitly as for other
drawn objects, as shown:

string wid expr ht expr

The thickness of lines defining an object are modified using the environment variable
linethick or the attribute

38 2025.08.01

DPIC(1) DPIC(1)

thickness|thick expr

expressed in points. Line thickness is independent of any scaling.

Solid lines are drawn by default; this can be modified with

solid|invisible|invis

or with

dotted|dashed [expr]

the optional expression in the latter setting the length and distance between dashes
or dots.

The following attributes are for putting arrowheads at the start, end, or both ends of
a linear object:

<- | -> | <-> [expr]

The default for arrow objects is ->. The shape parameter expr may be omitted, in
which case the value of the environment variable arrowhead is used. The accepted
values of expr are currently 0, 1, and 3, with 1 the default.

The drawing direction of an arc is changed by the attribute

ccw|cw

with ccw the default.

To fill an object with a shade of gray, use the attribute

fill [expr]

where the value of expr can vary from 1, meaning white, to 0, meaning black. A
linear object defining a path can be filled where the postprocessor allows, currently
for MFpic, MPost, PDF, PGF, PS, PSfrag, PSTricks, and SVG output.

Line color can be set using

outline|outlined string

The pic language knows no details about color; the string contents must be compatible
with the postprocessor. For example, the predefined colours of LaTeX or Tikz-pdf
packages can be specified, or custom colors can be defined using the

command string

facility so that the postprocessor will know about them.

Filling by color is similar, using the attribute

shaded string

and, when the object is planar and both the fill and outline colors are the same, the

39 2025.08.01

DPIC(1) DPIC(1)

two attributes can be combined as

colour|color|colored|coloured string

in which all four spellings are equivalent.

Finally, the attribute

same

duplicates the properties of the previously drawn object of the same type, but with
the current default placement.

In addition to scale changes effected by the scale variable, the size of the complete
picture can be set by appending one or two terms to the .PS line as shown:

.PS [x [y]]

where x and y evaluate to constant values. On encountering the .PE line, the picture
width w and height h are calculated. If x > 0 then the picture is scaled so that w = x.
If h > y > 0 or if x = 0 and y > 0 then the picture is scaled so that h = y. Horizontal
and vertical scaling are not independent. Text size, line thickness, and arrowheads
are not scaled. The units are inches, so for example,

.PS 100/25.4

sets the final picture width to 100 mm. Printed string text may extend beyond the
rectangular boundaries defined by w and h unless the text dimensions have been
explicitly set.

In the absence of terms to specify diagram size on the .PS line as described, if the
final diagram width exceeds the environment variable maxpswid or the height exceeds
maxpsht, then a warning message is issued and the diagram is scaled to fit as for x
and y above. Both of these environmental variables can be changed by assignment,
for example,

maxpswid := expression.

Placement of drawn objects
An object is placed by default so that its entry is at the current point.

Explicit placement is obtained with

object with defined point at position

or

object at position

which centers the object at position; for example,

arc cw from position to position with .c at position

A block can also be positioned by reference to a displacement from its lower left

40 2025.08.01

DPIC(1) DPIC(1)

corner, for example,

A: [contents] with (0.5,0.2) at position.

Linear objects are placed by default with the .start point placed at the current
drawing position; otherwise linear objects are defined using a linespec, which is of the
form

linespec = from position | to position | direction [expr]
| linespec linespec
| linespec then linespec

where the second line means that linespecs can be concatenated, and the third that
multisegment linear objects are drawn using multiple linespecs separated by then.

As an example, the following draws a triangle with the leftmost vertex at the current
point:

line up 2 right 1.5 then down 3 then to Here

Exceptionally, the linespec

to position to position to ...

is multiple and does not require the then keyword, but this also means that the
linespec

up expression to position

is multiple and creates a two-segment line.

A single expr is also an acceptable linespec immediately after a linear object and
means that the object is drawn to length expr in the current direction. The exception
to this is

spline [expr] linespec

for which the expr is a spline tension parameter. If expr is omitted, a straight line is
drawn to the midpoint of the first two spline control points and from the midpoint of
the last two to the last point; the spline is tangent to all midpoints between control
points. If expr is present, the spline is tangent at the first and last control points
and at all other midpoints, and the spline tension can be adjusted. Tension values
between 0 and 1 are typical.

In cases where all of the points of a multisegment linear object are not known in
advance or inconvenient to calculate, the drawing command

continue linespec

will append a segment to the previously drawn linear object as if continue were
then, with two differences. Arbitrary calculations may be done between the previous
object and the continue statement, and the current point is the exit point of the
previous object.

41 2025.08.01

DPIC(1) DPIC(1)

The construction

line from position to position chop [expr]

truncates the line at each end by the value of expr or, if expr is omitted, by the current
value of environment variable circlerad

Otherwise

line from position to position chop expr1 chop expr2

truncates the line by the two specified distances at the ends. Truncation values can
be negative.

The attribute

by position

is for positioning, for example,

move by (5,6)

Variables and expressions
Variable names are alphameric sequences beginning with a lower-case letter, option-
ally subscripted as for labels, and are defined by assignment. For example, the fol-
lowing line defines the variable x if it does not already exist in the current scope:

x = expr

The scope of pic variables is the current block in which they are defined, including
blocks defined later within the current block. The assignment

x := expr

or any assignment using an operator in the set

:= += -= *= /= %=

requires x to have been defined previously in the current block or an enclosing block.

Expressions consist of floating-point values combined using the unary operator ! for
logical negation and the usual parentheses and binary operators in decreasing order
of precedence:

ˆ
* / %
+ -
== != >= <= < >
&&
||

In logical tests, the value 0 is equivalent to false and a nonzero value to true, with
resulting true value of 1.

42 2025.08.01

DPIC(1) DPIC(1)

A floating-point value is obtained as an integer, a number with e syntax, a function
value, a size value of a drawn object, for example,

last box.ht,

or the horizontal or vertical coordinate of a position, obtained respectively as

position .x|.y

The single-argument functions are abs, acos, asin, cos, exp, expe, int, log,
loge, sign, sin, sqrt, tan, floor. The functions exp and log are base 10.
The function rand() delivers a random number between 0 and 1, and rand(expr)
initializes the random number generator.

The two-argument functions are atan2, max, min, pmod where pmod is the modulo
function delivering a positive value.

Predefined variables
The following variables are predefined on invocation of dpic: optTeX, opttTeX,
optPict2e, optPSTricks, optPDF, optPGF, optMFpic, optPS, optPSfrag,
optMpost, and optSVG. Variable dpicopt is set according to the output option cho-
sen, so that if one of options -p or -g has been invoked for example, then the test

if dpicopt == optPSTricks || dpicopt == optPGF then { ... }

will selectively execute its body statements. In addition, variable optsafe has value
true if the -z option has been selected or dpic has been compiled in safe mode.

If the specified option is one of -v (SVG), -d (PDF), or -r (raw postscript), then the
variable dptextratio is defined, with default value 0.66, together with the variable
dpPPI with default value 96. The latter is the assumed pixel density per inch and the
former is the ratio of text height to nominal point size. These variables are used by
the output routines and can be changed by assignment.

If the -x (xfig) option has been specified, then the following two variables are prede-
fined: xfigres (default value 1200), and xdispres (default 80).

Predefined environment variables
A set of environment variables establishes the default values of drawing parameters
within the scope of the current block. Their values are inherited from the superior
block, but can be changed by assignment. They can be used in expressions like other
variables. The variables, their default values, and default uses are given below

arcrad 0.25 arc radius
arrowht 0.1 length of arrowhead
arrowwid 0.05 width of arrowhead
boxht 0.5 box height
boxrad 0 radius of rounded box corners
boxwid 0.75 box width
circlerad 0.25 circle radius
dashwid 0.05 dash length for dashed lines
ellipseht 0.5 ellipse height

43 2025.08.01

DPIC(1) DPIC(1)

ellipsewid 0.75 ellipse width
lineht 0.5 height of vertical lines
linewid 0.5 length of horizontal lines
moveht 0.5 length of vertical moves
movewid 0.5 length of horizontal moves
textht 0 assumed height of text (11pt for postscript, PDF, and SVG)
textoffset 2.5/72 text justification gap
textwid 0 assumed width of text

When a value is assigned to the environment variable scale, all of the above values
are multiplied by the new value of scale. This is normally done once at the top of
the outermost scope of a diagram. Drawing units are thereby changed but the default
physical sizes of drawn objects remain unchanged since dimensions are divided by the
outermost scale value on output. The following are unaffected by scale changes:

arrowhead 1 arrowhead shape
fillval 0.5 fill density
linethick 0.8 line thickness in points
maxpsht 11.5 maximum allowed diagram height
maxpswid 8.5 maximum allowed diagram width

The variables maxpswid and maxpsht may have to be redefined for large diagrams or
landscape figures, for example.

Positions
A position is equivalent to a coordinate pair defined in current drawing units, and
can be expressed in the following forms:

Here The current drawing position.

expr,expr A pair of expressions separated by a comma.

(position) A position in parentheses for grouping.

(position , position) Takes the horizontal value from the first position and the
vertical value from the second.

position +|- position Vector addition.

position *|/ expr Scalar postmultiplication.

Label The label of a defined position or object. The position is the center of the
object.

expr [of the way] between position and position

The example x between A and B is equal to A*(1-x) + B*x. Any value of expr is
allowed.

expr < position, position > An abbreviated equivalent of the previous form.

number st|rd|nd|th [last] object An object within the current block, enumerated

44 2025.08.01

DPIC(1) DPIC(1)

in order of definition.

The object is one of

line, move, arrow, arc, box, ellipse, circle, spline, [], "" .

The number can be replaced by { expr }. For example, last "" means the last
string, and {2ˆ2}nd [] means the fourth block in the current scope.

Parentheses may be required when composite positions or expressions are used in the
above forms.

Finally, a position can be given as

object . defined point

Strings
A string is a sequence of characters enclosed in double quotes. To include a double
quote in a string, precede it with a backslash. Strings can be concatenated using the
+ operator. The C-like function

sprintf(format string, expr, ...)

is equivalent to a string. (Its implementation passes arguments singly to the C snprintf
function.) Expressions are floating-point values, so the only applicable number for-
mats are e, f, and g.

Multiple strings such as "text1" "text2" are stacked and centered vertically.

A string attached to an object overlays the object at the center, and any height
or width attributes apply to the object, not the string. However, the justification
attributes ljust and rjust can be applied to the individual strings of a stack over-
laying an object.

An independent string is placed with its center at the current point by default, or by
specifying the position of one of its defined points as for any object, for example,

"Animal crackers" wid 82.3/72 ht 9.7/72 with .sw at Q

The placement qualifiers above, below, ljust, rjust place the string above, below,
or justified with respect to the placement point. For example,

"Animal crackers" at Q ljust above

places the string above and textoffset units to the right of Q.

EXAMPLES

Source file example.pic:

\documentclass{article}
\usepackage{tikz}

45 2025.08.01

DPIC(1) DPIC(1)

\begin{document}
.PS
box dashed "Hello" "World"
.PE
\end{document}

The command

dpic -g example.pic > example.tex; pdflatex example

produces example.pdf containing a dashed box with Hello and World stacked inside.

To produce a .tex file containing PSTricks drawing commands for insertion into a
LaTeX document using the \input command, delete the first three lines and the last
line in the above source and process using the -p option of dpic.

Similarly, the picture source

.PS
\definecolor{puce}{rgb}{0.8,0.53,0.6}
box shaded "puce"
.PE

produces a box filled with a flea-like color when processed with dpic -g or dpic -p
and the resulting file is inserted into a latex source file invoking, respectively, the tikz
or pstricks package.

SEE ALSO

E. S. Raymond, Making Pictures with GNU PIC, 1995. In GNU groff source dis-
tribution; http://www.kohala.com/start/troff/gpic.raymond.ps (A good intro-
duction to the pic language, with elementary illustrations.)

J. D. Aplevich, Drawing with dpic, 2025, http://ece.uwaterloo.ca/~aplevich/
dpic/dpic-doc.pdf (Specific discussion of dpic facilities and extensions, with differ-
ences between dpic and GNU pic.)

B. W. Kernighan, B. W. and D. M. Richie, PIC - A Graphics Language for Type-
setting, User Manual, 1991. AT&T Bell Laboratories, Computing Science Technical
Report 116. (The original Unix pic.)

J. D. Aplevich, M4 Macros for Electric Circuit Diagrams in LaTeX Documents, 2025.
File Circuit_macros.pdf in the graphics/Circuit_macros section of CTAN reposito-
ries. (Extension of the pic language using the m4 macro processor for drawing electric
circuits and other diagrams.)

AUTHOR

Dwight Aplevich <aplevich at uwaterloo dot ca>

46 2025.08.01

http://www.kohala.com/start/troff/gpic.raymond.ps
http://ece.uwaterloo.ca/~aplevich/dpic/dpic-doc.pdf
http://ece.uwaterloo.ca/~aplevich/dpic/dpic-doc.pdf

DPIC(1) DPIC(1)

8 Appendix B: dpic grammar

The tokens recognized by the dpic parser are as shown. The tokens in < > pairs are
generated internally. Equated tokens (";" = "<NL>") have identical effect.

terminals:
"<" "cw" "ccw"
"(" ")" "*" "+" "-" "/" "%" ";" = "<NL>"
"^" "!" "&&" "||"
"," ":" "[" "]" "{" "}" "." "[]" "‘" "’"
"=" ":=" "+=" "-=" "*=" "/=" "%=" (* the order matters *)
"&"
"<float>" "<name>" "<Label>" "<LaTeX>"
’"’ = "<string>"
"#"
"$" = "<arg>"
".PS" ".PE"
"ht" = "height" "wid" = "width"
"rad" = "radius" "diam" = "diameter"
"thick" = "thickness"
"scaled"
"from" "to" "at" "with" "by" "then" "continue"
"chop" "same"
"of" "the" "way" "between" "and" "Here"
"st" = "rd" = "nd" = "th" "last"
"fill" = "filled"
".x" ".y"
"print" "copy" "reset" "exec" "sh" "command"
"define" "undef" = "undefine"
"rand"
"if" "else" "for" "do" "<endfor>"
"sprintf"

"<corner>"
".ne" ".se" ".nw" ".sw"
".t" = ".top" = "top" = ".north" = ".n"
".b" = ".bot" = ".bottom" = "bottom" = ".south" = ".s"
".right" = ".r" = ".east" = ".e"
".left" = ".l" = ".west" = ".w"
".start" = "start"
".end" = "end"
".center" = ".centre" = ".c"

"<compare>"
"==" "!=" ">=" "<=" ">"

"<param>"
".height" = ".ht"
".width" = ".wid"
".radius" = ".rad"

47 2025.08.01

DPIC(1) DPIC(1)

".diameter" = ".diam"
".thickness" = ".thick"
".length"

"<func1>"
"abs" "acos" "asin" "cos" "exp" "expe" "int" "log" "loge"
"sign" "sin" "sqrt" "tan" "floor"

"<func2>"
"atan2" "max" "min" "pmod"

"<linetype>"
"solid" "dotted" "dashed" "invis" = "invisible"

"<colrspec>"
"color" = "colour" = "colored" = "coloured"
"outline" = "outlined"
"shade" = "shaded"

"<textpos>"
"centre" = "center" "ljust" "rjust" "above" "below"

"<arrowhd>"
"<-" "->" "<->"

"<directon>"
"up" "down" "right" "left"

"<primitiv>"
"box" "circle" "ellipse" "arc" "line" "arrow" "move" "spline"

"<envvar>"
"arcrad" "arrowht" "arrowwid" "boxht" "boxrad" "boxwid"
"circlerad" "dashwid" "ellipseht" "ellipsewid" "lineht"
"linewid" "moveht" "movewid" "textht" "textoffset" "textwid"

= "<lastsc>" (* marker for last scaled env var *)
"arrowhead" "fillval" "linethick" "maxpsht" "maxpswid" "scale"

= "<lastenv>" (* marker for last env var *)

The expanded dpic grammar follows:

input: %empty
| input picture NL

picture: prestart psline NL elementlist optnl ".PE"

NL: ";"
| error

prestart: %empty

psline: ".PS"
| ".PS" term
| ".PS" term term

elementlist: %empty
| element

48 2025.08.01

DPIC(1) DPIC(1)

| elementlist NL element

term: factor
| term "*" factor
| term "/" factor
| term "%" factor

element: namedobj
| "label" suffix ":" position
| assignlist
| "direction: up down right left"
| "LaTeX"
| command
| lbrace elementlist optnl "}"
| ifpart
| elsehead elementlist optnl "}"
| for "}"
| "command" stringexpr
| "exec" stringexpr

lbrace: "{"

namedobj: object
| "label" suffix ":" object

suffix: %empty
| "[" expression "]"
| "[" position "]"

position: pair
| expression "between" position "and" position
| expression "of" "the" "way" "between" position "and" position
| expression "<" position "," position "logical operator" shift

assignlist: assignment
| assignlist "," assignment

command: "print" expression redirect
| "print" position redirect
| "print" stringexpr redirect
| "reset"
| "reset" resetlist
| systemcmd
| "copy" stringexpr
| "define" "identifier"
| "define" "label"
| "undef" "identifier"
| "undef" "label"

49 2025.08.01

DPIC(1) DPIC(1)

optnl: %empty
| NL

ifpart: ifhead elementlist optnl "}"

elsehead: ifpart "else" "{"

for: forhead elementlist optnl
| for forincr elementlist optnl

stringexpr: string
| stringexpr "+" string

string: "string"
| sprintf ")"

assignment: "identifier" suffix "=" assignrhs
| "environment variable" "=" assignrhs

assignrhs: expression
| assignment

expression: term
| "+" term
| "-" term
| expression "+" term
| expression "-" term

ifhead: setlogic logexpr "then" "{"

setlogic: "if"

logexpr: logprod
| logexpr "||" logprod

forhead: "for" assignlist "to" expression do "{"

forincr: "end of for {...} contents"

do: "do"
| by expression "do"

by: "by"
| "by" "*"

redirect: %empty
| "logical operator" stringexpr

50 2025.08.01

DPIC(1) DPIC(1)

| "logical operator" "logical operator" stringexpr

resetlist: "environment variable"
| resetlist "," "environment variable"

systemcmd: "sh" stringexpr

sprintf: "sprintf" "(" stringexpr
| "sprintf" "(" stringexpr "," exprlist

exprlist: expression
| expression "," exprlist

object: block
| object "ht" expression
| object "wid" expression
| object "rad" expression
| object "diam" expression
| object "thick" expression
| object "scaled" expression
| object "direction: up down right left" optexp
| object "line type: dotted etc" optexp
| object "chop" optexp
| object "fill" optexp
| object "arrowhead parameter: <- -> <->" optexp
| object "then"
| object "cw"
| object "ccw"
| object "same"
| object stringexpr
| object "by" position
| object "from" position
| object "to" position
| object "at" position
| object "text position: ljust rjust above below center"
| object "color spec: colored outlined shaded" stringexpr
| objectwith "at" position
| objectwith "compass corner: .n .ne .center .end etc" "at" position
| objectwith pair "at" position
| "continue"

openblock: "["

block: "drawn object: box circle line etc" optexp
| stringexpr
| openblock closeblock "]"
| "[]"

51 2025.08.01

DPIC(1) DPIC(1)

optexp: %empty
| expression

closeblock: elementlist optnl

objectwith: object "with"
| objectwith "." "label" suffix
| objectwith "." nth primobj

pair: expression "," expression
| location shift

nth: ncount "ordinal: st or rd or nd or th"
| ncount "ordinal: st or rd or nd or th" "last"
| "last"

primobj: "drawn object: box circle line etc"
| "[]"
| "string"
| "[" "]"

shift: %empty
| shift "+" location
| shift "-" location

location: "(" position ")"
| "(" position "," position ")"
| place
| location "*" factor
| location "/" factor

place: placename
| placename "compass corner: .n .ne .center .end etc"
| "compass corner: .n .ne .center .end etc" placename
| "compass corner: .n .ne .center .end etc" "of" placename
| "Here"

factor: primary
| "!" primary
| primary "^" factor

placename: "label" suffix
| nth primobj
| placename "." "label" suffix
| placename "." nth primobj

ncount: "number"
| "‘" expression "’"

52 2025.08.01

DPIC(1) DPIC(1)

| "{" expression "}"

logprod: logval
| logprod "&&" logval

logval: lcompare
| stringexpr "<" stringexpr
| expression "<" expression

lcompare: expression
| stringexpr
| lcompare "logical operator" expression
| lcompare "logical operator" stringexpr

primary: "environment variable"
| "identifier" suffix
| "number"
| "(" logexpr ")"
| location ".x"
| location ".y"
| placename "attribute .ht .wid etc"
| "rand" "(" ")"
| "rand" "(" expression ")"
| "function (1 arg)" "(" expression ")"
| "function (2 args)" "(" expression "," expression ")"
| "(" assignlist ")"
| "(" systemcmd ")"

53 2025.08.01

	Contents
	Introduction
	Dpic usage
	Options
	Error messages

	Dpic programming
	Character set
	Blocks
	Positioning blocks
	Defining scope

	Dpic macros
	Finding roots
	Composing statements
	Branching
	Looping
	Evaluating arguments
	Hiding variables
	Complex numbers

	M4 macros
	M4 branching
	Extending pic: perpendiculars
	Setting directions

	Subscripts
	Assigning an array of numbers

	Splines
	Curve fitting

	Text
	Postprocessor commands and color
	Color
	Filling with color
	External files

	SVG, PDF, and Postscript output
	SVG text
	Bounding boxes

	Pic processor differences
	Command-line options
	Output formats
	``.'' and ``\'' lines
	for-loop and if bodies
	Closing braces and nul elements
	End of line
	Logic
	Defaults for line, spline, arrow, move
	Arc defaults
	Strings
	print arg, …
	command arg, …
	Operating system commands
	copy
	plot
	fill
	Scaling
	Arrowheads
	Compass corners and justified text
	continue
	Subscripted variables and labels
	Nul and multiply labeled objects
	Splines
	Arithmetic
	Vector arithmetic
	exec
	Functions

	References
	Appendix A: dpic man page
	Appendix B: dpic grammar

