
A Hardware/Software Kernel for
System on Chip Designs

Andrew Morton and Wayne M. Loucks
Electrical and Computer Engineering

University of Waterloo
Waterloo, Ontario, Canada

*work supported in part by Natural Sciences and Engineering Research Council of Canada and the Graduate
Studies Office, University of Waterloo

System on Chip (SoC)

Kernel Coprocessors
● STRON-I, UFμK

– scheduler*
– interrupt handler
– timer
– semaphore
– periodic task start

* fixed-priority preemptive

● δ Framework
– lock cache
– deadlock detection
– dynamic memory

manager
● 1/2 performance gain

vs 1/25 gate count

cs1 Kernel

● uni-processor
● EDF scheduler
● message queues
● application

coprocessor manager

Preemptive EDF Scheduler
● Earliest Deadline First

– Of all ready tasks, the task with the earliest deadline is
executed first. If another task arrives with an earlier
deadline, it will preempt the currently executing task.
This is an optimal scheduling policy.

– Periodic tasks: released at regular interval
● start(s), period(T), deadline(D)
● release r = s + mT, m = 0,1,...
● relative deadline d = r + D

– Aperiodic tasks: released by event
● release r = arrival of event
● relative deadline = r + D

EDF Example

● r
1
= 2, 14, 26, ...

● r
2
= 0, 16, 21

EDF Coprocessor Design

● Coprocessor contains list of tasks with parameters
– Periodic: start(s), period(T), deadline(D)
– Aperiodic: deadline(D)

● Ready tasks bid in round-robin order for earliest
deadline.

● Idle task initiates bidding with D=∞
● If a task has earlier deadline, it bids
● Task with earliest deadline wins

– If winning task changes, coprocessor interrupts CPU

Coprocessor Structure

Scheduling Example

t=0 t=2 t=6 t=8 t=14 t=16 t=18
task 0 : idle state alive alive alive alive alive alive alive

vars
bid? yes yes yes yes yes yes yes

task 1 : periodic state dead alive dead dead alive alive alive
s=2,T=12,D=8 vars r=2 r=2,d=10 r=14 r=14 r=14,d=22 r=14,d=22 r=14,d=22

bid? no yes no no yes yes yes
task 2 : aperiodic state alive dead dead dead dead alive dead
D=4 vars r=0,d=4 r=? r=? r=? r=? r=16,d=20 r=?

bid? yes no no no no yes no
task 3 : irq tid _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
tid=? d _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

action

D=∞ d=∞ d=∞ d=∞ d=∞ d=∞ d=∞ d=∞

EDF Coprocessor Size
on Altera 20K200E FPGA

EDF Coprocessor Performance

1.Response time (maximum scheduler delay)
2.Processor overhead

* assumes 1 application coprocessor

Worst-case Execution Cycles*
cs1
cs2 1096
EDF coproc 32 + 20n

1166 + 136* log
2
n 101P + 100* log +

2
n P*

Performance Example

● Example:
– n=8, P=3
– clock=33MHz

1.Response time
– cs1 (without EDF coprocessor) = 84 μs
– cs2 (with EDF coprocessor) = 39 μs

Performance Example

2.Processor overhead
– Task processor utilization

– Assumption: each task invokes kernel twice (upon
release and termination)

– Kernel processor utilization

U=∑
i=1

n C i

T i

U kernel=2C kernel∗∑
i=1

n 1
T i

Kernel Coprocessor vs
Application Coprocessor

● Benefit-Cost Ratio

● Case Study [ML03]

[ML03] A. Morton and W. M Loucks. Real-time kernel support for coprocessors: Empirical
study of an SoPC. In Proceedings of the Embedded Systems and Applications
Conference, pages 10-14, 2003.

U
Size

Coprocessor Δt ΔU Size (%) ΔU/Size
EDF 0.06138μs 0.1270 30 0.4235
cosine 0.2164 46 0.47041.337μs

Hardware/Software Partitioning

● This kernel partitioning part of overall
hardware/software partitioning strategy:
– Partition the application and kernel between hardware

and software such that hardware size not violated and
application can be feasibly scheduled by the preemptive
EDF policy.

– Application consists of a set of tasks represented by
control flow graphs and scheduling parameters.

– Kernel also represented by control flow graph.
– ΔU computed differently between application and

kernel tasks.

Future Work

● Investigate EDF coprocessor for multi-processor
systems.

● Apply hardware/software partitioning to the Java
Virtual Machine
– Deterministic behaviour: garbage collector coprocessor
– Processor overhead: byte code translation coprocessor

