
Real-time Kernel Support for Coprocessors:
Empirical Study of an SoPC

Andrew Morton and Wayne M. Loucks
Electrical and Computer Engineering

University of Waterloo
Waterloo, Ontario, Canada

Abstract— The system on chip paradigm consists of one or
more instruction set processors integrated with custom hardware
on a single integrated circuit. A uni-processor real-time kernel
is presented that integrates hardware coprocessors by viewing
them as system resources to be scheduled in conjunction with
the processor. The kernel implements the earliest-deadline first
scheduling policy. To demonstrate this “hardware/software
coscheduling”, an automobile engine idle speed controller and
model is implemented. The target platform for this test-case
is the Nios1 system on programmable chip, a soft-core Nios
processor embedded in an APEX2 field programmable gate
array. Impact on schedule analysis and application partitioning
is discussed.

Keywords: SoC, Scheduling, EDF, Coprocessor

I. INTRODUCTION

The system on chip (SoC) paradigm consists of one or
more instruction set processors (ISPs) integrated with custom
hardware on a single integrated circuit. A common application
domain for SoCs is real-time embedded systems. A real-
time kernel is presented here that represents part of a unified
approach to the scheduling of both software and hardware on
an SoC.

Some research projects have considered the integrated
scheduling of hardware and software processes. In most cases
a software scheduler is synthesized for the application. Chi-
nook [1] uses watchdogs to implement reactive behaviour. A
watchdog watches for an event. At the occurance of an event,
a new “mode” is selected. Each mode consists of concurrent
operations that have been serialized. A similar approach is
taken to scheduler synthesis described in [2]. Concurrent
threads are serialized into thread frames. An asynchronous
event triggers a thread frame for execution. The run-time
scheduler attempts to interleave frame execution in an order
that satisfies timing requirements. Both methods offer low
run-time scheduler overhead but have sub-optimal processor
utilization [3]. In [4] abstract Codesign Finite State Machines
(CFSMs) can be implemented in one of hardware, software
or peripheral micro-controller. Facilities for communicating
events between CFSMs are synthesized. The generated soft-
ware is scheduled by either cyclic or static priority policies.

This work supported in part by NSERC (Natural Sciences and Engineering
Research Council of Canada).

1Nios is a trademark of Altera Corporation
2APEX is a trademark of Altera Corporation

Higher ISP usage can be achieved in theory by using the
Earliest Deadline First (EDF) scheduling policy [5]. However
the run-time overhead of EDF schedule analysis discourages
application in embedded systems [6]. In this paper, a real-
time kernel is presented that implements the EDF policy and
supports hardware coprocessor integration in a manner that
facilitates compile-time analysis of schedule feasibility. This
approach may make EDF scheduling a viable solution for a
hardware-software codesign environment.

The kernel is briefly introduced with the concepts of co-
processor and auto-processor kernel objects. The concepts are
demonstrated in a test-case (automobile engine model and
control) running on a SoPC (System on Programmable Chip).
Implications for schedule implementation are discussed and
resulting analysis and partitioning issues are also considered.

II. KERNEL

An object-oriented uni-processor real-time kernel is imple-
mented called cs1 (for CoScheduler1). Three types of system
resources are managed by cs1: the real-time clock, inter-task
message queues and hardware processors. Two software task
types are supported: periodic and aperiodic. (An aperiodic task
is triggered by inter-task messages or by hardware interrupts.)
All tasks are created statically. Periodic task ��� has phase � � ,
period

� � and relative deadline � � . A periodic task is released
at the start of each period (at time � �) by the real-time clock.
The task must complete by deadline � �	� � ��
 � � . A message
triggered aperiodic task has a message trigger and deadline.
The task is released when it receives a message from the
appropriate message queue. A hardware triggered aperiodic
task has a hardware trigger and deadline. The task is released
when the appropriate hardware processor interrupts the ISP.
Tasks are scheduled by the preemptive EDF policy: that is, of
all active tasks, the task with the earliest deadline gets to run.
In practice, when a task is released, it is inserted into the run
list which is sorted by deadline using a min-heap.

Inter-task message queues are encapsulated by message
objects. A message object has storage for a user defined
number and size of message buffers. It also has lists for tasks
that block waiting to send or receive. Message objects are
accessed via their send and receive methods. If a task blocks
on a message send or receive, it is removed from the run list
and placed on the appropriate wait list. When an action on the

Fig. 1. Coprocessor Object FSM

message object enables the task, it is placed back on the run
list.

For this work, a coprocessor is defined as a hardware
device to which software may dispatch a job and which will
interrupt the ISP upon completion of the job. The coprocessor
is required to have a software mask-able interrupt and a status
register that can be queried to determine interrupt status of the
device.

Coprocessors are encapsulated by kernel coprocessor ob-
jects. A coprocessor object contains the interrupt priority,
status and control register addresses, and masks for testing
and disabling interrupts. The vector table entries for all copro-
cessors are linked to the kernel routine. Therefore coprocessor
events are handled by the kernel, which also manages message
and real-time clock events. Each coprocessor object also has
lists for tasks that block on setting up or servicing the copro-
cessor. The coprocessor object finite state machine (FSM) is
shown in Figure 1. Software tasks access coprocessor objects
via the setup, service and serviced methods. Before a task
uses the coprocessor, it must first gain exclusive access via the
setup method. If that task is blocked on coprocessor setup, it is
removed from the run list and placed on the coprocessor setup
wait list. After the coprocessor is setup, it may interrupt the
ISP at any time to indicate “ready for service”. The task which
has set up the coprocessor can invoke the service method
which may require the task to be blocked until the coprocessor
has interrupted the ISP. After servicing the coprocessor, the
task invokes the serviced method which puts the coprocessor
back into the “ready for setup” state.

In addition to coprocessors, which implement a subset of
a task’s functionality, there may be autonomous hardware
processors (termed auto-processors) that function independent
of software tasks. For example, an auto-processor may sample
an input data stream at a fixed frequency and pass it on to
a software task. The primary difference between the auto-
processor and the coprocessor is that the auto-processor re-
quires a software task to set it up. The auto-processor object
FSM, shown in Figure 2 does not have a setup rdy state. After
servicing, the FSM moves directly to the setup state to be

Fig. 2. Auto-Processor Object FSM

ready for the next interrupt. The kernel auto-processor object
is inherited from the kernel coprocessor object. It does not
implement the setup method.

To integrate the auto-processor into the kernel, an aperiodic
task is defined that is triggered by the auto-processor. The
software task may be the consumer task for data from the
auto-processor, or it may act as a wrapper that simply sends
the data to a message queue from which other tasks may access
it. This “wrapper” enables the auto-processor to be integrated
into the kernel with little custom programming.

III. IDLE ENGINE

The idle engine problem was selected as a test-case be-
cause it consists of several tightly interacting processes. The
interaction between environment and controller is expected
to be typical of many real-time applications. The test-case is
not entirely authentic because the environment and the engine
model are actually simulated on the same processor as the
control application. The idle engine model, as described in
[7] is summarized here.

A 4-cylinder automobile engine is modeled in the idle state
(out of gear). It is a hybrid model, combining a continuous
time system (CTS) with a discrete event system (DES). The
components of the CTS are manifold pressure, crankshaft
speed and piston position. The cylinders are modeled by a
FSM that represent the interleaving between spark ignitions
and dead-centers (when a piston reaches the top of its stroke).
The DES variables track the torque generated by the pistons.
The CTS, FSM and DES are tightly coupled: the FSM tran-
sitions in response to CTS events, the DES updates variables
based on CTS events and FSM state, and the CTS is affected
by DES output.

The model has control inputs (throttle angle and spark ad-
vance) and environment inputs (load torque). Both increasing
the throttle angle and increasing the spark advance increase
the generated torque. The throttle has greater control authority
while the spark advance has less authority but has a faster
response time. The load torque disturbances for an ideal engine

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10

Lo
ad

 T
or

qu
e

(N
m

)

Time (seconds)

Fig. 3. Environment Input

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10

C
ra

nk
sh

af
t S

pe
ed

 (
R

P
M

)

Time (seconds)

with controller
no controller

Fig. 4. Engine Output

are generated by such phenomena as the air conditioning
system and the steering wheel servo-mechanism.

The goal is to maintain the crankshaft speed in the range
of

�����������
RPM (rotations per minute) under load torque

disturbances. The controller devised for this test-case consists
of a PID controller for the throttle angle and a P controller for
the spark advance. The test-case consists of four blocks: idle
engine model, environment, controller and user interface. The
simulated environment input and the resulting crankshaft speed
are shown in Figures 3 and 4. The simulated load torque is
similar to that shown [7]. In Figure 4, the resulting crankshaft
speed is shown with and without the controller.

The idle engine application consists of six tasks configured
as shown in Figure 5. The directed arrows indicate data
dependency. � is start-time (phase),

�
is period, � is deadline,�

is worst-case execution time on the Nios soft-core processor,
running at 33 MHz on an Altera APEX 20KE FPGA. All times
are given in units of seconds. Task FSM+DES is an aperiodic
task that is triggered by dc (dead-center) and spk events which
are generated by Task CTS. This aperiodic task is represented
as a sporadic task with minimum inter-arrival period

�
. A task

set, such as this, consisting of periodic and sporadic tasks, is
denoted a hybrid task set.

Fig. 5. Application Configuration

Processor utilization � is defined by Liu and Layland [3]
as

� �
	

����

� �
� �

Baruah et. al. demonstrate [8] that a necessary condition for
feasibly scheduling a hybrid task set under EDF is

�����
For the idle engine task set � � ��� � ��� ��� indicating that it is
infeasible to schedule this task set by EDF. (Note that EDF is
optimal, in the sense that it will only fail to meet a deadline
if no other scheduling algorithm can meet the deadline [9].)
In practise, it was found that Task Throttle was late 22 times
in a 10 second interval.

A. Cordic Coprocessor

A manual examination of the task code revealed that Task
Environment invokes the C cos() library function each time it
runs. The worst-case execution time of this function was found
to be

� � ��� ��� ��� � . If this function is moved to a coprocessor,
the schedule may become feasible. A hardware coprocessor
was therefore implemented that calculates the cosine using
the Cordic algorithm [10]. This algorithm calculates the co-
sine of an � -bit fixed point number in n iterations using 3
adders, 2 shifters and a ROM for constants. The implemented
coprocessor converts an IEEE floating point double to a 64-
bit fixed point number, applies the Cordic algorithm, and
converts the result back to floating point. The coprocessor

TABLE I

COSINE WORST-CASE EXECUTION TIMES

cos() func 0.001435 s
cordic cosine 0.000081 s
Environment with cos() 0.001680 s

with cordic 0.000343 s

TABLE II

FPGA RESOURCE USAGE

Logic Cells Registers (bits) Memory (bits)
cordic 3840 1639 23808
SoPC 7246 3110 50304

is implemented with microprogrammed control. The resulting
worst-case execution times are shown in Table I and the FPGA
resource usage is shown in Table II. These numbers are for
an Altera APEX 20KE FPGA. The SoPC consists of the CPU,
ROM, timer, UART and cordic coprocessor. The SoPC uses��� �

of the logic elements and ��� � of the embedded system
blocks (memory).

To integrate the cordic coprocessor into the kernel, a copro-
cessor object is created for it. The call to the cos() C library
function in Task Environment is then replaced with code such
as this (C++):

system.coproc[0].setup();
cordic->data = angle;
cordic->go = 0; // start calculating
// enable interrupt
cordic->statCtrl = Cordic::DoneMask;
system.coproc[0].service(status);
cosine = cordic->data;
system.coproc[0].serviced();

The processor utilization is � � � ��� ����� ��� , indicating that
it may be feasible to schedule the idle engine task set under
EDF. It was found that the application executed with no late
tasks. It was also possible to increase the model resolution by
decreasing the simulation time from

� � ����� � to
� � ��������� � .

No auto-processor has been incorporated into the idle engine
application. However, if the idle engine controller were imple-
mented in an automobile, an auto-processor could be used to
interface a crankshaft speed sensor to the control tasks running
on the ISP.

IV. COPROCESSOR SCHEDULING

The method used to account for coprocessor execution time
in calculating deadlines is illustrated here by example (Figure
6). � has a worst-case execution time

� � �
and a relative

deadline � � � . The execution time of ��� is broken down
into 3 parts:

� ��� is time spent before invoking the coprocessor,� �
	 is time spent executing on the coprocessor and
� ��� is

time spent after the coprocessor job finishes. If these tasks are
both released at time 0 and are executed in order of deadline
(Scenario 1), then � finishes on time but � � finishes late.
However, both tasks could have finished on time if � � was able
to start its coprocessor job earlier. The solution used with the

Fig. 6. Scheduling with Modified Deadlines

cs1 kernel is to assign a second deadline to tasks that invoke
coprocessors:

1) � � that use a coprocessor:
initial deadline ���� � � ����� � � 	
 � � ���

2) when � � invokes the coprocessor service method
deadline = � �

Applying this rule, the initial deadline for � � becomes ���� �
� ��� �
 � � � �

. Scenario 2 shows the result. ��� executes
before � . ��� transfers execution to the coprocessor at � � � ,
at which time it’s deadline is restored to � � � �

and � starts
executing. At � � �

, the coprocessor is ready to be serviced
but since � �� � � , � continues executing.

Instead of employing one task with two deadlines, ���� and � � ,
as done above, one could employ a pair of tasks as shown in
Figure 7. This raises 2 problems however. The first problem is
that the slack must be divided statically between the task pair.
(Slack of task � , � � , is the maximum time that the execution
of � � can be delayed without it missing its deadline.) The
choice of appropriate slack division is complex and is task set
dependent. The second problem arises when multiple task pairs
share a coprocessor. The application would need to coordinate
execution of the task pairs so that, after one task has dispatched
a job to the coprocessor, the correct task is invoked to service
the coprocessor when it completes. The two-deadline approach
addresses both these problems as explained below.

1) There is no need to find an optimum division of slack
because the slack is shared dynamically between the first
and second parts of the task:

� �� � � � � � � �
 � � 	
 � � �
� � � � �� ��� ��

The slack of the first part of the task, ���� , is equal to the
slack of the whole task. The second part of the task has
slack, � � , equal to any slack not used when the first part
finishes at � �� .

2) The task that sent the job to the coprocessor is the
same task that services the coprocessor when it com-
pletes. This coordination of execution is enforced by
the coprocessor methods. A task will only invoke the

Fig. 7. Coprocessor Task Division

coprocessor service method after it has gained exclusive
access through the coprocessor setup method.

An algorithm for the feasibility analysis of hybrid task sets
scheduled under EDF is described by Stankovic et. al. in [11].
This algorithm is for uni-processors and is not compatible with
the coprocessor problem presented above which is a combined
job-shop and computer scheduling problem. Development of
an algorithm to analyze feasibility under EDF is needed
to make the coprocessor model viable for hard real-time
problems.

Such a feasibility algorithm will also need to consider kernel
overhead. For the idle engine application, the kernel is invoked
with an average frequency 1390 Hz with an average execution
time of

� � � ��� � � . This time includes context switches, message
passing and task releasing/blocking, and scheduling. This
represents � � � � � of the processor time which could impact
the feasibility of a task set.

It should be noted that the modified deadline is not required
for aperiodic tasks triggered by auto-processors. They are not
released until the auto-processor is ready for service and so
the execution time of the auto-processor does not need to be
accounted for in the associated software task.

The kernel does not directly support a wait of arbitrary
duration (i. e. there is a real-time clock but no system timer).
However, this can be implemented by using a coprocessor
object to encapsulate a timer device. The worst-case execution
time of the coprocessor is set to the duration of the longest
wait required by the task. The deadline of the task is modified
as above for a task using a coprocessor.

A. Shared Coprocessors

A coprocessor may be shared by multiple tasks. For exam-
ple, in the idle engine test-case the cordic algorithm can be
extended to calculate not only cosine but other elementary
functions such as ������� , 	�
�� , and square-root [12]. Task
FSM+DES calls the C sqrt() library function. It can be re-
placed with an invocation of the cordic coprocessor. The worst-
case execution times are shown in Table III. As a result, the
minimum simulation time slice becomes

� � ������� � � , which is
slightly larger than without the cordic squareroot (

� � ��������� �).
Factors contributing to this unexpected result are list below.

1) Worst-case execution time (on the ISP) for Task
FSM+DES decreases by

� � ��������� � � � � ����������� �
� � ����� ���� � , not the

� � ������� � � � of the sqrt() function. This

TABLE III

SQUAREROOT WORST-CASE EXECUTION TIMES

sqrt() func 0.000346 s
cordic sqrt 0.000167 s
FSM+DES with sqrt() 0.000657 s

with cordic 0.000533 s

is because there is overhead for setting up and servicing
the coprocessor.

2) There is added kernel overhead of 2 extra context
switches when the task sleeps and when it is re-enabled.

3) Overall time (including coprocessor time) for Task
FSM+DES becomes

� � �����������
 � � ����� � � � � � � ����� � ��� � ,
which is greater than the time of the software-only
solution (

� � ��������� ���).
4) There may be contention for the coprocessor since both

Task FSM+DES and Task Environment share it.

In this instance, the addition of a coprocessor did not result in
speed-up, even though the worst-case execution time (on the
ISP) for the task decreased.

In the cases where it is beneficial for multiple tasks to
share a coprocessor, the coprocessor must be scheduled in
conjunction with the ISP. This is an interesting problem for 2
reasons. First, the ISP is preemptable, while the coprocessor
is not. Second, it is the execution order of software tasks
that determines the order in which jobs are released for the
coprocessor. The coprocessor jobs are therefore released in
the EDF order of their associated software tasks. However,
once released the coprocessor jobs may be scheduled in one
of several ways: for example FIFO order, fixed priority or EDF.
In essence, it combines job-shop scheduling (the job starts on
the ISP, continues on the coprocessor, and returns to the ISP
for completion) with computer scheduling (EDF scheduling of
ISP). It is a subject for further investigation.

V. CONCLUSION

A real-time kernel has been presented with integrated
support for hardware processors. The idle engine application
demonstrates the use of kernel coprocessor objects. It demon-
strates a novel approach to EDF scheduling of tasks using
coprocessors by using modified deadlines.

Schedule analysis is not performed by the kernel. It merely
schedules tasks by their deadline. This limits the run-time
overhead, making the kernel more suitable to real-time sys-
tems. The application of this kernel to real-time applications
will require the development of an algorithm for feasibility
analysis under EDF scheduling. This analysis will have to
analyze scheduling of periodic and sporadic tasks on a pre-
emptable ISP in conjunction with scheduling of non pre-
emptable coprocessors.

The kernel auto-processor and coprocessor objects have
been designed to facilitate hardware-software partitioning of
an embedded system. That is, kernel support for hardware
processors is intended to aid in the integration of software and
hardware components, by reducing the amount of software

synthesis needed for communication between software and
hardware. However a partitioner that employs this kernel will
require the schedule analysis proposed above, not only to
verify a solution, but also to guide the partitioner in choosing
components to migrate between software and hardware.

REFERENCES

[1] P. Chou, E. A. Walkup, and G. Borriello, “Scheduling for reactive real-
time systems,” IEEE Micro, vol. 14, no. 4, pp. 37–47, August 1994.

[2] F. Thoen, M. Cornero, G. Goossens, and H. D. Man, “Real-time multi-
tasking in software synthesis for information processing systems,” in
Eighth International Symposium on System Synthesis. California: IEEE
Computer Society Press, 1995, pp. 48–53.

[3] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM, vol. 20,
no. 1, pp. 46–61, January 1973.

[4] F. Balarin, M. Chiodo, A. Jurecska, L. Lavagno, B. Tabbara, and
A. Sangiovanni-Vincentelli, “Automatic generation of a real-time op-
erating system for embedded systems: Extended abstract,” in Interna-
tional Workshop on Hardware/Software Co-Design (CODES/CACHE),
Braunschweig, Germany, 1997.

[5] J. R. Jackson, “Scheduling a production line to minimize maximum tar-
diness,” Management Science Research Project, University of California,
Los Angeles, Research Report 43, 1955.

[6] F. Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-Vincentelli,
“Scheduling for embedded real-time systems,” IEEE Design & Test of
Computers, pp. 71–82, 1998.

[7] A. Balluchi, L. Benvenuti, M. D. D. Benedetto, T. Villa, H. Wong-
Toi, and A. L. Sangiovanni-Vincentelli, “Hybrid controller synthesis for
idle speed management of an automotive engine,” in Proceedings of the
American Control Conference, Chicago, Illinois, 2000, pp. 1181–1185.

[8] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Preemptively scheduling
hard-real-time sporadic tasks on one processor,” in Proceedings of IEEE
Real-Time Systems Symposium, 1990.

[9] J. Labetoulle, “Some theorems on real-time scheduling,” in Computer
Architectures and Networks, E. Gelembe and R. Mahl, Eds. North
Holland Publishing Company, 1974.

[10] J. Volder, “The cordic trigonometric computing technique,” IRE Trans-
actions on Electronic Computers, vol. EC-8, pp. 330–334, 1959.

[11] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C. Buttazzo, Dead-
line Scheduling for Real-Time Systems: EDF and Related Algorithms.
Kluwer Academic Publishers, 1998.

[12] J. Walther, “A unified algorithm for elementary functions,” in Spring
Joint Computer Conference, 1971, pp. 379–385.

