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6 The Ho algorithm

An application of the matrix normal form discussed in Section 3.5 and of the
Cayley-Hamilton theorem will be described. This important calculation solves
theinverseof the problem of generating from(A, B, C, D) the Markov sequence

{Hk}∞0 =
{

D, k = 0
CAk−1B, k > 0

}
.(5.43)

That is, given{Hk}∞0 and the knowledge or assumption that this sequence can
be generated by an LTI system, it is required to find at least one set of matrices
(A, B, C, D) satisfying the above formula. Finding a state-space model from
input-output information such as the Markov sequence is one kind ofsystem
identification.

Minimal order The system with matrices(A, B, C, D) produced by the Ho method hasminimal
order n, whereA ∈ R

n×n, in the class of LTI systems satisfying (5.43).
First some circumstances in which the{Hk} are obtained will be given, then

the algorithm and its derivation, followed by examples.

6.1 The context

The sequence{Hk} is obtained in the following situations, and others:

1. {Hk} is the impulse-response sequence of an unknown discrete-time sys-
tem, as in Section 1.5 of Chapter 2.

2. The rational proper discrete-time transfer matrixH(z) is known, and can
be expanded (by long division!) asH(z) = H0 + H1z

−1 + H2z
−2 + · · · ,

as for continuous-time systems in Equation (3.25).

3. The transfer matrixH(s) of a continuous-time system is known and can be
expanded as for the discrete-time system above intoH(s) = H0+H1s

−1+
H2s

−2 + · · · .
4. Given the continuous-time impulse response matrixH(t), theHk can be

obtained, using (2.33), as

H1 = d0

dt0
H(t)|t=0+

H2 = d1

dt1
H(t)|t=0+

...

Hk = dk−1

dtk−1 H(t)|t=0+,
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with the zeroth term expressed consistently with the others, using the con-
vention

H0 =
∫ 0+

0−
H(t) dt =

d−1

dt−1
H(t) .

5. A realization(A, B, C, D) of {Hk} is known, but may not be of mini-
mal order, for example, if the realization has been found by inspecting
the transfer matrix, using the methods of Chapter 4. Then theHk can be
calculated directly, using (5.43).

6.2 Constructive solution

The solution to this problem is given by the following, known as the B. L. Ho
algorithm:

Step 0 First, by definition,

D = H0.(5.44)

Step 1 For r “large enough,” construct thepr × mr matrix

Sr =




H1 H2 · · · Hr

H2 H3 · · · Hr+1

· · ·
Hr Hr+1 · · · H2r−1


 .(5.45)

A matrix with the above structure is called a Hankel matrix. Find nonsingular
P, Q such that

PSrQ =
[

In 0
0 0

]
= N,(5.46)

whereN is the normal form ofSr, andn is the rank ofSr. The required value of
r will become clear later in the discussion. As illustrated in Figure 5.6, partition
P, Q into

P =
[

P1

P2

]
, Q = [ Q1, Q2 ] ,(5.47)

whereP1 hasn rows andQ1 hasn columns.

Step 2 As illustrated in Figure 5.7, calculate the matrices

A = P1




H2 H3 · · · Hr+1

H3 H4 · · · Hr+2

· · ·
Hr+1 Hr+2 · · · H2r


 Q1, B = P1




H1

H2
...

Hr


 ,(5.48a)

C = [H1, H2, · · ·Hr ] Q1.(5.48b)



Section 6 The Ho algorithm 135

P1

P2

P (rp × rp)

n
{

Sr (rp × rm)

Q1 Q2

Q (rm × rm)

n︷︸︸︷

=

1
1

n︷︸︸︷
n

{
0

0 0

N (rp × rm)

Fig. 5.6 Construction of P, Q, and N, showing matrix dimensions.

6.3 Development of the algorithm

The proof that the previous construction produces a minimal system generating
{Hk}∞0 rests on the following results.

Proposition 1 If there is a realization of finite ordern, then rankSr ≤ n for all r = 1, 2, · · · .
Proof: FactorSr as the product of matricesOC as shown:

Sr = OC =




C
CA

...
CAr−1


 [ B, AB, · · ·Ar−1B ] ,(5.49)

whereC, A, B are matrices of the finite-order realization. BecauseO hasn
columns andC hasn rows, rankOC ≤ min{rankO, rankC} ≤ n. �

Proposition 2 If there is a realization of finite order then there exist constantsα1, · · ·αr such
that, for anyk > 0,

Hk+r = α1Hk+r−1 + α2Hk+r−2 + · · ·αrHk .(5.50)

Proof: Let A be then × n state-vector coefficient matrix of a realization of ordern,
with characteristic polynomial

det(λI − A) = λn + a1λ
n−1 + · · · an .(5.51)

Then by the Cayley-Hamilton theorem,

An = −a1A
n−1 · · · − anIn,(5.52)

so that

Hk+n = CAk+n−1B = CAk−1(An)B(5.53)

= CAk−1(−a1A
n−1 − a2A

n−2 − · · · anIn)B
= −a1Hk+n−1 − a2Hk+n−2 − · · · anHk.


