7 Problems

1 For the discrete-time system with matrices $\mathbf{A}=\left[\begin{array}{rr}0 & 1 \\ -2 & -3\end{array}\right], \mathbf{B}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \mathbf{C}=$ $[5,1], \mathbf{D}=0$, and state \mathbf{X},
(a) write the formula for the transfer matrix $\mathbf{H}(z)$;
(b) find the system matrices that result from the change of state variables $\mathbf{X}=$ $\mathbf{S X}^{\prime}$, where $\mathbf{S}=\left[\begin{array}{rr}-1 & 1 \\ 1 & -2\end{array}\right] ;$
(c) calculate the transfer matrix for the new system, and compare it to the one in (a).

2 Determine whether each of the following matrices can be diagonalized by a similarity transformation $\mathbf{A} \rightarrow \mathbf{S}^{-1} \mathbf{A S}$, and determine the resulting diagonal matrix (ω is an arbitrary real parameter):
(a) $\mathbf{A}=\left[\begin{array}{rr}-5 & 1 \\ -3 & -1\end{array}\right]$,
(b) $\mathbf{A}=\left[\begin{array}{rrr}-1 & -6 & 5 \\ -1 & 4 & -5 \\ -11 & -6 & 15\end{array}\right]$,
(c) $\mathbf{A}=\left[\begin{array}{rr}-2 & -\omega \\ \omega & -2\end{array}\right]$.

3 Referring to Example 8, show that for any matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, if $\mathbf{U}+j \mathbf{V}$ is an eigenvector corresponding to eigenvalue $\alpha+j \omega$, then $\mathbf{U}-j \mathbf{V}$ is an eigenvector corresponding to eigenvalue $\alpha-j \omega$.

4 Find a real similarity matrix to transform
$\mathbf{A}=\left[\begin{array}{rrr}0 & -5 & 1 \\ 1 & -4 & 0 \\ 0 & 0 & -1\end{array}\right]$
to real block-diagonal form as in Example 8.

5 For the circuit of Figure P7.5 which has neither input nor output, write the state-

Fig. P7.5 Linear circuit without input or output.
space equations, and for small R and G find a real similarity matrix to transform the system to the form given in Example 8.

6 Calculate the Jordan form of the matrix $\mathbf{A}=\left[\begin{array}{rr}0 & -9 \\ 1 & 6\end{array}\right]$.

7 The eigenvalues λ_{i} must be computed to diagonalize a real matrix \mathbf{A} and for many other purposes. A standard floating-point method is to find an orthogonal similarity transformation matrix \mathbf{S} such that $\mathbf{S}^{T} \mathbf{A S}$ is real and block-triangular, containing blocks on the diagonal that are either 1×1 or 2×2, with zeros below the diagonal blocks, to machine precision. Such a matrix is said to be in real Schur form, and its eigenvalues are easily computed from the diagonal blocks. Compute the eigenvalues of the real Schur matrix $\left[\begin{array}{rrr}-4 & 1 & 3 \\ 0 & -3 & -2 \\ 0 & 5 & 4\end{array}\right]$.
$8 \quad \overline{F i n d} \mathbf{A}^{200}$ for $\mathbf{A}=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$.

9 Find formulas for $e^{t \mathbf{A}}$ and \mathbf{A}^{k}, for arbitrary t and k, and
$\mathbf{A}=\left[\begin{array}{rrr}0 & 0 & -8 \\ 1 & 0 & -12 \\ 0 & 1 & -6\end{array}\right]$.

10 Given $\mathbf{A}=\left[\begin{array}{cc}0 & 1 \\ -\alpha^{2} & -2 \alpha\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, find formulas for the exponential $e^{T \mathbf{A}}$ and for the integral $\left(\int_{0}^{T} e^{\tau \mathbf{A}} d \tau\right) \mathbf{B}$, and hence verify that with $\alpha=3$ and $T=0.1$, the system of Example 6 of Chapter 2 is the discretization of the system of Example 23 in the same chapter.

11 In Section 3 of Chapter 2, a discretization of a time-continuous system with matrices ($\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$) was obtained to have matrices $\left(\mathbf{F}=e^{T \mathbf{A}}, \mathbf{G}=\int_{0}^{T} e^{\tau \mathbf{A}} d \tau\right.$, \mathbf{C}, \mathbf{D}), where T is the sampling interval. Given \mathbf{F}, \mathbf{G}, and T, show how to find \mathbf{A} and \mathbf{B}, and comment on whether they are unique.

