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Fig. 4.1 A circuit with one input, one output, and three energy-storage elements.

1 Graph-based methods: Electric circuits

A method for finding state-space models for electric circuits will be given. Elec-
tric circuits are only one example of physical systems representable by graphs,
and analogous graphs can be used to model mechanical, thermodynamic, hy-
draulic, and other systems. The method will be illustrated by the example in
Figure 4.1 which contains a single independent inputu(t), a single outputy(t),
and three elements that require derivatives in their characterizing equations.

An electric circuit is a graph, that is, a set of nodes connected by a set of
branches. It is usually convenient to first perform source transformations as
necessary so that every voltage source is in series with a nonsource, and every
current source is in parallel with a nonsource. When identifying nodes and
loops of the graph in the following procedure, a voltage source together with a
nonsource in series are treated as a single branch, and a current source together
with a nonsource in parallel are treated as a single branch. Then in Figure 4.1
there are five branches and three nodes.

1. A connected subgraph containing all the graph nodes but no loops is called
a tree of the graph. Choose a tree that includes all the capacitors but no
inductors. Such a tree is shown by the dashed line in Figure 4.1. The
branches not in the tree are called links.

2. Choose the capacitor voltages and the inductor currents as state variables.
Alternatively, charge can be substituted for one or more capacitor voltages,
and flux linkages for one or more inductor currents.

3. If the removal of a set of branches, leaving all the nodes, reduces the orig-
inal graph to exactly two subgraphs, the set of removed branches is called
a cut-set. A cut-set containing links and exactly one tree branch is a fun-
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damental cut-set. Two fundamental cut-sets are shown by the light lines
cs1 and cs2 in the figure. By Kirchhoff’s current law, the algebraic sum of
the branch currents for any cut-set is zero. For each capacitorCj , write the
Kirchhoff equation for its fundamental cut-set,

capacitor current= −
∑

link currents(4.1)

expressing all right-hand side quantities in terms of input and state vari-
ables. The links of the fundamental cut-set cs1 for C1 are the source branch
andL1, and the equation summing the currents to zero becomes, on divi-
sion byC1,

dv1

dt
= − 1

C1

(
i1 +

v2 + v1 − u

Rs

)
.(4.2)

ForC2 the fundamental cut-set links are the source branch andRL, giving

dv2

dt
= − 1

C2

(
v2

RL
+

v2 + v1 − u

Rs

)
.(4.3)

4. A loop consisting of tree branches and one link is called a fundamental
loop. For each inductor, sum the fundamental loop voltages to zero in an
equation of the form

inductor voltage=
∑

tree-branch voltages,(4.4)

expressing all right-hand side quantities in terms of input and state vari-
ables. In the example the fundamental loop forL1 contains tree branch
C1, giving, on division byL1,

di1
dt

=
1
L1

v1.(4.5)

5. Write equations for the outputs as functions only of input or state variables.
For the example the single required equation is

y = v2.(4.6)

Example 1
Circuit

The equations of Figure 4.1, written in vector-matrix form, become
 dv1/dt

dv2/dt
di1/dt


 =


−1/(C1Rs) −1/(C1Rs) −1/C1

−1/(C2Rs) −1/(C2Rs)−1/(C2RL) 0
1/L1 0 0
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