Improved Hardware Accelerated FPGA Placement with Node Swap

Christian Fobel and Gary Gréwal
Computing and Information Science
University of Guelph
Guelph, Ontario, Canada
cfobel@uoguelph.ca, gwg@cis.uoguelph.ca

Abstract—Field Programmable Gate Arrays (FPGA) have
become solutions of choice for embedded applications with small
to medium production numbers. As a result, good CAD tools to
support their use are in demand. This paper presents a solution
to the FPGA placement problem. Some of the best solutions
to date use iterative improvement heuristics such as simulated
annealing. However,the run-times of these stochastic solvers
becomes unacceptably long for performing placement on large
FPGAs. Instead a deterministic iterative solver is proposed that
is implemented in hardware. It implements a node-swap heuristic
that starts from an initial random placement and iterates until
it finds locally optimal solution. Initial results indicate speedups
of 3—4 times over software.

I. INTRODUCTION

A key advantage of Field-Programmable Gate Arrays (FP-
GAs) over full-custom and semi-custom devices is that they
provide relatively quick implementation from concept to phys-
ical realization. However, the compilation times for designs,
which are dominated primarily by placement and routing, are
growing much more rapidly than the available computation
power. For example, the time to compile current FPGAs
can easily take hours or even days to complete for large 2-
million gate chips. With 4-million gate chips on the horizon,
long compile times may hurt the time-to-market advantage
of FPGAs. Therefore, there is a need for the development of
high-quality CAD tools that execute in a reasonable amount
of CPU time, while still generating high-quality solutions.

In this paper, we focus on the placement phase of the FPGA-
based design process. Placement is an NP-complete problem
and one of the most time-consuming tasks in the automation of
physical design. The most basic objective for FPGA placement
is used: minimizing the total wire-length required to complete
the routing.

We propose a fast, hardware-accelerated placement algo-
rithm that employs a simple iterative heuristic that seeks to
minimize the total wire length (interconnect distance) for
the design. The algorithm begins by first creating an initial
(random) placement. Then, on each iteration, it attempts to
reposition each logic block on the FPGA in a way that reduces
the total wire length required to connect (route) the blocks. The
process repeats (iterates) until a local minima is found.

The next section briefly describes the placement problem
and previous work in the area. Then in Section III, our first
hardware-accelerated heuristic is described. Improvements to
the heuristic are then explored followed by results in Section
IV and conclusions.

1-4244-1164-5/07/$25.00 ©2007 IEEE.

Andrew Morton
Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario, Canada
arrmorton @uwaterloo.ca

0000000000 +«—mwopa

o = Conlfigurable
(] h;g(: B]Iuik «g} B
E 8 = Switch Block
D C = Conneetion Block
O
O
Sespom
=g j_
oooooboboooo
Fig. 1. Island Style FPGA

II. FPGA PLACEMENT

FPGAs are user-programmable integrated circuits that pro-
vide flexibility and reconfiguration advantages for supporting
the design and production of digital systems. There is a
variety of architectures available from different vendors, and
although the exact structure of these FPGAs varies, all FPGAs
consists of three fundamental components: (i) Logic blocks
that are capable of implementing combinational/sequential
logic functions; (ii) I/O blocks for communication with the
outside world; and, (iii) Fixed, as well as programmable,
routing resources used to realize all required interconnections
between blocks.

In this paper, we assume that the FPGA is an Island Style
architecture (see Fig. 1). The logic blocks in this architec-
ture are referred to as Configurable Logic Blocks (CLBs)
and are arranged as a symmetrical array. CLBs support the
logic and storage elements of the circuit. General-purpose
interconnection resources provide wiring channels which have
a Manhattan geometry; i.e., the tracks are either horizontal or
vertical. A connection block is used to connect a CLB to the
routing channels via programmable connections. The pins of
each CLB pass uninterrupted through the connection blocks
and have the option of fusing to some channel segments. The
switch block is a switch matrix that is used to connect wires
in one channel segment to other wires.

Typically, implementing a digital circuit on an FPGA is
a 3-step process. The first step involves partitioning of the
circuit (described as a netlist) into logic blocks, in a way that
allows each logic block to be implemented using one CLB.
Next, each logic block is assigned to a specific CLB or I/O
block. (The placement must be optimized so that the circuit
can be successfully routed and signal delays meet any timing
constraints.) Finally, an attempt is made to route the circuit

1134

using the available routing resources.

As discussed, placement is a difficult, time-consuming step
in the compilation process. Although fast routing algorithms
that can find routes in seconds (or in some cases milliseconds)
do exist (e.g., [4]), placement remains a significant problem.
Consequently, a variety of approaches to placement have been
proposed. In general, these approaches can be organized into
three categories: Partition-based [5], iterative improvement
heuristics [2] [3], and analytic methods [1].

In partitioning-based placement, a circuit is recursively
bisected, minimizing the number of cuts of the nets that
connect components between partitions, while leaving highly-
connected blocks in one partition. Eventually, the partition
size reaches a few blocks to obtain improvement by group-
ing the highly-connected blocks together. Partitioning-based
placement algorithms are good from a “global” perspective,
but they do not directly attempt to minimize wire length.

Analytical methods, on the other hand, typically employ
a quadratic objective function, and iterate between two ba-
sic steps: solving sparse systems of linear equations and
repartitioning. The primary advantage of analytical methods
over partition-based methods is their speed: the system of
linear equations can often be solved quickly. However, the
inaccuracy of the quadratic model often leads to inferior
solutions compared with other approaches.

In contrast, iterative improvement methods, start with initial
placements and seek improvements by searching for small
perturbations to the placements that result in better solutions.
For example, simulated-annealing placement heuristics, like
[2] [3], have achieved similar or higher quality solutions,
compared with the other two types of tools. However, this
improvement often comes at the expense of longer runtime.

III. PLACEMENT HEURISTIC

Before describing our solution, we define the placement
problem. The placement problem is represented as a multi-
graph: each edge connects two vertices and there can be
multiple edges between vertices. Each vertex represent a CLB
and each edge a connection between CLBs. The vertices are
to be assigned to a grid, representing a position in the island
architecture FPGA. The wire length [;; is the orthogonal dis-
tance between vertices ¢ and j. The objective of the placement
heuristic is to minimize the total interconnect length L:

D Dk

i=1---N j#i

min L =

Two versions of the hardware-accelerated placement tool
were developed. The first of a simple node-move heuristic
and the second improves by doing node-swaps. The node-
move heuristic is described first, followed by the node-swap
heuristic.

A. Node-Move Version

The node-move heuristic starts with a non-overlapping
random assignment of CLBs to grid locations. The initial

)

Fig. 2. Example Initial Placement

assignment for an example problem is depicted in Fig. 2.
In each iteration, the heuristic attempts to find an improving
move for each CLB. If after an iteration, the net change
reduces the total interconnect length L, a new iteration is
started. Otherwise, the heuristic terminates. The heuristic is
summarized in Algorithm 1.

Algorithm 1: Placement Heuristic
generate random placement;

repeat

AL = 0;

for i = 1 to N do AL +=move (i);
until AL > 0;

The improve(i) function searches a bounded box (neigh-
bourhood) around C'LB; for a move that has a net decrease
in L. It takes the first improving move found and is described
by Algorithm 2. The neighbourhood size is a parameter of
the heuristic: larger neighbourhoods result in potentially better
solutions and smaller neighbourhoods are quicker to search.

Algorithm 2: Move CLB
calculate x and y ranges;
for = € range[min,max] do
for y € range[min,max] do
0 =0;
forj=11tN,j!=ido
if i,j connected then
curr_dist = get_dist (ij);
new_dist = get_dist ((x,y), j);
6 += new_dist - curr_dist;

if § <0 and !occupied (x,y) then
update (i, (x,y));
| return J;

The architecture of the hardware accelerator for the node-
move heuristic is described next.

1135

CALCULATE
DISTANCE
LOCATIONS
[— RAM
CALCULATE
DISTANGE
OCCUPIED
RAM
DIFFERENCE
PROCESS
CONTROLLER
CONNECTED S
—/ RAM]
L | IMPROVE J

CONTROLLER

it 3t 3¢

X Y i
COUNT COUNT COUNT

MIN MAX

XY

k
COUNT

Fig. 3. Hardware Block Diagram

B. Hardware Accelerator

A block diagram of the hardware implementation of the
placement heuristic is shown in Fig. 3. The coordinates of
the CLBs are stored in the Locations RAM, and the wires
connecting them are stored in the Connected RAM. The
Location RAM is simply an array, indexed by CLB, of (z,y)
coordinates. The Connected RAM has one entry per CLB pair
(,7) where i > j. An address encoder maps the CLB (i, j) to
a location in the linear array. The entry for each CLB pair (i, j)
indicates the width of the connection (number of wires). The
Occupied RAM has one entry for each (x,y) grid location. If
a location is occupied, it contains the CLB number, otherwise
-1. The Improve controller is the main control for the accel-
erator. It selects candidate 7 for moving and iterates through
the z,y permutations in 7’s neighbourhood. The Difference
controller, checks the difference in total interconnect length L
for each candidate move location. The Improve controller is
responsible for halting the search once an iteration produces
no improvement in L.

When the hardware accelerator for the node-move heuristic
is synthesized for the Altera Stratix EP1S40, problems up to
size 550 nodes (CLBs) can be handled. The Stratix EP1S40
has 41250 logic blocks and approximately 420 KB of memory.
The maximum clock frequency of this design is 40MHz.

C. Node-Swap Version

The key change in the second implementation of the place-
ment accelerator is that a CLB may now be moved to a
location occupied by another CLB. Previously CLBs could
only be moved to unoccupied locations within the search
neighbourhood. This can still happen but CLB swaps are now
also allowed. This expands the search space which can result
in improved solutions, as is demonstrated by the results in
Section IV. Algorithm 1 remains unchanged but Algorithm 2

TABLE I

TEST CASES

Test Grid | CLBs Connections

Case Sparse Dense
1 9x9 20 27 190
2 25x25 150 1118 11175
3 34x34 280 3255 39060
4 41x41 410 6987 83845
5 47x47 550 | 13227 | 150975

is modified to allow swaps or moves. The modified pseudocode
is listed in Algorithm 3.

Algorithm 3: Move or Swap CLB
calculate x and y ranges;
for x € range[min,max] do
for y € range[min,max] do
6=0;
forj=1tN,j!=ido
if i,j connected then
curr_dist = get_dist (ij);
new_dist = get_dist ((x,y), j);
0 += new_dist - curr_dist;

if occupied (x,y) then
k = CLB at (x,y);
forj=11tN,j!=kdo
if k,j connected then
curr_dist = get _dist (k) ;
new_dist = get_dist ((x,y), j);
0 += new_dist - curr_dist;

if § < 0 then
update (i, k) ;
| return ¢;

It must now check whether the candidate position is occu-
pied or not. If occupied, then it must determine the effect of
moving that CLB into the location occupied by main CLB
under consideration. This significantly increases execution
time in software but can be done in parallel by the hardware.

IV. RESULTS

The two placement heuristics were tested using randomly
generated test cases. The characteristics of these test cases are
listed in Table 1. For each test case there is a sparsely and
densely connected version.

Both the node-move and node-swap heuristics were tested
with each test case. Each heuristic was run 15 times for
each test case, each starting from a different random initial
placement. The average software and hardware times are
reported in seconds in Table II. The software times were
measured on a desktop with a 2.0GHz AMD Athlon X2 3800+
and 2GB of RAM running Windows under minimal system
load.

1136

TABLE I
HEURISTIC EXECUTION TIMES

(a) Sparse
Test Node-Move Node-Swap
Case HW SW | Speedup HW SW | Speedup
1 1.66e-3 | 2.75e-3 1.66 | 1.88e-3 | 3.56e-3 1.89
2 0.28 0.44 1.61 0.30 0.72 242
3 1.36 2.21 1.63 1.60 3.714 2.31
4 3.64 5.90 1.64 5.02 11.65 2.32
5 7.26 11.14 1.56 10.52 26.46 2.51
(b) Dense
Test Node-Move Node-Swap
Case HW SW | Speedup HW SW | Speedup
1 1.56e-3 | 5.33e-3 3.52 | 1.69e-3 | 5.03e-3 2.98
2 0.25 0.80 3.50 0.39 1.48 3.77
3 1.12 3.60 3.21 2.56 9.64 3.76
4 3.11 10.57 341 8.68 32.31 372
5 7.05 23.12 3.35 22.88 97.88 4.28
TABLE III
PLACEMENT QUALITY
(a) Sparse
Test Length Reduction Solution Quality
Case Move Swap Move Swap Swap vs Move
1 101 89 265 277 4.66%
2 21077 16009 29727 34795 17.05%
3 86560 65289 | 109248 | 130519 19.47%
4 229128 | 175810 | 274459 | 327777 19.43%
5 507518 | 419675 | 569116 | 656959 15.44%
(b) Dense
Test Length Reduction Solution Quality
Case Move Swap Move Swap Swap vs Move
1 1331 1242 1435 1524 6.21%
2 233782 221553 258797 271026 4.73%
3 1125887 | 1087213 | 1216525 | 1255199 3.18%
4 2913125 | 2830883 | 3104276 | 3186519 2.65%
5 6097374 | 5945336 | 6356506 | 6508543 2.39%

Both heuristics achieve greater speedups in the densely
connected test cases than in the sparsely connected test cases.
The improved speedup for the densely connected test cases is
explained by the fact that the hardware implementation cal-
culates the Manhattan distance between two nodes regardless
of whether they are connected. The software implementation
on the other hand only calculates the distance if they are
connected.

The node-swap heuristic achieves speedups over its software
implementation that are 10-30% greater than the node-move
heuristic achieves. However the actual execution times are 1-4
times longer. So for execution time, the node-move heuristic is
preferable to the node-swap heuristic. However the node-swap
heuristic consistently finds solutions of better quality. Table III
compares the solution qualities.

For sparsely connected problems, the difference in solution
quality is significant: 5%-20%. For densely connected prob-
lems, the difference is not as notable: 2%—6%. Considering
that all of the hardware execution times are less than a minute,
it is probably advantageous to use the node-swap heuristic due
to the improved quality of solution. For problems larger than

550 CLBs the node-move heuristic may be preferable based
on its shorter execution time.

An approach to consider for further improvement of ex-
ecution times is to pipeline the distance calculation and
comparison. A distance calculation requires two differences
and a summation. By pipelining, a speedup over current times
of at least 3 is expected.

V. CONCLUSIONS

A compact hardware accelerator for the FPGA placement
problem has been presented. It implements an iterative greedy
move/swap heuristic that finds locally optimal solutions. The
accelerators were synthesized for an FPGA to obtain size and
time measurements. Initial results show moderate speedups of
the hardware implementation over a software implementation.
A design change is proposed to improve the accelerator:
pipeline distance calculations. Instead of implementing the en-
tire placement algorithm in hardware future work will examine
a hardware/software adaptation of stochastic techniques.

REFERENCES

[1] C. J. Alpert, T. Chan, D. Huang, I. Markov, and K. Yan,
“Quadratic Placement Revisited,” ACM/IEEE Design Automation
Conference, pp. 752-757, 1997.

[2] V. Betz and J. Rose, “VPR: A New Packing, Placement and Rout-
ing Tool for FPGA Research,” Proceedings of the International
Workshop on Field Programmable Logic and Applications, pp.
213-222, 1997.

[3] V. Betz, J. Rose, and A. Marquardt, “Architecture and CAD for
Deep-Submicron FPGAs”, Kluwer Academic Publishers, ISBN
0-7923-8460-1, 1999.

[4] A. DeHon, R. Huang, and J. Wawrzynek, “Hardware-Assisted
Fast Routing,” IEEE Symposium on Field-Programmable Custom
Computing Machines, Napa, CA, 2002.

[5] J. M. Kleinhans, G. Sigl, F. M., Johannes, and K. J. Antreich,
“GORDIAN: VLSI Placement by Quadratic Programming and
Slicing Optimization, ~” IEEE Transactions on Computer-Aided
Design, 10(3):356-365, March, 1991.

1137

