6

The Ho algorithm

An application of the matrix normal form discussed in Section 3.5 and of the Cayley-Hamilton theorem will be described. This important calculation solves the inverse of the problem of generating from $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ the Markov sequence
$\left\{\mathbf{H}_{k}\right\}_{0}^{\infty}=\left\{\begin{array}{ll}\mathbf{D}, & k=0 \\ \mathbf{C A}^{k-1} \mathbf{B}, & k>0\end{array}\right\}$.
That is, given $\left\{\mathbf{H}_{k}\right\}_{0}^{\infty}$ and the knowledge or assumption that this sequence can be generated by an LTI system, it is required to find at least one set of matrices $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ satisfying the above formula. Finding a state-space model from input-output information such as the Markov sequence is one kind of system identification.
Minimal order The system with matrices ($\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ produced by the Ho method has minimal order n, where $\mathbf{A} \in \mathbb{R}^{n \times n}$, in the class of LTI systems satisfying (5.43).

First some circumstances in which the $\left\{\mathbf{H}_{k}\right\}$ are obtained will be given, then the algorithm and its derivation, followed by examples.

6.1 The context

The sequence $\left\{\mathbf{H}_{k}\right\}$ is obtained in the following situations, and others:

1. $\left\{\mathbf{H}_{k}\right\}$ is the impulse-response sequence of an unknown discrete-time system, as in Section 1.5 of Chapter 2.
2. The rational proper discrete-time transfer matrix $\mathbf{H}(z)$ is known, and can be expanded (by long division!) as $\mathbf{H}(z)=\mathbf{H}_{0}+\mathbf{H}_{1} z^{-1}+\mathbf{H}_{2} z^{-2}+\cdots$, as for continuous-time systems in Equation (3.25).
3. The transfer matrix $\mathbf{H}(s)$ of a continuous-time system is known and can be expanded as for the discrete-time system above into $\mathbf{H}(s)=\mathbf{H}_{0}+\mathbf{H}_{1} s^{-1}+$ $\mathbf{H}_{2} s^{-2}+\cdots$.
4. Given the continuous-time impulse response matrix $\mathbf{H}(t)$, the \mathbf{H}_{k} can be obtained, using (2.33), as

$$
\begin{aligned}
\mathbf{H}_{1} & =\left.\frac{d^{0}}{d t^{0}} \mathbf{H}(t)\right|_{t=0+} \\
\mathbf{H}_{2} & =\left.\frac{d^{1}}{d t^{1}} \mathbf{H}(t)\right|_{t=0+} \\
& \vdots \\
\mathbf{H}_{k} & =\left.\frac{d^{k-1}}{d t^{k-1}} \mathbf{H}(t)\right|_{t=0+},
\end{aligned}
$$

with the zeroth term expressed consistently with the others, using the convention
$\mathbf{H}_{0}=\int_{0-}^{0+} \mathbf{H}(t) d t=\frac{d^{-1}}{d t^{-1}} \mathbf{H}(t)$.
5. A realization ($\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ of $\left\{\mathbf{H}_{k}\right\}$ is known, but may not be of minimal order, for example, if the realization has been found by inspecting the transfer matrix, using the methods of Chapter 4. Then the \mathbf{H}_{k} can be calculated directly, using (5.43).

6.2 Constructive solution

The solution to this problem is given by the following, known as the B. L. Ho algorithm:
Step 0 First, by definition,
(5.44) $\quad \mathbf{D}=\mathbf{H}_{0}$.

Step 1 For r "large enough," construct the $p r \times m r$ matrix
$\mathbf{S}_{r}=\left[\begin{array}{cccc}\mathbf{H}_{1} & \mathbf{H}_{2} & \cdots & \mathbf{H}_{r} \\ \mathbf{H}_{2} & \mathbf{H}_{3} & \cdots & \mathbf{H}_{r+1} \\ \cdots & & & \\ \mathbf{H}_{r} & \mathbf{H}_{r+1} & \cdots & \mathbf{H}_{2 r-1}\end{array}\right]$.
A matrix with the above structure is called a Hankel matrix. Find nonsingular \mathbf{P}, \mathbf{Q} such that
$\mathbf{P S}_{r} \mathbf{Q}=\left[\begin{array}{cc}\mathbf{I}_{n} & 0 \\ 0 & 0\end{array}\right]=\mathbf{N}$,
where \mathbf{N} is the normal form of \mathbf{S}_{r}, and n is the rank of \mathbf{S}_{r}. The required value of r will become clear later in the discussion. As illustrated in Figure 5.6, partition \mathbf{P}, \mathbf{Q} into
(5.47) $\mathbf{P}=\left[\begin{array}{l}\mathbf{P}_{1} \\ \mathbf{P}_{2}\end{array}\right], \quad \mathbf{Q}=\left[\mathbf{Q}_{1}, \mathbf{Q}_{2}\right]$,
where \mathbf{P}_{1} has n rows and \mathbf{Q}_{1} has n columns.
Step 2 As illustrated in Figure 5.7, calculate the matrices
(5.48a) $\quad \mathbf{A}=\mathbf{P}_{1}\left[\begin{array}{cccc}\mathbf{H}_{2} & \mathbf{H}_{3} & \cdots & \mathbf{H}_{r+1} \\ \mathbf{H}_{3} & \mathbf{H}_{4} & \cdots & \mathbf{H}_{r+2} \\ \cdots & & & \\ \mathbf{H}_{r+1} & \mathbf{H}_{r+2} & \cdots & \mathbf{H}_{2 r}\end{array}\right] \quad \mathbf{Q}_{1}, \quad \mathbf{B}=\mathbf{P}_{1}\left[\begin{array}{c}\mathbf{H}_{1} \\ \mathbf{H}_{2} \\ \vdots \\ \mathbf{H}_{r}\end{array}\right]$,
$\mathbf{C}=\left[\mathbf{H}_{1}, \mathbf{H}_{2}, \cdots \mathbf{H}_{r}\right] \mathbf{Q}_{1}$.

Fig. 5.6 Construction of \mathbf{P}, \mathbf{Q}, and \mathbf{N}, showing matrix dimensions.

6.3 Development of the algorithm

The proof that the previous construction produces a minimal system generating $\left\{\mathbf{H}_{k}\right\}_{0}^{\infty}$ rests on the following results.

Proposition 1 If there is a realization of finite order n, then $\operatorname{rank} \mathbf{S}_{r} \leq n$ for all $r=1,2, \cdots$.
Proof: Factor \mathbf{S}_{r} as the product of matrices $\mathscr{O} \mathscr{C}$ as shown:
(5.49) $\quad \mathbf{S}_{r}=\mathscr{O} \mathscr{C}=\left[\begin{array}{c}\mathbf{C} \\ \mathbf{C A} \\ \vdots \\ \mathbf{C A}^{r-1}\end{array}\right]\left[\mathbf{B}, \mathbf{A B}, \cdots \mathbf{A}^{r-1} \mathbf{B}\right]$,
where $\mathbf{C}, \mathbf{A}, \mathbf{B}$ are matrices of the finite-order realization. Because \mathscr{O} has n columns and \mathscr{C} has n rows, $\operatorname{rank} \mathscr{O} \mathscr{C} \leq \min \{\operatorname{rank} \mathscr{O}, \operatorname{rank} \mathscr{C}\} \leq n$.

Proposition 2 If there is a realization of finite order then there exist constants $\alpha_{1}, \cdots \alpha_{r}$ such that, for any $k>0$,
(5.50) $\quad \mathbf{H}_{k+r}=\alpha_{1} \mathbf{H}_{k+r-1}+\alpha_{2} \mathbf{H}_{k+r-2}+\cdots \alpha_{r} \mathbf{H}_{k}$.

Proof: Let \mathbf{A} be the $n \times n$ state-vector coefficient matrix of a realization of order n, with characteristic polynomial
$\operatorname{det}(\lambda \mathbf{I}-\mathbf{A})=\lambda^{n}+a_{1} \lambda^{n-1}+\cdots a_{n}$.
Then by the Cayley-Hamilton theorem,
$\mathbf{A}^{n}=-a_{1} \mathbf{A}^{n-1} \cdots-a_{n} \mathbf{I}_{n}$, so that

$$
\begin{align*}
\mathbf{H}_{k+n} & =\mathbf{C A}^{k+n-1} \mathbf{B}=\mathbf{C A}^{k-1}\left(\mathbf{A}^{n}\right) \mathbf{B} \tag{5.53}\\
& =\mathbf{C A}^{k-1}\left(-a_{1} \mathbf{A}^{n-1}-a_{2} \mathbf{A}^{n-2}-\cdots a_{n} \mathbf{I}_{n}\right) \mathbf{B} \\
& =-a_{1} \mathbf{H}_{k+n-1}-a_{2} \mathbf{H}_{k+n-2}-\cdots a_{n} \mathbf{H}_{k} .
\end{align*}
$$

