A Hardware/Software Kernel for
System on Chip Designs

Andrew Morton and Wayne M. Loucks
Electrical and Computer Engineering
University of Waterloo
Waterloo, Ontario, Canada

*work supported in part by Natural Sciences and Engineering Research Council of Canada and the Graduate
Studies Office, University of Waterloo

System on Chip (SoC)

CPU
Coproc
o Coproc
ROM RAM
ASIC/FPGA

Kernel Coprocessors

* STRON-I, UFuK * O Framework
— scheduler* — lock cache
— interrupt handler — deadlock detection
— timer — dynamic memory
— semaphore Mmanaget
— periodic task start * 1/2 performance gain

vs 1/25 gate count

* fixed-priority preemptive

csl Kernel

Yy
scheduler

run list

kernel

SN

msg oby 1

timer list

A |

*+ | msg obj m

 TE—" |

= N

coproc oby 1

«++ [coproc obj n

Roo

N

Oy

R

N

e
T

uni-processor
EDF scheduler
message queues

application
COProcessor manager

Preemptive EDF Scheduler

e Earliest Deadline First

— Of all ready tasks, the task with the earliest deadline 1s
executed first. If another task arrives with an earlier
deadline, 1t will preempt the currently executing task.
This 1s an optimal scheduling policy.

— Periodic tasks: released at regular interval
* start(s), period(T), deadline(D)
® releaser=s+ml, m=0,1,...
* relative deadlined=r+ D

— Aperiodic tasks: released by event

e release r = arrival of event

e relative deadline=r+D

EDF Example

I I
-t - [|
>4 6 8 1012141618 2022 24

|
|
2
s=2,T =12 A i A i
D =8,C =4

A A A
D=4, C=2

o r=2,14,720, ...
e r=0, 16, 21

EDF Coprocessor Design

* Coprocessor contains list of tasks with parameters
— Periodic: start(s), period(T), deadline(D)
— Aperiodic: deadline(D)

* Ready tasks bid in round-robin order for earliest

deadline.

* Idle task initiates bidding with D=o0

e If a task has earlier C

eadline, 1t bids

e Task with earliest deadline wins

— If winning task changes, coprocessor interrupts CPU

Coprocessor Structure

t1d counter

tid m
term/sleep/wake l
bt
A hk task set
10 7l T2 wmnt+1
fdle) L (periodic) || (aperiodic) | || (q) oo
T L S i o
- | R B R
o | D=0xfttttftt | | D D Tt
state || state || state || state
.. | POV | oSSOS———
d d
i
2 IS
o C A
¥ J = W R
X 1'e§- @ ¢ A ¢
[o =
a" p—
S clock
YYy z out finute state machme

tume out

t1d out

A A &

1q|

Scheduling Example

|
|
4

O 6 8 10121416 18 2022 24
5=2,T =12
e I =— =
D =4, C_ =2 ‘% i % i % i
t=0 t=2 t=6 t=8 t=14 t=16 t=18
task 0 : idle state |alive alive alive alive alive alive alive
D= vars =00 =0 d=o d=o =00 =00 d=o
bid? [yes yes yes yes yes yes yes
task 1 : periodic [state [dead alive dead dead alive alive alive
s=2,T=12,D0=8 |vars |r=2 r=2,d=10 [r=14 r=14 r=14,d=22|r=14,d=22|r=14,d=22
bid? [no yes no no yes yes yes
task 2 : aperiodic [state [alive dead dead dead dead alive dead
D=4 vars [r=0,d=4 |r=? =7 =7 =7 r=16,d=20[r="
bid? |yes no no no no yes no
task 3 : irq 1o I IR R R R S R
tid=? d

action

EDF Coprocessor Size

on Altera 20K200E FPGA

n ta

sk

EDF Coprocessor Performance

1.Response time (maximum scheduler delay)

2 .Processor overhead

s 166 + 1367log 1 + 101P + 100%Iog 1 *P

(52 09
EDF coproc 132+ 20n

b

b

* assumes 1 application coprocessor

Performance Example

* Example:

- n=8§, P=3

— clock=33MHz
1.Response time

— ¢sl (without EDF coprocessor) = 84 us
— ¢s2 (with EDF coprocessor) =39 us

Performance Example

2 .Processor overhead

— Task processor utilization
o C.

U=y —

i=1 r i

— Assumption: each task invokes kernel twice (upon
release and termination)

— Kernel processor utilization

Ukernel kerne Z

1
T

Kernel Coprocessor vs
Application Coprocessor

* Benefit-Cost Ratio
AU

Size
* Case Study [MLO3]

Coprocessor |At AU Size (%) |AU/SIze
EDF 0.06138us [0.1270 (30 0.4235
cosine 1.337us 0.2164 |46 0.4704

[MLO3] A. Morton and W. M Loucks. Real-time kernel support for coprocessors: Empirical
study of an SoPC. In Proceedings of the Embedded Systems and Applications
Conference, pages 10-14, 2003.

Hardware/Software Partitioning

* This kernel partitioning part of overall
hardware/software partitioning strategy:

— Partition the application and kernel between hardware
and software such that hardware size not violated and
application can be feasibly scheduled by the preemptive

EDF policy.

— Application consists of a set of tasks represented by

control flow graphs and scheduling

— Kernel also represented by control {

parameters.

ow graph.

— AU computed differently between aj
kernel tasks.

oplication and

Future Work

* Investigate EDF coprocessor for multi-processor
systems.

* Apply hardware/software partitioning to the Java
Virtual Machine

— Deterministic behaviour: garbage collector coprocessor

— Processor overhead: byte code translation coprocessor

