
Configuration Scheduling Using Temporal Locality
and Kernel Correlation

Santheeban Kandasamy, Andrew Morton, Wayne M. Loucks
Electrical and Computer Engineering

University of Waterloo
Waterloo, Ontario, Canada

{s2kandas,arrmorton,wmloucks}@uwaterloo.ca

Abstract— This paper examines runtime decisions to configure
hardware accelerators or execute in software. Traditionally,
reconfigurable FPGAs are reconfigured on-demand with the
hardware accelerator, as it is needed by the application. If the
software kernel which the hardware kernel replaces is available
too, then more sophisticated decision making on reconfigura-
tions may lead to improved execution time and reduced power
consumption. The temporal locality algorithm is proposed for
applications where individual kernels dominate during differing
execution modes. The kernel correlation algorithm is proposed
for applications where sequences of kernels are invoked in regular
patterns. SystemC simulation is used to compare these two
scheduling algorithms against the on-demand policy. Both timing
and power consumption results are presented. They indicate that
a fairly large reconfiguration time is required for configuration
scheduling to be beneficial.

I. INTRODUCTION

This paper examines alternative configuration scheduling
policies for run-time reconfigurable FPGAs. It takes the view
that reconfiguration is a form of dynamic hardware/software
partitioning. Traditionally hardware/software partitioning was
performed statically, at compile-time. Through simulation and
other techniques, time-critical portions of the application were
identified and accelerated with custom hardware. The ability
to dynamically reconfigure hardware at runtime, allows the
interesting possibility of delaying partitioning until run-time
[7], [10]. The advantage of such an approach is that it can
react to application behaviour at runtime. The disadvantage is
the substantial overhead required for profiling and especially
synthesis tools to be available as part of the system. The idea
explored in this paper is to use statically configured acceler-
ators but to use smart scheduling of their reconfiguration to
adapt to run-time application behaviour.

The architecture being examined is that of a system with a
CPU, which will be called a general-purpose processor, GPP,
and an FPGA which will be reconfigured with coprocessors,
called single-purpose processors, SPP. The FPGAs being con-
sidered do not support partial reconfiguration, so they can only
hold one SPP at a time. This allows a relatively inexpensive
FPGA to be paired with an off-the-shelf CPU. The FPGA is
chosen to be big enough to hold the largest SPP that will be
used by the application.

Traditional systems use simple on-demand scheduling of
the reconfigurable FPGA. (Not to be confused with the “on-
demand” reconfiguration of Ullman et al [12] for managing

partial reconfiguration). The potential problem with simple
on-demand scheduling is the time taken to reconfigure the
device [3], [4]. The idea here is to explore alternative con-
figuration scheduling algorithms that reduce the frequency of
reconfiguration and thereby reduce the time taken in reconfig-
uration [11]. Reducing the frequency of reconfiguration can
also decrease power consumption. Two types of configuration
scheduling algorithms are explored in this paper: temporal
locality and kernel correlation.

The name “kernel” refers to a part of the application that
has been identified has having high execution frequency and/or
long execution time. During the design phase, kernels are
identified through simulation and profiling and a SPP is created
for accelerated execution in hardware. At execution time, the
configuration scheduling algorithm decides whether to execute
the kernel in software or hardware. It must also schedule a
reconfiguration if it is required for a SPP that is not currently
configured. The scheduler keeps track of the kernel execution
history and uses this information to make scheduling decisions.
This is a constrained form of profiling.

In Section II, the two configuration scheduling algorithms
are described. Section III describes the simulation of the
configuration scheduling algorithms using SystemC and the
results. These results include run-time and power consumption.

II. CONFIGURATION SCHEDULING ALGORITHMS

In general, the major phases of a configuration scheduling
algorithm can be categorized into the following.

1) Monitoring: Gathering information about the software
applications behaviour at runtime.

2) Selection: Deciding which configuration should be con-
figured in the FPGA, using the gathered information
from the monitoring phase.

3) Reconfiguration: Performing the actual reconfiguration
of the FPGA with the required configurations.

The on-demand configuration scheduling algorithm does not
have a monitoring and selection phase, since it simply con-
figures the FPGA with the currently required configuration.
The configuration scheduling algorithms considered here have
the ability to execute kernels either in software or hardware.
Therefore they can be developed such that the monitoring and
selection phases are tuned and optimized to the behaviour of
the software application at hand.



A. Temporal Locality (TL)
The term “temporal locality” (TL) is borrowed from CPU

cache design. It means that if a kernel has been used in the
recent past, there is a high probability that it will be used in
the near future. Consider the example of a cell phone that also
plays music. When it receives a phone call, it goes through
the sequence of operational modes of playing music, having
a phone conversation and back to playing music. Kernel 1
is used for decoding music files when playing music and
kernel 2 is used for decrypting the incoming voice messages of
the phone conversation. Kernel 1 only executes when playing
music and kernel 2 only executes when the phone conversation
is taking place. This software application has the characteristic
that different kernels are more dominant and execute more
frequently in different operational modes.

A configuration scheduling algorithm can take advantage
of this behaviour of the application to accurately predict
and schedule configurations of SPP implementations of these
kernels. In this study, the temporal locality (TL) configuration
scheduling algorithm targets this type of application. In order
to illustrate the potential advantage of the temporal locality
over the on-demand configuration scheduling algorithm, the
following sequence of kernel executions from a software
application is used:

kernel 1→ kernel 2→ kernel 1→ kernel 1→ kernel 3

→ kernel 1→ kernel 2→ kernel 1

It can be seen that kernel 1executes most frequently during the
sequence. If it is assumed that the FPGA is initially config-
ured with kernel 1, the on-demand configuration scheduling
algorithm would reconfigure the FPGA six times for this
sequence of kernels. Each kernel would be executed using
their corresponding SPP. A temporal locality configuration
scheduling algorithm implementation, on the other hand, could
execute the entire sequence without ever reconfiguring the
FPGA.

The pseudocode for the temporal locality configuration
scheduling algorithm is given in Algorithm 1. A history

Algorithm 1: Temporal Locality (TL) Reconfiguration
Scheduling

//Monitor Phase
update history(kernel) ;
if kernel not configured then

//Select Phase
if reconfigure required(kernel) then

initiate reconfiguration(kernel) ;
end
execute in software ;

else
start SPP ;
wait for SPP ;
get result SPP ;

end

buffer is used to track recent kernel invocations. The length

of the buffer can be tuned to suit the application. The recon-
figuration required function simply scans the history buffer to
find the kernel with the most invocations in recent history.
If the requested kernel has the most invocations but isn’t
configured, then the function returns true. Note that when
reconfiguration if required, it is initiated but it does not wait
for the reconfiguration to finish. Instead the kernel executes in
software. The next time the kernel is invoked the SPP is ready
to be used.

B. Kernel Correlation (KC)

The term “kernel correlation” (KC) is also borrowed from
CPU design. In CPU design, program behaviour at a branch
often depends on behaviour at the preceding branch; hence
correlated branch prediction. Likewise, the probability of exe-
cuting a kernel may be correlated with which kernel executed
last. Consider the example of a handheld device which is
used to watch a streaming video and afterwards is used to
listen to streaming music. Both the music and video data
is being received by the device over an encrypted wireless
channel. The device therefore goes through the operational
modes of watching video and then listening to music. Kernel
1 is used for decoding the video file format, kernel 2 is used
for decrypting all the incoming data over the wireless channel
and kernel 3 is used for decoding the music file format. In
the first operational mode of watching video the application
decrypts some of the streaming data and then decodes the
video format. Therefore kernel 2 is always followed by kernel
1 and vice versa. In the second operational mode of listening
to music, the application decrypts some of the streaming data
and then decodes the music format. Here kernel 2 is always
followed by kernel 3 and vice versa. This application has the
characteristic that a critical kernels likelihood to execute in the
near future depends on which critical kernel executed last.

The kernel correlation (KC) configuration scheduling al-
gorithm can take advantage of the application behaviour
described above. It does this by keeping track of which kernels
have executed most frequently after each kernel in the recent
past. The pseudocode is listed in Algorithm 2. When a
kernel’s SPP is not configured, the selection phase decides
what SPP should be configured after the current kernel. It
initiates the reconfiguration for the next kernel and executes
the current kernel in software. If the SPP is configured, then
it is used but after use, another selection phase occurs to
determine what SPP should be configured next.

One history buffer is maintained for each kernel. It main-
tains a record of the last n kernels to be invoked following the
kernel associated with the buffer. The reconfiguration required
function scans the buffer for the current kernel and predicts
that the kernel occurring most often in the buffer will follow
the current kernel. If that isn’t configured, then a reconfigura-
tion is performed.

With temporal locality, the goal was to keep the most fre-
quently executed kernel configured, reducing the reconfigura-
tion frequency. With kernel correlation the goal is to predict the
next needed kernel and have it configured before it is invoked.



Algorithm 2: Kernel Correlation (KC) Reconfiguration
Scheduling

//Monitor Phase
update history(kernel) ;
if kernel not configured then

//Select Phase
if reconfigure required() then

initiate reconfiguration(next kernel) ;
end
execute in software ;

else
start SPP ;
wait for SPP ;
get result SPP ;
//Select Phase
if reconfigure required() then

initiate reconfiguration(next kernel) ;
end

end

Fig. 1. Simulation Architecture

This might increase the frequency of reconfiguration but since
the reconfiguration can be done in parallel to the application
software it shouldn’t negatively affect execution time. In fact it
should reduce execution time since the appropriate SPP will be
already configured more of the time, enabling more frequent
use of the SPP.

III. SYSTEMC SIMULATION

A timed functional model was implemented using SystemC
to determine the performance of the configuration scheduling
algorithms. Timed functional models are used often in hard-
ware/software partitioning since they are useful for analyzing
performance trade-offs between different design alternatives
[2]. The architecture of the simulation model is shown in
Figure 1. The GPP is a 32-bit MIPS running at 100MHz. The
FPGA is a Xilinx Virtex-II Pro.

The SystemC simulation does not actually execute the
benchmarks: it marks passing of time for each benchmark as it
is executed. It also marks the time taken for the configuration
scheduling, reconfiguration and executing on the SPP.

To obtain execution times for configuration scheduling,
each configuration scheduling algorithm was implemented in

TABLE I
TEST CASE PROBABILITIES

Test
Class Case Description
Temporal
Locality

1 A mode has one dominant kernel (∼ 90% proba-
bility), with infrequent execution of other kernels.
Modes are repeated 40 times before switching to
other modes.

2 Same as test case 1 but less dominant kernel (∼
70%).

Kernel
Correla-
tion

3 Kernel a is followed by predominantly by kernel b
(∼ 85 − 90% probability) with small probability
of other kernels following.

4 Kernel a is followed less predominantly by kernel
b (∼ 70%).

C++, compiled and executed on the MIPS SDE instruction
set simulator. Execution times were calculated based on the
resulting instruction counts, a cycles per instruction (CPI) of
1.5 [13] and clock frequency of 100 MHz.

The application execution times were derived from the
MediaBench 1 benchmarks: a set of multimedia applications
designed for embedded systems [6]. Villarreal et al [13] used
profiling to identify critical kernels in five of the MediaBench
benchmarks. Then they synthesized SPP’s to accelerate the
kernels. These results were used as the starting point of this
case study. The five benchmarks from [13] were combined
into one application. Each benchmark has one critical kernel
and therefore the entire software application has five kernels,
each with a possibility of being executed in software or using
a SPP. The timing results from [13] were used as parameters
in the simulation.

A number of test cases were generated using these five
benchmarks as components of an application. The simulation
would choose which component to execute next based on
probabilities. The probabilities were tuned to represent four
types of application as seen in Table I.

The temporal locality scheduling algorithm was used on test
cases 1 and 2. The kernel correlation scheduling algorithm was
used on test cases 3 and 4. The results are shown in Figures
2 and 3. In each figure, simulated execution time (in seconds)
is graphed against reconfiguration time (in milliseconds). The
upper line (SW Only) in each graph shows execution time if
no SPP is used. The other two lines in each graph compare the
configuration scheduling algorithm against simple on-demand
scheduling. It can be seen that for small reconfiguration times,
on-demand out performs the proposed scheduling algorithms.
However as reconfiguration time grows, temporal locality and
kernel correlation out perform on-demand. Since the configu-
ration scheduling algorithms sometimes execute the kernel in
software (on mispredictions), they are of most benefit when
the reconfiguration time is larger than the difference between
software and hardware execution time. One would have to
analyze the application and relative execution times to choose
between on-demand and one of the configuration scheduling
algorithms.

1http://euler.slu.edu/∼fritts/mediabench/



(a) Test Case 1

(b) Test Case 2

Fig. 2. Temporal Locality Results

(a) Test Case 3

(b) Test Case 4

Fig. 3. Kernel Correlation Results

TABLE II
ENERGY AND POWER CONSUMPTION

Test
Case Algorithm Power Time Energy

1 SW Only 105.0 mW 34812 s 3.66 kJ
On-Demand 104.5 mW 27803 s 2.91 kJ

TL 104.3 mW 24742 s 2.58 kJ
2 SW Only 105.0 mW 35471 s 3.72 kJ

On-Demand 105.1 mW 35763 s 3.76 kJ
TL 104.8 mW 27465 s 2.88 kJ

3 SW Only 105.0 mW 34976 s 3.67 kJ
On-Demand 104.5 mW 27816 s 2.91 kJ

KC 104.9 mW 26788 s 2.81 kJ
4 SW Only 105.0 mW 34484 s 3.62 kJ

On-Demand 104.5 mW 27287 s 2.85 kJ
KC 105.2 mW 28384 s 2.98 kJ

A. Energy Consumption Analysis

Based on the timing results from the simulation, it is
possible to estimate the power and energy consumption of the
various configuration scheduling algorithms. Power consump-
tion is calculated as:

Ptotal = Pgpp + PFPGA + PROM .

Power consumption is different when a unit is active or
inactive and so depends on the fraction f of time that each
unit is active and inactive as stated here:

Pgpp = factive
gpp P active

gpp + (1− factive
gpp )P inactive

gpp

Pfpga = factive
fpga P active

fpga + (freconfig
fpga )P reconfig

fpga

+(1− factive
fpga − freconfig

fpga )P inactive
fpga

Prom = factive
rom P active

rom + (1− factive
rom )P inactive

rom

P active
gpp is the power consumption of the CPU when ex-

ecuting the application in software. At that time the FPGA
is inactive and it’s power consumption is P active

fpga . When
execution transfers to the FPGA, roles are reversed. When
reconfiguring, the CPU is still considered active and the ROM,
which holds the configuration data, is also active at that time.

Power consumption data from [13] was used to estimate
the active and inactive power of the GPP. Active and inactive
power consumption for the FPGA was estimated using tech-
niques found in [9], [1]. Reconfiguration power consumption
was assumed equal to the active power consumption of the
FPGA [8]. Active and inactive power consumption for the
ROM holding the FPGA configurations was estimated using
the technique in [5].

The fraction of time that the GPP, FPGA and ROM are
active, inactive or in reconfiguration where obtained from the
simulation described above. Based on this data, power and
energy consumption is estimated as reported in Table II. For
test cases 1 and 2, the reconfiguration time was set at 1000ms
and for test cases 3 and 4, it was set at 200ms.

The most important thing to note is the power consumption
since the time will depend on the reconfiguration time. The
power consumption is affected by the the fraction of time spent



executing on the FPGA and the amount of time spent reconfig-
uring it. The temporal locality had lower power consumption
than the all-software system and the on-demand system. Hence
if the execution time is equal then it will have the lowest power
consumption. It had lower power consumption because it was
the most conservative with reconfigurations, performing them
less often than the on-demand system. The kernel correlation
had higher power consumption than the all-software system
and the on-demand system. It performed reconfigurations
more frequently since it was always trying to anticipate the
next kernel to be needed. It could still achieve better energy
consumption than the on-demand if it’s execution time were
shorter, as would be the case with longer reconfiguration times.

IV. CONCLUSIONS

Two configuration scheduling algorithms have been pro-
posed: temporal locality and kernel correlation. Through sim-
ulation using SystemC, it has been shown that the benefit is
dependent on reconfiguration time. These simulations used
synthetic test cases; real-world applications also need to be
obtain more realistic application behaviour. Analysis of power
consumption shows that temporal locality reduces power con-
sumption, since it reduced the frequency of reconfiguration.
Kernel correlation actually increases power consumption but
when that is combined with lower execution times, it can still
result in reduced energy consumption.

Which of these alternatives, on-demand, temporal locality
and kernel correlation, should be used depends on the run-
time behaviour of the application and also the relative speeds
of the CPU, FPGA and reconfiguration time.

REFERENCES

[1] Altera Corporation. Stratix II vs Virtex-4 power comparison & estima-
tion accuracy whitepaper. Technical report, 2005.

[2] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design with
SystemC. Springer, 2002.

[3] S. Hauck and W. Wilson. Run-length compression techniques for FPGA
configurations. In IEEE Symposium on Field-Programmable Custom
Computing Machines, 1997.

[4] J. Jacob and P. Chow. Memory interfacing and instruction specification
for reconfigurable processors. In ACM/SIGDA International Symposium
on FPGAs, 1999.

[5] T. Kangas, T. Hmlinen, , and K. Kuusilinna. Scalable architecture for
soc video encoders. Journal of VLSI Signal Processing Systems, 44(1-
2):79–95, 2006.

[6] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: A
tool for evaluating and synthesizing multimedia and communicatons
systems. In ACM/IEEE International Symposium on Microarchitecture,
pages 330–335, 1997.

[7] R. Lysecky and F. Vahid. A configurable logic architecture for dynamic
hardware/software partitioning. In Design Automation and Test in
Europe Conference, 2004.

[8] L. Shang and N. K. Jha. Hardware-software co-synthesis of low power
real-time distributed embedded systems with dynamically reconfigurable
FPGAs. In Conference on Asia South Pacific Design Automation/VLSI
Design, 2002.

[9] L. Shang, A. S. Kaviani, and K. Bathala. Dynamic power consumption
in Virtex-II FPGA family. In ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 157–164, 2002.

[10] G. Stitt, R. Lysecky, and F. Vahid. Dynamic hardware/software parti-
tioning: A first approach. In Design Automation Conference, 2003.

[11] S. Swaminathan, R. Tessier, D. Goeckel, and W. Burleson. A dy-
namically reconfigurable adaptive viterbi decoder. In ACM/SIGDA
International Symposium on FPGAs, 2002.

[12] M. Ullmann, M. Hübner, B. Grimm, and J. Becker. On-Demand
FPGA Run-Time System for Dynamical Reconfiguration with Adaptive
Priorities, pages 454–463. Lecture Notes in Computer Science: Field
Programmable Logic and Application. Springer Berlin / Heidelberg,
2004.

[13] J. Villarreal, D. Suresh, G. Stitt, F. Vahid, and W. Najjar. Improving
software performance with configurable logic. Kluwer Journal on
Design Automation of Embedded Systems, 7(4):325–339, 2002.


