
Hardware/Software Partitioning and
Scheduling of Embedded Systems

Andrew Morton
PhD Thesis Defence

Electrical and Computer Engineering
University of Waterloo

January 13, 2005

Outline

1. Thesis Statement
2. Study 1: EDF with coprocessors
3. Study 2: SoPC case study
4. Study 3: Automated Partitioning
5. Summary

Thesis Statement

● Thesis: partitioning and scheduling of concurrent
systems are closely connected and best
approached in an integrated manner

Motivation

1.To explore relationship between partitioning and
scheduling of embedded real-time systems

2.To apply Earliest Deadline First (EDF)
scheduling policy in the context of
hardware/software codesign

3.To integrate kernel partitioning with application
partitioning

Dissertation Organization

● Study I
– Extension of off-line EDF feasibility analysis for task

sets that block on coprocessors
● Study II

– Case study of application and kernel partitioning of a
system on programmable chip (SoPC)

● Study III
– Automated hardware/software partitioning of

application and kernel for EDF feasibility

Study I: Extended EDF Analysis
Overview

● Problem
– task set scheduled by EDF

● task with earliest deadline is scheduled first; if another task
arrives with earlier deadline, it preempts current task

– a task blocks on coprocessor during execution

● “coprocessor-blocked task”
– highly constrained form of heterogeneous

multiprocessor EDF

Extended EDF Analysis
Overview

● Analysis
– Based on algorithm by Stankovic, Spuri,

Ramamritham and Buttazzo (1998)
– use processor demand analysis to ensure no missed

deadlines
– uni-processor, periodic and sporadic tasks
– negligible kernel overhead

● Extended for task sets which include one
coprocessor-blocked task
– no contention for coprocessor

Extended EDF Analysis
Overview

● Analyze impact of coprocessor-induced idle

Extended EDF Analysis
Overview

● Assign phases to sub-tasks of coprocessor-
blocked task

x ,1=T x−D x , 2

x ,3=−D x , 2

Extended EDF Analysis
Overview

● In τ replace τx with τx,1 , τx,3 ... τx,N

● Pass 1
– Φx,1 , Φx,3 ... Φx,N = 0

– perform processor demand analysis
● For each coprocessor block τx,2 , τx,4 ... τx,N-1

– assign Φx,1 , Φx,3 ... Φx,N to simulate coprocessor idle

– perform processor demand analysis

Extended EDF Analysis
Overview

● Benefit

● Limitation

U=
C x

T x

=
∑

k=2,4, , N−1
C x , k

T x

∀∣C i∣=1,
∀ k∈{N−1, N−3, , 2}: Di≥C iC x , k1

Extended EDF Analysis
Contributions

1.Identified and characterized the problem of EDF
feasibility analysis for coprocessor-blocked tasks

2.Proposed a first solution
3.Applied EDF in the context of hardware/software

codesign
● increases applicability of EDF to codesign

Extended EDF Analysis
Future Research

1.Develop analysis that doesn't impose limitation
caused by subtask τx,a with zero slack
● reconsider subtask deadline assignment

2.Extend analysis to multiple coprocessor-blocked
tasks

3.Extend analysis to multiprocessor systems
4.Explore heuristics for dynamic planning of task

sets with coprocessor-blocked tasks

Study II: SoPC Case Study
Overview

● System on Programmable Chip
– FPGA with soft-core processor, system bus and

coprocessors
● Real-time kernel

– scheduling by EDF, inter-task message queues,
integration of coprocessors

● Application
– idle engine simulation, load simulation, crankshaft

speed controllers

SoPC Case Study
Overview

● Application coprocessor
– cosine calculation
– used by environment task

* doesn't include kernel overhead

Cosine Task
C++ cos() 1.435 ms 1.680 ms
cordic 0.081 ms 0.343 ms
difference 1.354 ms 1.337 ms*

SoPC Case Study
Overview

● Kernel coprocessor
– EDF scheduling
– replaces run list, timer list and timer

cs1
cs2
cs2 coproc

Ck
128 μs
66 μs
4.56 μs

SoPC Case Study
Overview

● Coprocessor Comparison

Coprocessor ΔU LE
cordic 1.081 ms 0.2162 3840 56.30
cs2 0.1036 1836 56.42

Δt ΔU/LE x 106

62 μs

SoPC Case Study
Contributions

1.One more hardware/software partitioning of
kernel

2.Proposed coprocessor evaluation metric
● ΔU/LE

3.Real-time kernel with integrated coprocessor
support

4.Data source for automated hardware/software
partitioners

SoPC Case Study
Future Research

1.Perform additional case-studies of real-time SoC
systems

2.Implement kernel Slif nodes on FPGA to check
hardware estimates and schedule feasibility

3.Compare multi-processor implementations
against processor/coprocessor implementations

Study III: Hardware/Software Partitioning
Overview

● Problem
– Given one processor with fixed throughput, limited

programmable logic, and possibly limited
program/data memory, partition the application and
kernel such that all deadlines are met when scheduled
by the preemptive EDF policy.

Hardware/Software Partitioning
Overview

● Non-linear programming (NLP) model
● Objective: EDF feasibility

1. minimize U
2. repair schedule feasibility

• add processor demand constraints

Hardware/Software Partitioning
Overview

U=∑
i∈

C i

T i

C i=∑
na∈N i

ci , a [hw]⋅na [hw]ci , a [sw]⋅na [sw]

2C knroot [sw]∑
e p∈E i

f p e p [h / s]e p [s /h]
C k= ∑

na∈N k

ck , a [hw]⋅na [hw]ck , a [sw]⋅na [sw]

Hardware/Software Partitioning
Overview

● FM-based heuristic
● Objective: EDF feasibility

1. minimize
a)worst-case execution time – metric gc

b)scaled, weighted cutset – metric gχ

c)processor utilization – metric gU

d)processor utilization divided by size – metric gU/sz
2. repair schedule feasibility by

• minimize h(vk) for first missed deadline
• repeat until no missed deadlines

Hardware/Software Partitioning
Overview

● Idle Engine Partitioning
– kernel nodes: 11 (5 bound to software)
– task nodes: 30
– U (all software) = 1.097

● NLP results
– U = 0.465680
– hardware nodes

● kernel: 5
● task: 23

● Case study results (cordic)

– U = 0.881101
– hardware nodes

● kernel: 0
● task: 1

Hardware/Software Partitioning
Overview

● Heuristic gain metric evaluation results (part 1)

 # Feasible
Problem
idle eng 0 0 31 100
p100_1 0 40 82 83
p100_2 0 3 100 100
p200_1 92 0 92 98
p200_2 0 3 100 100
p500_1 0 0 4 0
p500_2 0 5 100 99
p1000_1 0 14 68 52
p1000_2 0 1 100 100
 Total 92 66 677 732

 gc gχ gU gU/sz

Hardware/Software Partitioning
Overview

● Heuristic gain metric evaluation results (part 2)

Problem
idle eng 0.4657 0.01881 0.4657 0.01350
p100_1 0.8984 0 0.8984 0
p100_2 0.8512 0 0.8512 0
p200_1 0.6772 0.02347 0.6772 0.02316
p200_2 0.7836 0 0.7836 0
p500_1 0.5538 0.006246--- ---
p500_2 0.7064 0 0.7064 0
p1000_1 0.7739 0.04015 0.8275 0.02619
p1000_2 0.2445 0 0.2445 0

 gU gU/sz
U min U std devU min U std dev

Hardware/Software Partitioning
Overview

● Kernel vs Application hardware assignment

Problem Kernel Task
idle eng 45.4% 76.7%
p100_1 36.4% 3.0%
p100_2 36.4% 1.0%
p200_1 9.1% 2.5%
p200_2 45.4% 0.0%
p500_1 45.4% 6.2%
p500_2 63.6% 0.0%
p1000_1 36.4% 3.3%
p1000_2 54.5% 0.2%

Hardware/Software Partitioning
Contributions

1.Addressed schedule feasibility during partitioning
2.Minimizing U helps find feasible schedules
3.Partitioned kernel nodes contribute to feasible

schedules
4.Design time should be a constraint

● encourage code re-use (including kernel)

5.Results indicate that schedule feasibility needs to
be addressed during partitioning

Hardware/Software Partitioning
Future Research

1.Use finer-grained internal representation such as
control and data-flow graphs

2.Extend to multiprocessor partitioning
3.Synthesis of hardware coprocessors from

software code would make automated
partitioning a more applicable technique

Summary

● Demonstrated importance of addressing schedule
feasibility during partitioning

● Explored EDF in context of hardware/software
codesign

● Results indicate that the kernel is a viable
candidate for partitioning because of invocation
frequency and code re-use

