EDF Feasibility and
Hardware Accelerators

Andrew Morton
University of Waterloo
Canada



1) Introduction and motivation

2) Review of EDF and feasibility analysis
3) Hardware accelerators and scheduling
4) Extended analysis

5) Summary



Embedded systems

provides dedicated service to a larger system

digital embedded systems:

cell phone, washing machine, automotive, assembly-line
hard real-time 1s common

large volumes make production cost important



Introduction

= System-on-Chip
= CPU(s), peripherals and custom logic on one I1C

= standard technique: use hardware accelerators to speed-
up compute-intensive portion of software application




Typical Embedded Scheduling policies
table-based cyclic
fixed-priority preemptive
hybrid cyclic/preemptive

Good alternative: Earliest Deadline First

EDF 1s optimal — will only miss a deadline 1f no other
policy could make it

“natural” way to specity deadlines in embedded system



Earliest Deadline First (EDF)

* Definition of EDF

= of all ready tasks, the task with the earliest deadline 1s
executed first

= 1f another task arrives with earlier deadline, it preempts the
current task



c PR —
S

-I— R

o)

:}f“- —_—

[a—

C.

[

L2

[a—

[a—

G‘H\\I

[a—

le

12

G.

L2

L2

L2

L2

o)

. s T=12 i A i T
1 D =8. C =4

[ ]

- _ A A A
, D=4.C=0

s start time, T, period, C. worst-case
execution time, D_deadline



Given task set T composed of periodic and
aperiodic tasks:
determine whether all tasks can be

scheduled by the preemptive EDF policy
such that no task misses its deadline



Technique

assume synchronous start

all tasks start at t=0
this is the “critical instance”

aperiodic task replaced by sporadic task
with minimum inter-arrival time Ti

tools

processor utilization
processor demand



Processor Utilization: U

* Measure of overall processor business

. C
U:Ziﬂ?

= sums the fraction of processor time required per task



Measure of work required before time ¢

t—D.
T,

l

sum execution times of all jobs (task instances) with
deadlines not later than ¢



Processor utilization does not exceed one
U<l
Processor demand never exceeds processor time

Vit: h(t)<t
Cannot check every A(t)



Do not need to check every A(?)

processor demand only changes at job deadlines
only need to check at each deadline

can define upper limit on interval checked



upper limit for checking deadlines:

Theory [Liu and Layland, 1973] When the deadline driven
scheduling algorithm is used to schedule a set of tasks on a
processor, there is no processor idle time prior to an
overflow.

interval before first idle called synchronous busy period (L)

only need to check until end of synchronous busy period



Feasibility Algorithm

if U>1 then

return “infeasible”

endif

calculate L

for each deadline in [O,L]
if h(t)>t

return “infeasible”
endif

endfor

return “feasible”



Given an accelerator-blocked task

starts on CPU, transfers to accelerator, finishes on CPU

divide T intosubtasks T ,T ,and T
X x, 1 X,2 x,3



Accelerated Task

Representation

DX

_T_ =1 l

Dx.l
Tllcl l Dx.1:D2C2
DX.Z

T T l b,=D,,-C,

DX.3




Extended Analysis - First Try

= (G1ven task set T with accelerator-blocked task T =

= replace T with T ,and T |,
= perform feasibility analysis

= Problem: accelerator-induced 1dle periods



B N O
B
02 4 6 8

T=16D =114 | A |
(3]1:2:,5,41 # ¢

T =20.D =7 T A
T 2 2
2 C =5 i i

this example would pass analysis

T
1

missed dead-line at r=27

during [18,20] CPU 1s idle because T_, must wait

for accelerator



Lemmal Given task set T in which one task T N blocks on
an accelerator once, with logical subtasks { T 10 Ty TX,3},

the accelerator-induced idle results in a critical instance

when:

T, has no slack, and

all other tasks are released synchronously at the end of the

accelerator-induced idle (i.e. at t=D ).



Accelerator-induced Idle

A D1 1 D1,2 [P1,3
T # .
A i i
T
2
A A
T, V
A A
T-4
Y




Analysis of Accelerator-Induced Idle:
all regular tasks released at =0
T ,released at 1=0
no slack > D_=C_

perform feasibility analysis



Subtask Phases

TK-DX
A
% =
t X3 (JX 3
froemermrremmnore e i
T-D
T —~
X1 L
X1
brommmree ]
&
T %, -
x.3 T (' X3 i
frommmrmreesmamn e i
%]



Subtask Phases

: ng
Lo S R
----------------- o
=0
qu 1~ TX B DX 2



if U>1 then Pass 1

return “infeasible” ®, =0 =0
endif Pass 2
calculate L cpx = Tx' Dx y cpx ,=- Dx ,

for each deadline in /O, L]

it h(1)>1 modified h(t), L
return “infeasible” t—(D,+¢))
h'(t)= 1+ —||C,
endif ZD'*‘“‘“ T,

endfor



Contributions

extended EDF feasibility analysis to task sets that
include one accelerator-blocked task (that blocks once
per task instance)

essentially heterogeneous multiprocessing with one
preemtable and one non-preemptable processor

extends applicability of the EDF policy to embedded
systems



Future Work

extend to task sets t
task that blocks mul

hat include one accelerator-blocked
tiple times (done)

extend to task sets t
blocked tasks

hat include multiple accelerator-



