Contents

Preface, vii

Chapter 1 Introduction

1 The structure of state-space models, 1
1.1 The concept of state, 7

2 Linear models, 9
3 Time-invariant models, 12
4 Linear, time-invariant (LTI) models, 13
5 System properties and model properties, 14
6 Linearized small-signal models, 16
7 Further study, 22
8 Problems, 23

Chapter 2 Solution of state-space equations

1 Solution of discrete-time equations, 28
1.1 LTI equations, 29
1.2 Free response, 31
1.3 Forced response, 32
1.4 Weighting sequence, 33
1.5 Impulse response, 35
1.6 Convolution, 37

2 Solution of continuous-time equations, 38
2.1 Existence and uniqueness, 39
2.2 LTI continuous-time equations, 40
2.3 Free response of continuous-time LTI systems, 40
2.4 Complete response of continuous-time LTI systems, 44
2.5 Forced response, 46
2.6 Continuous-time impulse response, 47
2.7 Continuous-time convolution, 49
3 Discretization, 50
4 Further study, 54
5 Problems, 54
Chapter 3 Transform methods 59
1 Continuous-time models, 61
1.1 Free response, 62
1.2 Forced response and transfer matrix, 63
1.3 Properties of the transfer matrix, 64
2 Discrete-time models, 66
2.1 Free response, 68
2.2 Forced response, 69
3 Further study, 69
4 Problems, 69
Chapter 4 Writing state-space equations 73
1 Graph-based methods: Electric circuits, 74
2 Energy-based methods: Euler-Lagrange equations, 77
2.1 Quadratic forms, 79
2.2 Standard matrix form, 79
3 Aggregation, 83
4 Operational diagrams: Digital filters, 84
4.1 Computer circuits, 85
5 Continuous-time operational diagrams, 86
6 High-order equations, 87
6.1 Direct realization of high-order linear equations, 87
7 Controllable and observable realizations, 89
8 Factored realizations, 93
9 Multi-input, multi-output (MIMO) transfer functions, 95
10 Further study, 96
11 Problems, 97
Chapter 5 Matrices over a field 103
1 Basic definitions, 103
1.1 Field axioms, 103
1.2 Matrix definitions and operations, 105
2 Determinants, 109
2.1 Properties of determinants, 112
3 Rank, elementary transformations, and equivalence, 113
3.1 Elementary transformations, 113
3.2 Elementary matrices, 115
3.3 Echelon forms, 117
3.4 Properties of echelon forms, 119
3.5 The normal form, 121
3.6 The Singular-Value Decomposition (SVD), 123
4 Matrix inverses, 128
4.1 Left inverse, 128
4.2 Right inverse, 128
4.3 Inverse, 129
5 The characteristic equation, 130
5.1 The Cayley-Hamilton theorem, 131
6 The Ho algorithm, 133
6.1 The context, 133
6.2 Constructive solution, 134
6.3 Development of the algorithm, 135
7 Solution of linear equations, 144
7.1 General method, 144
7.2 Abbreviated method, 146
7.3 Uniqueness and generality of solutions, 148
7.4 Special cases, 149
8 Further study, 150
9 Problems, 150
Chapter 61551 Vector-space axioms, 155
2 Subspaces, 156
3 Linear dependence of vectors, 157
4 Range, basis, dimension, and null space, 157
4.1 Bases for the range and null space, 160
4.2 Orthogonal bases, 162
5 Change of basis, 16
6 Further study, 167
7 Problems, 167
Chapter 7 Similarity transformations 171
1 Invariance of the external behavior, 172
2 Eigenvalues, eigenvectors, and diagonalization, 173
3 Near-diagonalization: the Jordan canonical form, 182

4 Functions of square matrices via the Jordan form, 183
5 General functions of square matrices, 186
6 Further study, 189
7 Problems, 190

Chapter 8 Stability 193

1 Basic definitions, 193
2 LTI systems, 195
2.1 LTI Continuous-time systems, 196
2.2 LTI Discrete-time systems, 196

3 Energy functions and Lyapunov stability, 197
3.1 Energy functions for LTI systems, 201
3.2 Lyapunov equations for LTI continuous-time systems, 201
3.3 Solving continuous Lyapunov equations, 203
3.4 Discrete-time Lyapunov equations, 206

4 Further study, 208
5 Problems, 208

Chapter 9 Minimality via similarity transformations
 211

1 Step 1: Controllability, 213
1.1 Construction of the controllability transformation, 214

2 Step 2: Observability, 218
2.1 Direct transformation, 218
2.2 Observability by constructing the dual system, 219

3 Minimality, 220
4 The Kalman canonical decomposition, 228
5 Further study, 229
6 Problems, 229

Chapter 10
 Poles and Zeros
 231

1 The Smith-McMillan form, 233
1.1 Construction of the Smith form, 237

2 Computation of poles and zeros, 239
3 Further study, 242
4 Problems, 242

[^0]
[^0]: Appendix
 Solutions
 Chapter 1, 249
 Chapter 2, 251
 Chapter 3, 256
 Chapter 4, 261
 Chapter 5, 266
 Chapter 6, 273
 Chapter 7, 275
 Chapter 8, 279
 Chapter 9, 283
 Chapter 10, 287
 Index, 295

