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Abstract

Hardware/software codesign is a design methodology for embedded systems that seeks
to satisfy system-level constraints by exploiting the synergy between hardware and software
through their concurrent design [71]. During partitioning, design components are assigned
to hardware and software implementation targets. The output of the partitioner has a
significant impact on the subsequent scheduling of software. This dissertation is a study
of the relationship between the partitioning and scheduling of concurrent systems as it
pertains to hardware/software codesign. It is structured as three related studies.

The first study is on the Earliest Deadline First (EDF) scheduling policy. This is
an optimal policy that yields high processor utilization. An algorithm for the off-line
feasibility analysis of systems scheduled by EDF is extended in this study to accommodate
tasks that employ coprocessors during their execution. This is relevant to software systems
that have been partitioned by moving part of the application functionality into hardware
coprocessors.

The second study is a case study of a real-time kernel that implements the EDF schedul-
ing policy and an automotive application executing on a System on Programmable Chip
(SoPC). The application is partitioned by creating a hardware coprocessor. The kernel
is also partitioned. The impact on the schedule feasibility of the system is examined for
both coprocessors. A metric is also proposed that facilitates comparison of coprocessors,
whether for the application or the kernel.

The third study is of automated partitioners. The hardware/software partitioning
problem is defined such that it includes schedule feasibility and the joint partitioning of
application and kernel. A non-linear programming model is created to capture the problem
definition and a heuristic is developed based on the Fiduccia/Mattheyses heuristic. Results
confirm that the scheduling problem is hard enough that it is not likely to be satisfied unless
directly addressed by the partitioner. The results also show that including the kernel in
partitioning helps to produce solutions with feasible schedules.

The inter-related nature of hardware/software partitioning, and scheduling of concur-
rent systems is demonstrated through the three studies described above. In the process,
scheduling by the preemptive Earliest Deadline First policy is explored in its relation to
hardware/software codesign. It is shown that scheduling of concurrent systems needs to
be integrated into hardware/software partitioning in order to meet demanding system con-
straints. Since all three studies focused on single-processor systems, an avenue for further
exploration is to consider multi-processor systems.
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Chapter 1

Introduction

This dissertation is a study of the interaction among partitioning, scheduling and per-

formance of embedded systems. An embedded system is an element of a larger system,

providing a dedicated service to that system [71]. The embedded systems considered in this

dissertation are digital electronic systems. Embedded systems are used in many types of

applications: in manufacturing for robot control, in consumer products such as cell-phones

and in vehicles such as anti-lock breaking on cars or flight-control on airplanes.

A significant subset of embedded systems are real-time embedded systems. For a real-

time system to be correct it must be both logically correct and temporally correct. In

other words, a real-time system must meet its timing constraints. For example the anti-

lock breaking system on a car needs to pump the brakes on the car at the correct time to

achieve the correct result, which is a controlled reduction in speed without skidding.

A common implementation platform for embedded systems, both real-time and not,

is the System on Chip (SoC). An SoC consists of one or more software programmable

processors integrated with application specific hardware on a single integrated circuit. The

technique of designing the hardware and software components of an embedded system

1



2 CHAPTER 1. INTRODUCTION

concurrently is called “hardware/software codesign”. By designing hardware and software

concurrently, trade-offs can be made that help to meet system-level design objectives such

as timing constraints or power consumption.

1.1 Hardware/Software Codesign

The hardware/software codesign process, or simply codesign process, can be divided into

four stages: specification, internal representation, partitioning and synthesis. Ideally, a fifth

stage, verification, is integrated into each of the first four stages. The codesign process is

reviewed in Chapter 2.

A design is specified which, due to timing constraints or other characteristics, will

likely require both software executing on programmable processors and custom hardware

encapsulated in coprocessors that communicate with the processors. Partitioning is the act

of assigning design components to implementation targets such as programmable processors

(software) and coprocessors (hardware). Partitioning may be performed manually or by an

automated partitioner. The use of an automated partitioner requires that the specification

be transformed into an abstract representation called the internal representation (IR).

The IR captures the control and data flow semantics of the design, usually with a graph

structure. The IR also has estimates of resources required by the design components. For

example: the silicon area if implemented in hardware, the bytes of program memory if

implemented in software, or the time required to execute the component in hardware or

software.

After partitioning the IR components onto hardware and software implementation tar-

gets, the final design is synthesized. The synthesis stage has multiple sub-tasks: interface

synthesis, scheduling of software and possibly hardware, and source code generation and
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compilation.

1.2 Thesis Statement

The focus of this dissertation is the partitioning and scheduling of concurrent real-time

systems implemented on SoCs. Some existing codesign systems integrate scheduling into

the partitioning stage but only for single-process designs. Those codesign systems that

do schedule concurrent systems do so in isolation from the partitioning stage. It is my

thesis that partitioning and scheduling of concurrent systems are closely connected and

best approached in an integrated manner.

1.3 Dissertation Organization

This dissertation is organized into three studies on the inter-action between partitioning

and concurrent scheduling. The first study is on the impact of hardware coprocessors

on the feasibility of task sets scheduled by the preemptive Earliest Deadline First (EDF)

policy. EDF is an optimal scheduling policy in that it will fail to meet a deadline only if

no other policy can meet that deadline. Furthermore EDF can attain, in theory, higher

processor utilization than the fixed-priority preemptive policy [67, 50] commonly employed

in embedded real-time systems such as VxWorks [105]. EDF has been studied extensively

by the real-time scheduling community but little work has been done on EDF by the

codesign research community. This may be due to higher run-time scheduling costs for

this dynamic priority policy compared to scheduling costs for the fixed-priority policy.

Addition of hardware application coprocessors complicates the feasibility analysis for task

sets scheduled by EDF policy. In Chapter 3, after reviewing an existing EDF feasibility
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analysis algorithm, it is extended to integrate the effects of application coprocessors into

the analysis.

The second study is a case study of a real-time kernel and application implemented on

a System on Programmable Chip (SoPC). The SoPC consists of a soft-core instruction-

set processor (or simply processor) and hardware coprocessors implemented on a Field

Programmable Gate Array (FPGA). A uniprocessor real-time kernel is developed that

schedules by the EDF policy. An automotive application is also developed that consists of

multiple tasks scheduled by the kernel. The resulting system has high processor demands

and tasks miss deadlines, resulting in incorrect data. Two coprocessors are developed to

help meet deadlines: the first implements a subset of the application functionality, and the

second implements a subset of the kernel functionality. The impact of these two partitions

(processor/coprocessor combination) on the schedule feasibility is evaluated. The case

study is presented in Chapter 4.

The third study is on automated partitioners that incorporate schedule feasibility as a

partitioning constraint. Furthermore, it is customarily the application that is subject to

partitioning but the partitioners that are presented in this study also allow partitioning of

the kernel. Two benefits are anticipated from including the kernel in the partitioning:

1. The kernel is invoked at least twice for each task instance: upon task release and

task termination. It may also be invoked for inter-task communication or to block

on a critical resource. Although the kernel invocations are likely shorter in duration

than the task execution, the kernel code’s relative frequency of invocation is higher.

Therefore a small reduction in kernel time may result in significant application speed-

up.

2. Development costs are reduced by code re-use. Moving something from software into

hardware requires designing a hardware unit and developing a hardware/software
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interface. Since the same kernel can be used for numerous applications, the effort

required to implement a part of the kernel in hardware is expended once, but the

speed-up may be re-used numerous times.

Two partitioning methods are explored. The first partitioner is a 0-1 non-linear pro-

gramming (NLP) model which is described in Chapter 5. The NLP model is used to

formally define the hardware/software partitioning problem for real-time systems on SoC

scheduled by the EDF policy. Solutions to the NLP model are expected to involve long

run-times and so a second partitioner is described in Chapter 6 that is an adaptation of

the Fiduccia/Mattheyses (FM) circuit partitioning heuristic [31]. The NLP model and

FM heuristic adaptation are evaluated in Chapter 7. Case study data and automatically

generated problems are used to test the partitioners.

1.4 Contributions

The main contributions described in this dissertation are:

1. incorporation of the preemptive Earliest Deadline First scheduling policy into the

hardware/software codesign process,

2. an algorithm to analyze the EDF schedule feasibility of task sets that include tasks

which invoke hardware coprocessors,

3. hardware/software partitioning of the application and the kernel, and

4. integration of schedule feasibility into hardware/software partitioning.

These contributions are evaluated in the concluding chapter, Chapter 8.
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Chapter 2

Codesign Review

Hardware/software codesign is the practice of designing the hardware and software com-

ponents of an embedded system concurrently. Codesign takes advantage of the synergism

between hardware and software to meet system-level objectives [71]. The codesign flow

is comprised of several stages: specification, partitioning, synthesis and verification. The

design flow is illustrated in Figure 2.1. The application behaviour and implementation

technology is captured in the specification stage. The behaviour is transformed into an in-

ternal representation which is usually an abstraction of the information in the specification.

The internal representation is used in the partitioning stage to assign application behaviour

to implementation technology such as programmable processors and hardware coproces-

sors. The partitioned application is then synthesized: software and hardware components

are compiled and scheduled, and interconnects are generated. Depending on the tool set,

some steps may be combined or repeated multiple times. Ideally verification should be

integrated into all stages of the design flow.

This review of hardware/software codesign is organized by the stages of the codesign

flow: specification (Section 2.1), internal representation (Section 2.2), partitioning (Section

7
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Specification Partition

FPGA

CPU

Synthesis
Intermediate
Representation

Figure 2.1: Codesign Flow

2.3 and synthesis (Section 2.4. These sections are followed by a discussion of kernel parti-

tioning (Section 2.5), an area closely related to hardware/software codesign. An in-depth

review of the Earliest Deadline First scheduling policy is found in Chapter 3.

2.1 Specification

The specification for an embedded system consists of three parts: target technology op-

tions, application behaviour description and design constraints [78]. The target technology

describes what programmable processors may be used to execute software, to which devices

the hardware can be synthesized, and possibly inter-connect alternatives. The hardware

target is usually a field programmable gate array (FPGA) or an application specific in-

tegrated circuit (ASIC). The software programmable processors are referred to simply as

processors. If the processor(s) and application specific hardware are implemented on one

integrated circuit (IC), the system is known as a System on Chip (SoC). The design con-

straints may include ASIC/FPGA size, program and data memory sizes and performance

constraints. In the case of a real-time system, timing constraints on the application are

specified that must not be violated.

Several methods have been used to specify application behaviour. Executable specifi-
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cations are often used because they allow early verification of system behaviour via simula-

tion. Both formal specification languages and implementation languages have been used to

specify applications. Some formal specification languages that have been used in codesign

are Lotos [90], SDL [83], StateCharts [43], and SpecCharts [33]. The implementation lan-

guages used for codesign specification can be subdivided into three categories: hardware

design languages (HDL), software programming languages and synchronous programming

languages.

Hardware Design Languages

- Verilog: used in the Chinook system [26]

- VHDL: used in the Cool system [78]

Software Programming Languages

- Cx: a variant of C, used in the Cosyma system [30]

- HardwareC: another C variant, used in the Vulcan system [39]

- SystemC: a set of C++ class libraries that support hardware constructs, used in

Signal Processing Workshop [41]

Synchronous Programming Languages

- Esterel: used in the Polis system [25]

In the CoWare codesign system, Bolsens et al [20] use a heterogeneous approach to

system specification: rather than use one language to describe all aspects of the system,

processes are specified in host language encapsulations (VHDL, Verilog, C, DFL). A lan-

guage called CoWare describes the inter-connection of the encapsulations. This approach

requires the designer to partition the design as part of the specification stage.
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2.2 Internal Representation

With the exception of CoWare, most systems transform the specification into an internal

representation (IR). The IR is usually a directed acyclic graph (DAG) with annotations.

In some cases, sets of DAGS are used to represent concurrent systems (Vulcan [39] and

Dice [47]). Other types of IR are possible: for example the Polis system [25] uses networks

of finite state machines, called Codesign FSMs (CFSM).

The DAG consists of nodes and edges. The nodes represent functionality and the edges

represent data, control or precedence relations between nodes. The granularity of the

nodes varies and the relation represented by the edges varies correspondingly. The node

granularity can be subdivided into four categories, as follows.

fine The design is represented at the operator or statement level. Examples of opera-

tors are addition, store and branch. A statement is composed of operators, as in

“a = b + c”. The IR of the Dice system [47] has nodes of fine granularity.

medium-fine The design is represented at the basic block level. A basic block is a se-

quence of non-branching statements. The following VHDL code consists of 2 basic

blocks:

y := x / 60;
x := x - y * 60;
if( y > 9 ) then
   y := 9;
   x := 59;
end if;

basic
block 1

basic
block 2

This granularity level is employed in the Cosyma [81] and Lycos [69] systems.

medium-coarse The design is represented at the function (software) or entity (hardware)

level. This granularity level is employed by the System Level Intermediate Format
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(Slif) [95], and in the Comet [57] and Cool [78] systems. Slif is used in the third

study on hardware/software partitioning and is described in detail in Section 2.2.1.

coarse The design is represented at the process level. The CoWare system [20] views the

design at this level. This granularity limits the partitioning stage; a stage that CoW-

are omits. CoWare, instead, focuses on synthesizing inter-process communication.

The node granularity has significant impact on the partitioning stage, described in

Section 2.3. Finer granularity allows finer partitioning but greatly increases the solution

space. It also impacts the synthesis stage when the partitioned IR is used to generate

software code for compilation and hardware code for synthesis, and when interfaces must

be synthesized for the partitioned nodes.

2.2.1 System Level Intermediate Format

The System Level Intermediate Format (Slif) is proposed [97] as a standard IR for codesign

partitioning. As stated above, Slif represents the design at the function level using a

directed acyclic graph. Each node in the graph represents a functional object such as a

subroutine or global variable. Each directed edge in the graph represents an access of the

destination node by the source node (i.e. invocation of one function by another). The

direction of the edge shows the initiator of the access, and so it is called an Access Graph.

Nodes and edges are annotated with information as listed in Table 2.1.

The GPP (General Purpose Partitioner) is a freely available package that supports

Slif. It provides six benchmark applications from the codesign domain. It also provides a

generic Slif generator called “gpslifgen” [97]. Gpslifgen uses statistical data gathered from

the six benchmarks. The data includes node fan-out and fan-in based on the node depth

(from the root). A correlation was calculated between hardware and software execution
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Table 2.1: Slif Node/Edge Annotations

Entity Annotation Description

node size – gate count (hardware)

– instruction count (software)

node internal computation

time (ICT)

– execution time for the node, excluding accesses

to other nodes

edge bit-width – number of bits transmitted in parallel

frequency (count) – average number of accesses over the edge per

execution of the edge’s source node

node or

edge

library component

binding

– nodes can be bound to implementations such

as FPGAs or processors

– edges can be bound to a bus

times and sizes. The number of nodes in the Slif to be generated is dictated by the user.

The number of edges are generated automatically and the hardware execution times are

chosen randomly based on a distribution. The same is done for sizes. The edge bit-width

and frequency values are chosen randomly from an interval derived from the example data.

Execution time constraints are also generated automatically.

Gpslifgen was tested by comparing partitioning results on generated examples against

partitioning results on the six benchmarks. Eight examples were generated and four par-

titioning heuristics used. The partitioning results were similar between the generated

examples and real benchmarks.

Slif is adopted as the problem description format for the partitioners described in Chap-

ters 5 and 6, and gpslifgen was used to generate test cases in Chapter 7.
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2.3 Partitioning

The partitioning stage of the codesign flow is usually referred to as hardware/software

partitioning. The problem may be stated as:

Given an embedded system specification that is implementation independent, assign

each component of the system to a target implementation in a manner that optimizes

some goal such as speed, power, area, or a combination of these goals. It is assumed

that there is at least one hardware target and one software target to which components

may be assigned. Multiple components may be assigned to the same target if target

resources are sufficient and system design constraints are satisfied.

In the partitioning process, instructions, functions or entire processes are assigned to im-

plementation targets such as processors, FPGAs and ASICs. These heterogeneous targets

impact the problem in several ways:

• the unit of node size differs between targets - for processors it may be bytes of code,

for ASICs gate count and for FPGAs logic cells or logic elements,

• node execution time varies between targets, and

• edge cost depends on the targets to which its source and destination nodes are as-

signed.

Hardware/software partitioning is also complicated by potentially contradictory objectives:

reduced hardware area and increased speed for example.

Several codesign systems that perform hardware/software partitioning are reviewed in

Section 2.3.2. Some of these systems adapt heuristics from the netlist partitioning litera-

ture. Netlist partitioning is a technique employed during layout of VLSI (Very Large Scale

Integration) circuits. The review of hardware/software partitioning is therefore preceded

by a review of relevant netlist partitioning heuristics.
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2.3.1 Netlist Partitioning

The circuit partitioning problem arises in VLSI layout. Components called cells (or nodes)

are to be laid out in two or more blocks. The cells are connected by wires, called nets.

Nets connect two or more cells. Cells may be connected to more than one net. The netlist

is the set of all nets to be partitioned. Given a netlist, the problem is to bind the cells

to blocks so as to minimize the number of nets spanning the block partitions. Nets that

connect cells in different blocks are said to be cut. The set of cut nets is referred to as the

cutset. Some solutions impose upper and lower bounds on the number of cells assigned to

a block.

The netlist partitioning problem is known to be NP-hard [35]. Therefore algorithmic

solutions, which are guaranteed to find an optimal solution, are considered intractable

(having run-times too large to be of practical use). Therefore heuristic solutions have

been proposed. Heuristic solutions are not guaranteed to find an optimal solution but

are intended to find near optimal solutions and have tractable run-times. Two netlist

partitioning heuristics are reviewed below: Kernighan/Lin (KL) and Fiduccia/Mattheyses

(FM). Note that the heuristics are described using their original symbols which in some

cases conflicts with symbols used elsewhere in this thesis.

Kernighan/Lin Node Interchange

Kernighan and Lin published their node interchange heuristic solution to the netlist parti-

tioning problem in 1970 [54]. The KL heuristic (see Algorithm 2.1) partitions a netlist into

two blocks and limits the number of cells on each net to two. The node set S is partitioned

randomly into subsets A and B. Nodes are successively swapped between A and B until a

locally optimal solution is found that minimizes the cutset.

Gain g measures the reduction in cutset when 2 nodes are swapped. For each node
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Data: node set S
start with any arbitrary partition A, B such that A ∪B = S, A ∩B = ∅ ;

all nodes are unlocked ;

repeat

k ← 1 ;

repeat

choose 1 unlocked node from each block to swap, such that gain g is

maximized ;

lock swapped nodes ;

k ← k + 1 ;

until until all nodes locked ;

choose step k on which the sum of gains G =
∑k

i=1 gi is maximized ;

if G > 0 then

unlock all nodes and restore partition from step k ;

end
until until G = 0;

partition is locally optimal ;

Algorithm 2.1: Kernighan/Lin Node Interchange Heuristic
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a ∈ A, the external cost Ea (cut edges) is:

Ea =
∑
y∈B

cay

and the internal cost Ia (uncut edges) is:

Ia =
∑
x∈A

cax,

where cij is the weight on the edge between nodes i and j. The difference in external and

internal costs for node a is Da = Ea − Ia. The gain if node a from A and node b from B

are interchanged is g = Da + Db − 2cab. This is the sum of the two nodes Di’s minus the

edges that they have in common.

In each step, the gain for all possible swaps is computed which is O(n2), with O(n) steps

per pass (traversal of outer loop) [95]. Thus the complexity is O(n3) per pass. However it

can be modified to run in O(n2 log n) time per pass [63]. No lower bound on the number

of passes has been proved but has been found experimentally to be a small constant [95].

Fiduccia/Mattheyses Node Move

Fiduccia and Mattheyses [31] improved the Kernighan/Lin heuristic to run in O(n) per

pass. This was achieved by moving one cell (node) per step, rather than swapping two

cells. Since the number of cells per block changes with each step, upper and lower bounds

are specified on the block sizes. Cells are moved only if they do not violate the size bounds.

Fiduccia and Mattheyses also generalized the heuristic to partition nets of two or more

cells.

More than two cells are allowed to belong to a net. Therefore, cell gain is calculated

differently. The first step is to calculate the incidence number αA(N) of net N on block

A. The incidence number is the number of cells on net N that reside in block A (Equation



2.3. PARTITIONING 17

2.1). CN is the set of cells on net N .

αA(N) = |{C|C ∈ A and C ∈ CN}| (2.1)

Given that NC are the nets to which cell C is connected, the gain of moving cell C from

block A to block B is:

g(C) = |{N ∈ NC |αA(N) = 1}| − |{N ∈ NC |αB(N) = 0}| . (2.2)

The first part of the expression counts the number of nets to which cell C is connected

that have only one cell in block A. Moving cell C to block B will uncut these nets. The

second part of the expression counts the number of nets to which cell C is connected that

have no cells in block B. Moving cell C to block B will cut these nets. The status of any

net to which cell C is connected that has more than one cell in block A and at least one

cell in block B will not change with the move of cell C and so does not affect the gain of

cell C.

Node Move with Level Gains

Krishnamurthy [58] extended Fiduccia and Mattheyses work by measuring the gain in

future steps, not only gain in the current step. For example, if a net has more than two

cells in block A, moving one of those cells will not remove the net from the cutset in the

current step but makes it possible to remove the net from the cutset in the next step. This

concept is called level gains. Sanchis extended Krishnamurthy’s heuristic from two block

to multiple block partitioning [88].

Hybrid Netlist Partitioning

Areibi and Vannelli [5] use a hybrid genetic algorithm and Tabu search to partition a

netlist into multiple blocks. A genetic algorithm [37] is used to generate a number of
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initial partitions. It should be noted that the name “genetic algorithm” is a misnomer.

It is a heuristic, not an algorithm. Therefore these initial partitions are not guaranteed

to be optimal. The Tabu search then guides the Sanchis multi-block interchange method

to improve the initial partitions. The results indicate that this method produces better

results than using just one heuristic.

Of the netlist partitioning heuristics reviewed above, Kernighan/Lin and Fiduccia/Matt-

heyses were adapted to hardware/software partitioning for codesign as described in Sec-

tion 2.3.2. The level gain concept of Krishnamurthy and Sanchis is only applicable if nets

connect more than two cells. Since hardware/software partitioners work with abstract

representations of application behaviour, such as control and data flow graphs (CDFG),

rather than electrical circuits, the “connections” between nodes are usually one-to-one,

rather than one-to-many.

2.3.2 Hardware/Software Partitioning

The hardware/software partitioning problem differs from the circuit partitioning problem

is several ways: the “blocks” (implementation targets) are heterogeneous, the nodes change

depending on the block to which they are assigned, and the edges also change depending on

the blocks to which their nodes have been assigned. The objective of the partitioning can

also be different and multi-faceted. For example: minimize hardware, minimize execution

time, minimize power consumption, etc. Most of the hardware/software partitioners sur-

veyed below use heuristic solvers because the run-times of algorithmic (optimal) solutions

are unacceptably high for use by designers.

The Dice system applies simulated annealing to partition a CDFG [47]. Simulated

annealing [56] is a stochastic heuristic (as is the genetic algorithm). The solution is viewed

as a material with internal energy that is to be minimized. It starts at a high temperature
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and the solution moves easily between neighbouring states, even those with higher internal

energy. The temperature is slowly lowered (i.e. the material is annealed) and as the

temperature decreases, the probability of moving to states with higher energy are reduced.

The annealing ends when the temperature reaches zero.

Clustering is applied before simulated annealing to reduce the solution space (the node

count is high due to fine granularity). After simulated annealing the Fiduccia/Mattheyses

heuristic is applied to the solution (with nodes unclustered) to guide it to a local optimum.

Cosyma [30] also uses simulated annealing to perform partitioning. However it uses a

software-oriented approach: all nodes start in software and only enough nodes are moved

to hardware to meet timing constraints. The Cosyma partitioner uses estimated execution

times [78]. In contrast, Vulcan [39] uses a hardware-oriented approach: all nodes start in

hardware and nodes are moved to software as long as performance constraints are satisfied

[78]. Vulcan uses a custom iterative heuristic.

Vahid also applies the Fiduccia/Mattheyses heuristic to hardware/software partitioning

[95]. Vahid calculates the cost of a partition as a weighted sum of constraint violations

such as hardware size, software size, hardware I/O and execution time. Vahid reports

experimental results that show simulated annealing finding lower cost partitions 10 out of

16 times. However the simulated annealing showed run-times that exceed O(n2), whereas

FM had run-times that “scale[d] nearly linearly with problem size”.

Kalavade and Lee [52] developed a partitioning heuristic called GCLP (Global Crit-

icality Local Phase). The heuristic attempts to meet performance requirements using a

minimum of hardware. GCLP is a constructive heuristic: all nodes start unassigned. Nodes

are chosen one at a time for assignment to hardware or software. The objective function

is a trade-off between hardware minimization and timing constraints: it is adjusted at

each iteration according to the difficulty of meeting timing requirements. Nodes can be
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swapped after assignment if needed. The schedule is constructed as nodes are assigned (a

static schedule of start times). The schedule includes time for hardware-software commu-

nication.

The only algorithmic partitioner included in this survey is an integer linear program-

ming (ILP) model used in the Cool system [78]. Nodes are partitioned among multiple

software and hardware targets. In addition communication costs between targets are con-

sidered. The Cool system uses a second ILP model to perform scheduling. In addition to

scheduling nodes, it schedules communication events to avoid bus conflicts. The partition-

ing and scheduling ILPs are invoked iteratively until a feasible schedule is obtained [78].

No comparison is made with heuristic run-times.

Most of the systems surveyed in this section incorporated nodes costs such as hardware

and software size, node execution times in hardware and software and costs for inter-

partition edges. Most incorporated timing and area constraints. None of the systems

combined scheduling of concurrent systems with the partitioning stage. The only schedul-

ing that was combined with partitioning was that of minimizing the longest path in a

CDFG (for a single process). The partitioning result is likely to have a significant impact

of the schedule feasibility of concurrent systems. This is considered in the partitioning

work of Chapters 5, 6 and 7.

2.4 Synthesis

After partitioning, synthesis is used to transform the abstract graph into an implemen-

tation. Synthesis from hardware description languages and software compilation from

programming languages are significant parts of the synthesis stage. While these topics are

important, they are not unique to hardware/software codesign. The aspects of the syn-
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thesis stage that are emphasized here are schedule synthesis (Section 2.4.1) and interface

synthesis (Section 2.4.2).

2.4.1 Schedule Synthesis

Some of the partitioners reviewed above combine scheduling with partitioning. However, in

most of these cases the scheduling is a static schedule for one process consisting of multiple

nodes executed in sequence. This is the type of scheduling is done by the GCLP heuristic

[52], the Cool system [78] and Vahid’s FM heuristic adaptation [95].

The terminology of scheduling for concurrent systems is discussed here before reviewing

codesign systems that schedule such systems. Scheduling is the act of determining which

task executes on a processor at a given time. Schedule analysis is determining whether

a schedule can meet the deadlines of all the tasks. (A deadline is the time by which a

task must finish execution.) Scheduling can be performed off-line (before run-time) or

on-line (at run-time). An off-line scheduler may schedule by constructing tables showing

the relative order or timing of execution. If a scheduler schedules on-line it determines

the next task to execute from a set of ready tasks. It can make this decision based on a

static priority, a deadline, or other measure. If a scheduling policy allows one task to be

suspended before it is finished to allow another task to execute, then it is a preemptive

scheduling policy. Schedule feasibility analysis can also be performed off-line or on-line. If

the analysis is performed on-line, it is called dynamic planning and may add significantly

to scheduling overhead.

Four codesign systems that construct schedulers are now discussed: Polis, Chinook,

CoWare and Vulcan. In the Polis system a codesign finite state machine (CFSM) can be

implemented in hardware, software or a peripheral micro-controller [8]. Facilities for com-

municating events between CFSMs are also synthesized. The generated software is sched-
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uled by either cyclic or fixed-priority policies. Thoen et al [93] comment that fixed-priority

scheduling is poorly suited to embedded systems because “process priorities have to be

used to mimic the timing constraints.... From the designer viewpoint however, these con-

straints are more naturally specified with respect to the occurrence of observable events.”

Furthermore scheduling at the process level is coarse grained and reactive behaviour can

be improved with a finer grained scheduling.

In the Vulcan, Chinook and CoWare codesign systems, schedules are constructed for

each application. In all cases, threads are formed that consist of serialized operations/nodes

from the graph. A run-time scheduler then orders the execution of these threads. Vulcan

schedules threads in the order that they become enabled (by arrival of data). Chinook

improves on this by scheduling threads out of order to meet timing constraints. Neither

Vulcan or Chinook allow interrupts [93] which limits the ability for preemptive scheduling.

CoWare allows interrupts for faster reaction to events. It is presumed that scheduling by

threads allows finer granularity than scheduling by fixed-priority tasks, thereby improving

reaction to events [93]. However no comparisons are made with fixed-priority preemptive

schedulers. The synthesized scheduler may have a lower overhead, but would likely be

invoked more frequently than a fixed-priority scheduler due to the finer grain of the threads

being scheduled. This matter is not pursued further here as it is not the focus of this

dissertation.

Another scheduling policy that has not been widely applied in codesign research is

the preemptive Earliest Deadline First (EDF) policy. EDF is optimal in the sense that

it may fail to meet a deadline only if no other algorithm can meet that deadline. EDF

has been extensively studied in the real-time scheduling literature [91]. It can attain, in

theory, higher processor utilization than the fixed-priority preemptive policy [67, 50]. EDF

also has the desirable quality that timing constraints can be specified with respect to the
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occurrence of events (see Thoen quote above). EDF schedule analysis can be performed

off-line or on-line, although the overhead of on-line EDF schedule analysis discourages its

application in embedded systems [9]. Off-line EDF analysis is possible without knowing

task arrival times a priori, as long as minimum inter-arrival times and worst-case execution

times are known. If the EDF schedule analysis is performed off-line, then the run-time EDF

scheduler can have overhead comparable to fixed-priority schedulers (tasks are sorted by

deadline instead of priority).

EDF schedule analysis is described in detail in Chapter 3, where the impact of hard-

ware coprocessors on schedule feasibility is studied. In Chapters 5 and 6, EDF schedule

information is integrated into a partitioning model and heuristic.

2.4.2 Interface Synthesis

Interface synthesis is relevant to this research in that the assumed interface model impacts

assumptions and costs used in partitioning and scheduling. For example the GCLP [52] and

Cool [78] partitioners associate time costs with edges that connect nodes across the hard-

ware/software interface. The Cool system assumes that a bus is used and assigns hardware

costs for connecting to the bus. GCLP does not account for the hardware cost. Communi-

cation costs are not explicitly accounted for edges within the same implementation target

(i.e. software/software or hardware/hardware).

A bus is also used for the hardware/software communication of systems partitioned in

Chapters 5 and 6. The assumptions and costs associated with it are described along with

the partitioners.
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Table 2.2: STRON-I and UFµK Functions

STRON-I UFµK

binary semaphore ∗ ∗

counting semaphore ∗

timer ∗ ∗

periodic tasks ∗

fixed-priority preemptive

scheduling

∗ ∗

interrupt handling ∗ ∗

configurable bus interface ∗

2.5 Kernel Partitioning

In the codesign flow described above, an application is transformed into a graph represen-

tation for partitioning. Then the hardware and software is synthesized, including scheduler

synthesis. While it is customarily the application that is subject to partitioning, it is also

possible to partition the scheduler. Research into hardware/software partitioning of the

kernel (or operating system) is discussed here.

2.5.1 STRON-I

Previous research efforts have investigated implementing real-time kernels almost entirely

in hardware. In one such project, the majority of the µITRON kernel functionality was

implemented in a coprocessor called STRON-I [77]. STRON-I functions are listed in Table

2.2. A software kernel is required to interact with STRON-I. The software kernel translates

system requests into function codes and parameters that are written to STRON-I over the



2.5. KERNEL PARTITIONING 25

bus. STRON-I communicates with the processor using interrupts and processor-readable

registers. As well as translating system requests, the software kernel is required to perform

context switches when indicated by STRON-I. The resulting kernel is one third the size of

the equivalent software-only kernel.

The number of STRON-I resources (event flags, semaphores, timers) and the number

of tasks is fixed at compile time. A prototype was implemented on a XC4010 Xilinx FPGA

with 3 tasks, 3 event flags, 3 semaphores and 3 external interrupts, with a resulting size of

4300 gates and speed of 12 MHz. The coprocessor size scaled linearly with the number of

tasks and resources. The kernel functions implemented in hardware were shown to be 6 to

50 times faster than the equivalent functions in software.

2.5.2 UFµK

The FASTCHART project [66] mated a custom processor that could perform a context

switch in one cycle with a kernel coprocessor called the RTU (Real Time Unit). The RTU

shares several features with STRON-I including the communication method, priority pre-

emptive scheduling and a number of kernel functions. In order to make the hardware kernel

applicable to a broader range of applications, the RTU was extracted from FASTCHART

so that it could be implemented as an ASIC. The RTU could then be interfaced with var-

ious real-time system buses, such as the VME bus[2]. A key difference with STRON-I is

that the RTU can support multiple processors.

The RTU has been commercialized as the UltraFast Micro Kernel (UFµK) [84]. UFµK

functions are listed in Table 2.2. UFµK is supported on several FPGAs, allowing the

number of tasks and resources to be configurable.
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2.5.3 δ Framework

Both the STRON-I and UFµK implement the majority of kernel functions in a hardware

coprocessor. A finer-grained partitioning of the kernel is investigated with the δ SoC/RTOS

Codesign Framework [72]. The user can choose from a list of strategic parts of the Atalanta

kernel to move into hardware. The list currently includes:

1. a lock cache for synchronization operations,

2. a deadlock detection unit for multi-processor systems and

3. a dynamic memory manager.

The goal is to achieve significant application speed-up using a small amount of hardware.

In [62], the δ Framework was used to compare three kernel configurations:

1. software (Atalanta)

2. hardware/software (Atalanta with hardware lock cache)

3. hardware (RTU)

The 3 configurations were simulated to implement a multi-processor data-base application

which required many task synchronizations. The hardware/software configuration had

speed-ups of 19-41% over the software, while the hardware configuration had speed-ups of

36-50% over the software. Synthesis of the lock cache required 7435 gates, while the RTU

took approximately 250000 gates.

2.5.4 SSCoP

The Spring operating system [22] supports distributed real-time systems made up of multi-

processor nodes. It uses dynamic-planning scheduling to admit and schedule newly arrived
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tasks. This approach constructs a plan for task executions. It attempts to add a new task

to the plan such that its deadline is met and all of the previously scheduled tasks still meet

their deadlines. If no feasible plan is found, then the new task is not admitted.

Each multiprocessor Spring node has application processors and system processors. The

application code executes on the application processors and the system processors perform

scheduling and operating system tasks. The Spring scheduling coprocessor (SSCoP) is

a VLSI implementation of the Spring scheduling algorithm and works with the system

processors. The algorithm schedules non-preemptable tasks that have deadlines, resource

requirements and precedence constraints. Multiple scheduling policies are supported, in-

cluding Earliest Deadline First (EDF). The size of SSCoP varies with the number of tasks

and resources supported and the word size. For example, a SSCoP that supports 64 tasks,

32 resources and a word size of 32 bits uses 165492 gates.

The system processor must write all task information into memory-mapped SSCoP

registers. It must also perform pre-processing and post-processing for any newly arrived

tasks, as well as waiting for SSCoP to construct a new plan. By considering system

processor pre-processing and post-processing times as well as SSCoP execution times, a

SSCoP which can schedule 64 tasks speeds up scheduling by a factor of 4.2 – 6.5 over an

all-software solution. This speed up factor is calculated for a SSCoP clocked at 100MHz

and a system processor (M68020) capable of 1 MIPS (millions of instructions per second).

A case study is presented in Chapter 4 in which both an application and its kernel are

manually partitioned. The kernel performs EDF scheduling of preemptable tasks (without

dynamic-planning).
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2.6 Summary

A codesign flow of four stages has been presented: specification, internal representation,

partitioning and synthesis. Examples from codesign literature have been presented for each

of these stages. The lack of integration between partitioning and scheduling of concurrent

systems was noted. Partitioning of the kernel has also been introduced, in addition to

partitioning of the application. The Earliest Deadline First scheduling policy is reviewed

further in Chapter 3.



Chapter 3

EDF Scheduling of Embedded

Systems

The Earliest Deadline First (EDF) scheduling policy is an important real-time scheduling

policy. It assigns task priorities based on their deadlines and it is optimal in the sense

that it will fail to meet a deadline only if no other policy can meet that deadline. EDF

has been extensively studied by the real-time scheduling community but little work has

been done on EDF by the codesign research community, due in part to the run-time

scheduling overhead [9]. However, the overhead is not excessive (O(logn)) and this policy

makes possible higher processor utilization [67]. Most of the codesign systems reviewed

in Chapter 2 that schedule concurrent software do so by synthesizing threads of execution

off-line. The exception, Polis, uses fixed-priority preemptive scheduling.

EDF is a real-time scheduling policy that has the potential to increase processor utiliza-

tion [50] but has received little attention from the codesign community. Therefore EDF has

been selected as the scheduling policy for this investigation into partitioning and scheduling

of embedded systems. In Section 3.1, an introduction into the theory of EDF scheduling

29
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is given. In Section 3.2, an off-line EDF feasibility algorithm is extended to accommodate

task sets that block on coprocessors during their execution.

3.1 EDF Scheduling Summary

Under the preemptive EDF policy, of all ready tasks, the task with the earliest deadline is

executed first. If another task arrives with an earlier deadline, it will preempt the currently

executing task. All discussion of the EDF policy in this thesis refers to preemptive EDF. In

order to describe the feasibility analysis of systems scheduled by EDF, some terminology

needs to be introduced. Periodic tasks occur at regular intervals. Periodic task τi has start

time si, period Ti, relative deadline Di and worst-case execution time Ci. τi is released

at the start of each period at time ri = si + mTi, m = 0, 1, . . .. The task must complete

by (absolute) deadline di = ri + Di. Aperiodic tasks are released in response to an event.

Aperiodic task τi does not have a start time or a period: it has relative deadline Di and

worst-case execution time Ci.

Figure 3.1 shows two tasks: τ1 is periodic and τ2 is aperiodic. Task releases are indicated

with an up arrow and task deadlines are indicated with a down arrow. τ1 has start time

s1 = 2, relative deadline D1 = 8, period T1 = 12 and worst-case execution time C1 = 4. It

has release dates r1 = 2, 14, . . . and corresponding deadlines d1 = 10, 22, . . .. τ2 is released

aperiodically at times t = 0, 16, 21. At t = 16 τ2 preempts τ1 because its deadline is closer.

τ1 is resumed at t = 18 after τ2 terminates.

The purpose of EDF schedule analysis is, given task set τ , determine whether all tasks

in the set can be scheduled by the preemptive EDF policy such that no task misses its

deadline. The analysis is for periodic tasks, but can include a sporadic task τi that has

a minimum inter-arrival time Ti which can be used as a period in the analysis. Task sets
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Figure 3.1: Task Notation

with both periodic and sporadic tasks are denoted hybrid task sets. If task deadlines are

allowed to be shorter (or longer) than their periods, then it is a generic hybrid task set. In

their book [91], Stankovic et al develop a feasibility analysis for generic hybrid task sets.

The analysis is based on processor demand and is explained below.

A necessary but not sufficient condition for the feasibility of a generic hybrid task set

scheduled under EDF is that the processor utilization U (defined by Liu and Layland [67])

is bounded above by 1:

U =
n∑

i=1

Ci

Ti

≤ 1 (3.1)

U sums the fraction of processor time required per task.

The rest of the analysis is based on the most constraining scenario where all task

releases are synchronous (∀i: si = 0). Unless specified otherwise, references to the task

set assume this synchronous task set. After checking that U ≤ 1 the algorithm checks

processor demand. Processor demand, h(t), in the interval [0, t) is defined as:

h(t) =
∑
Di≤t

(
1 +

⌊
t−Di

Ti

⌋)
Ci. (3.2)

Processor demand at time t measures the work required by all tasks having deadlines in
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[0, t]. Processor demand is applied in the following theorem:

Theorem 3.1 (Processor Demand Condition [91]). Any given [generic] hybrid task

set is feasible under EDF scheduling if and only if

∀t, h(t) ≤ t.

However, it is not necessary to test processor demand on all intervals in [0, t); it is

sufficient to test only when task deadlines occur. Also, an upper bound on the interval

over which h(t) is checked can be determined. Three upper bounds are calculated in [91]

and the least upper bound is chosen to define the interval. The three upper bounds are:

1. ub1 = max

{
Dmax,

Pn
i=1(1−Di

Ti
)Ci

1−U

}
,

2. ub2 =
P

Di≤Ti
(1−Di

Ti
)Ci

1−U
, and

3. L = synchronous busy period.

The derivation of upper bounds ub1 and ub2 is explained in Appendix A. It is the

third upper bound L that is used in extending the analysis in Section 3.2. Therefore L is

explained here. The synchronous busy period, L, is based on this theorem (recall that all

tasks are assumed to start at t = 0):

Theorem 3.2 (Liu and Layland [67]). When the deadline driven scheduling algorithm

is used to schedule a set of tasks on a processor, there is no processor idle time prior to an

overflow.

The interval of time preceding the first idle period is called the synchronous busy period.

Note that the idle period may have duration equal to 0; in essence, at the end of the

synchronous busy period no work has been previously released that still requires execution.
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Stankovic et at describe the following iterative method for calculating the duration of the

synchronous busy period, L.

Apply recursively until Lm+1 = Lm: L(0) =
∑n

i=1 Ci,

L(m+1) = W (L(m)),
(3.3)

where

W (t) =
n∑

i=1

⌈
t

Ti

⌉
Ci. (3.4)

Since all tasks are released synchronously, L(0) is the sum of task execution times. During

L(0), other work may be released which is added to L. This is repeated until there is no

change to L. Computation of iterative Equation 3.3 takes O(n
∑n

i=1 Ci) time, if U < 1

[91].

Stankovic et al ’s algorithm for feasibility analysis [91] can be summarized by the fol-

lowing four steps. Algorithm 3.1 lists the corresponding pseudocode. Note that the upper

bounds ub1 and ub2 are omitted in this discussion of the algorithm.

1. check that U ≤ 1

2. determine upper bound, L, for test period

3. define set S of deadline events in [0, L)

4. for each event v in S, check that h(t) < t

3.2 EDF Scheduling with Coprocessors

Task sets that block on coprocessors present a unique challenge to the EDF feasibility

analysis. A task that blocks on a coprocessor is similar to a task that blocks on a critical
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Data: task set τ
Result: schedule feasibility

if U > 1 then return “not feasible” ;

S = ∪n
i=1{mTi + Di : m = 0, 1, . . .} = {v1, v2, . . .} ;

k ← 1 ;

while vk < L do

if h(vk) > vk then return “not feasible” ;

k ← k + 1 ;

end

return “feasible” ;

Algorithm 3.1: EDF Feasibility Analysis

section. EDF feasibility analysis of tasks blocked in critical sections has been studied

[7, 24, 91]. There is however a difference between tasks blocked on coprocessors and tasks

blocked on critical sections. Tasks blocked on a critical section are waiting for another

task to finish in the critical section. If the task is blocked, there is another task that can

be executed. When a task blocks on a coprocessor, there may or may not be another task

ready to execute. This can introduce additional idle times into the schedule which can

impact the task’s ability to meet deadlines. The feasibility analysis for task sets which

block on coprocessors is developed below.

When part of a task is moved from the processor to a coprocessor, it contributes to

schedule feasibility in two ways. First, it should reduce total task execution time (i.e.

execution time for τi on processor and coprocessor) which helps τi to meet its deadline.

Second, it reduces processor utilization which increases feasibility of the task set. In this

chapter, a method is proposed to incorporate both benefits into the feasibility analysis of

task sets with coprocessors.
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Figure 3.2: Coprocessor Task Type

As illustrated in Figure 3.2, there are three types of coprocessor use by a task. The clear

box represents execution on the processor and the shaded box execution on the coprocessor.

The first and second types do not require any change to the feasibility analysis of Algorithm

3.1.

type 1 The software portion of the first type can be represented by a periodic or spo-

radic task. The only change would be to subtract the worst-case execution time of

the coprocessor, Ccoproc, from the software task deadline: D′
i = Di − Ccoproc. This

would ensure that the coprocessor finishes by deadline Di. (It is assumed that the

coprocessor is available immediately.)

type 2 The software portion of the second type can be represented by a sporadic task with

minimum inter-arrival rate as determined by the coprocessor. Again, the deadline is

shortened: D′
i = Di − Ccoproc.

type 3 The third type, tasks that block on coprocessors (called “coprocessor-blocked

tasks”), requires further analysis.

To understand the approach taken to addressing this problem, consider Figure 3.3.

The first line shows the task implemented completely in software. The second line shows
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Figure 3.3: Coprocessor Task Analysis

Part B of the task implemented on a coprocessor which has decreased the overall task

execution time. The third line omits Part B of the task because it no longer executes on

the processor. The total execution time of the second line can be used as the task execution

time thereby incorporating some of the coprocessor benefit (reduced total execution time

for the task). A less conservative approach is to use the execution times of the third line

as the task execution time, incorporating the full benefit of the coprocessor (reduced total

execution time and parallel execution). Both approaches are discussed in Section 3.2.1

with the emphasis being placed on the less conservative approach.

The EDF feasibility analysis for coprocessor-blocked tasks is developed first for one

task blocking on a coprocessor once per task instance, in Section 3.2.1. The analysis is

extended to one task blocking on coprocessors multiple times per task instance in Section

3.2.2, and the impact on schedule feasibility is quantified in Section 3.2.4.

3.2.1 One Task, Blocking on Coprocessor Once

In this section, the feasibility analysis is developed for task sets in which one task blocks on

a coprocessor, and only blocks on the coprocessor once per task instance. Since coprocessor-

blocked tasks have three execution times (on processor before coprocessor, on coprocessor,
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and on processor after coprocessor) worst-case execution times are represented in vectors,

~Ci. In the case of a regular task (no coprocessor) the size of the vector is |~Ci| = 1. For

a task with one coprocessor block per task instance, |~Ci| = 3. The three elements of its

vector are:

~Ci,1 first execution on processor,

~Ci,2 execution on coprocessor, and

~Ci,3 second execution on processor.

A simple approach to the feasibility analysis would be to use the analysis of Algorithm 3.1

using the vector sum as the worst-case execution time for a task (this is summarized in

Algorithm 3.2). While this does account for any reduction in total task execution time,

it does not take advantage of the fact that a second task can use the processor while the

first task is waiting for the coprocessor to finish. Stated another way: some task-level

parallelism is ignored. (Tasks which employ coprocessors are actually a highly constrained

form of multi-processing.)

Data: task set τ
Result: schedule feasibility

foreach τi do

Ci =
∑

a=1..| ~Ci|
~Ci,a ;

end

invoke Algorithm 3.1 ;

Algorithm 3.2: Simple Feasibility with Coprocessors

The approach taken in developing the analysis below is to represent the coprocessor-

blocked task, τi, as a processor with three ordered subtasks: τi,1, τi,2 and τi,3. Given τi with
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parameters Ti, Di and |~Ci| = 3, three subtasks are derived as listed in Table 3.1. The last

subtask in the order, τi,3, has deadline Di,3 = Di. The deadline of τi,2 is modified to ensure

that τi,2 finishes with enough time for τi,3 to complete. The same type of modification

is applied to the deadline of τi,1. By modifying the deadlines in this manner, the correct

order of execution is enforced since the task with the earlier deadline is executed first. This

approach is the same type of deadline modification employed by Stankovic et al in Figure

7.5 of [91]. The impact of this deadline modification scheme on the feasibility analysis is

discussed in Section 3.2.4.

Table 3.1: Coprocessor Task Division

Worst-Case

Task Target Period Deadline Exec. Time

τi,1 processor Ti,1 = Ti Di,1 = Di − ~Ci,2 − ~Ci,3 Ci,1

τi,2 coprocessor Ti,2 = Ti Di,2 = Di − ~Ci,3 Ci,2

τi,3 processor Ti,3 = Ti Di,3 = Di Ci,3

τi is replaced by τi,1 and τi,3 in the task set that is analyzed using the processor demand

analysis of Algorithm 3.1. τi,2 is not in the task set since it executes on the coprocessor,

not the processor. The short-coming of this analysis is that it ignores the required time

lapse (~Ci,2) that must occur between τi,1 and τi,3. Consider the example in Figure 3.4.

The coprocessor-blocked task, τ1, would be replaced in the task set by τ1,1 and τ1,3. τ1,2 is

excluded from the task set. The deadline of τ1,1 is

D1,1 = D1 − ~C1,2 − ~C1,3

= 11− 4− 5

= 2.



3.2. EDF SCHEDULING WITH COPROCESSORS 39

Figure 3.4: Feasibility Failure

Following Algorithm 3.1, U = 0.625, L = 11 and S = {2, 7, 11}. At each deadline event in

S, there is enough time to meet the processor demand (∀v ∈ S : h(v) ≤ v). The modified

task set therefore passes the analysis. However a deadline is missed at t = 27.

The feasibility analysis assumes that τ1,3 can execute at any time after its release.

However it cannot execute until after the coprocessor (τ1,2) has finished, creating an idle

period on the processor. It is this coprocessor-induced idle that causes the missed deadline

at t = 27. The goal of the analysis developed below is, given a task set, to determine

whether a coprocessor-induced idle can result in a missed deadline. This new analysis is

done in addition to the analysis of Algorithm 3.1.

Consider the example given in Figure 3.5. τ1 is a coprocessor-blocked task. In this

scenario, the processor is idle while τ1,2 executes on the coprocessor. This implies that all

other tasks have finished execution and are not ready to be released before the end of the

coprocessor idle. This scenario is the basis for the following lemma:

Lemma 3.1. Given a task set τ in which one task τx blocks on a coprocessor once, with

logical subtasks {τx,1, τx,2, τx,3}, the coprocessor-induced idle has the worst effect on the
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Figure 3.5: Coprocessor-Induced Idle Period

schedule when:

1. τx,3 has no slack, and

2. all other tasks are released synchronously at the end of the coprocessor-induced idle

(i.e. at t = Dx,2).

Before starting the proof of Lemma 3.1, the concept of loading factor needs to be

introduced. Loading factor on the interval [t1, t2) is defined as

u[t1,t2) =
h[t1,t2)

(t2 − t1)
.

h[t1,t2) is the sum of work released not earlier than t1 with deadline not later than t2:

h[t1,t2) =
∑

t1≤rk,dk≤t2

Ck,

where rk, dk and Ck are release, deadline and worst-case execution time for jobs (task

instances) in that interval. Loading factor is the fraction of the interval required to meet

its processor demand. The absolute loading factor is the maximum loading factor of all
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possible intervals:

u = sup
0≤t1<t2

u[t1,t2).

The proof of Lemma 3.1 now follows.

Proof. The worst-case schedule feasibility occurs when:

• Part 1: τx,3 has no slack (Dx,3 = ~Cx,3)

– If τx,3 has no slack, then no other work can be done before Dx,3. (i.e. if there

exists another task with deadlines before Dx,3, then at t = Dx,3, h(t) > t which

makes the schedule infeasible.)

– Adding slack S to τx,3 would allow S units of work to be done before the revised

deadline D′
x,3 = ~Cx,3 + S. If there exists other tasks with deadlines before D′

x,3

and whose total work does not exceed S, then processor demand at D′
x,3 will

not be exceeded. Any tasks with deadlines greater than D′
x,3 are not affected

since the work required by τx,3 is not changed. Therefore adding slack to the

deadline of τx,3 will either not impact schedule feasibility or if it does, it will

make those tasks with deadlines before D′
x,3 feasible.

• Part 2: all other tasks are released synchronously with τx,3

The remaining part of this proof is the same, in essence, as the proof of Lemma 3.1

in [91] except for modifications to the coprocessor-blocked task as shown below.

Let τ be the set of all tasks (without the assumption of synchronous release) and τ ′

the corresponding synchronous task set and let the coprocessor-blocked task, τx, be

excluded from τ and τ ′. When the processor demands, h[t1,t2) and h′[t1,t2), of τ and τ ′

are computed, they are augmented by the coprocessor-blocked task as follows:
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Figure 3.6: C∗ and τx phases

– In calculating the processor demand, a unit of work C∗ is released at t1 with

duration C∗ = ~Cx,3, representing the part of the coprocessor-blocked task that

must execute after the coprocessor induced idle. The deadline of C∗ is D∗ which

is equal to ~Cx,3 (no slack). Furthermore, τx is replaced by τx,1 and τx,3. Since

C∗ represents the remaining work of the previous instance of τx which has a

deadline at t = ~Cx,3, the next instance of τx is released at Tx −Dx + ~Cx,3 after

t1. Tasks τx,1 and τx,3 are said to have phases φx,1 = φx,3 = Tx−Dx + ~Cx,3. Only

a coprocessor-blocked task is said to have phase (note that phase and start time

are not related). Figure 3.6 shows relationship between τx and C∗ and τx,1 and

τx,3 with phases.

In order to prove that synchronous release of all other tasks but the coprocessor-
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blocked task is the worst-case scenario, it is sufficient to prove that the absolute

loading factor (“loading factor”) u of τ is bounded above by the loading factor u′ of

τ ′. It is therefore sufficient to prove that ∀[t1, t2) there exists an interval [t′1, t
′
2) such

that h[t1,t2) ≤ h′[t′1,t′2), where the coprocessor-blocked task is included as described

in the previous paragraph. For any interval [t1, t2), the processor demand for τ is

bounded above by:

h[t1,t2) ≤ C∗ +
∑

Di+φi≤t2−t1

(
1 + bt2 − t1 − (Di + φi)

Ti

c
)

Ci.

Addition of φi to this equation only affects τx,1 and τx,3.

Now consider the synchronous case, τ ′, and let t′1 = 0 and t′2 = t2 − t1. Processor

demand is equal to:

h′[t′1,t′2) = C∗ +
∑

Di+φi≤t′2−t′1

(
1 + bt

′
2 − t′1 − (Di + φi)

Ti

c
)

Ci

= C∗ +
∑

Di+φi≤t2−t1

(
1 + bt2 − t1 − (Di + φi)

Ti

c
)

Ci.

Processor demand of the synchronous case, h′[t′1,t′2), equals the upper bound of the

other case, h[t1,t2). Therefore:

h[t1,t2) ≤ h′[t′1,t′2).

The analysis that is performed is similar to Algorithm 3.1 except that the coprocessor-

blocked task has a phase. Modifications are required to the synchronous busy period

calculation and processor demand calculation. The phase of the coprocessor-blocked task

is redefined here to simplify calculations. In the proof above, the portion of the coprocessor-

blocked task remaining after the coprocessor-induced idle was represented by C∗ and the
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Figure 3.7: φx,1 and φx,3

next instance of the task had phase φx,1 = φx,3 = Tx − Dx + Cx,3. This can also be

represented by modifying the phase of τx,3: φx,3 = −(Dx − Cx,3). By doing this τx,3 has

an initial deadline at t = Cx,3. Also note that Dx − Cx,3 = Dx,2. The phases of the two

subtasks of the coprocessor-blocked task τx become:

φx,1 = Tx −Dx,2,

φx,3 = −Dx,2,

and every other task has phase φi = 0. The change in φx,3 can be seen by comparing

Figures 3.6 and 3.7. In Figure 3.7, C∗ has been incorporated into τx,3.

The synchronous busy period is now calculated as follows:

Apply recursively until L′ m+1 = L′ m: L′(0) =
∑

φi≤0 Ci,

L′(m+1) = W ′(L′(m)),
(3.5)

where

W ′(t) =
∑
φi≤t

⌈
t− φi

Ti

⌉
Ci. (3.6)
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When φx,1 = φx,3 = 0, then L′ = L. When φx,1 = T − Dx,2 and φx,3 = −Dx,2, then the

result is different: at t = 0 all of the regular non-coprocessor tasks are released as well as

coprocessor subtask τx,3. The sum of their worst-case execution times forms L′(0). As in

calculating L, any work released in L′(0) is added to L′ repeatedly until their is no new

work to add. Note that each task in the task set has worst-case execution time vectors of

size one and so it is referred to simply as Ci. The processor demand is also modified for

phase:

h′(t) =
∑

Di+φi≤t

(
1 +

⌊
t− (Di + φi)

Ti

⌋)
Ci. (3.7)

This modification includes τx,3 for t ≥ Cx,3 and includes τx,1 for t ≥ Dx,3 + φx,3.

Algorithm 3.3 details the feasibility analysis of a task set with one coprocessor task

that blocks on the coprocessor once per task instance. Note that construction of event

set S has also been modified for phase shifts. The analysis is done twice: the first pass

is the same as Algorithm 3.1 - all phases are equal to zero, the second pass is done with

coprocessor task phases as discussed above.

An example is introduced in Figure 3.8 to demonstrate Algorithm 3.3. There are four

tasks in the task set, one of which (τ1) blocks on a coprocessor. τ1 is represented by

subtasks τ1,1, τ1,2 and τ1,3 (τ1,2 is not included in the EDF analysis). The deadline of τ1,1

is indicated by a dashed down arrow. First processor utilization is checked:

U = 0.7280 ≤ 1.

The first pass of the loop (all phases equal zero) is shown in Figure 3.8(a). L′ = 13 and

S ′ = {5, 6, 7, 10, 12}. At each event in S ′, there is enough time to meet the processor

demand (∀v ∈ S ′ : h′(v) ≤ v).

The second pass of the loop is shown in Figure 3.8(b). The τ1 subtask phases are set

to φ1,3 = −D1,2 = −8 and φ1,1 = 16 − 8 = 8, while the other task phases remain zero.
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Data: task set τ (coprocessor task τi replaced by τi,1 and τi,3)

Result: schedule feasibility

if U > 1 then return “not feasible” ;

loop twice

for τi ∈ τ do

if |~Ci| = 1 then

φi = 0 ;

else

/*set coprocessor subtask phases */

if first iteration then

φi,1 = φi,3 = 0 ;

else

φi,1 = Ti −Di,2 ;

φi,3 = −Di,2 ;

end
end

end

S ′ = ∪n
i=1{mTi + φi + Di : m = 0, 1, . . .} = {v1, v2, . . .} ;

k ← 1 ;

while vk < L′ do

if h′(vk) > vk then return “not feasible” ;

k ← k + 1 ;

end
endloop

return “feasible” ;

Algorithm 3.3: Feasibility: One Task, Blocked Once
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(a) ∀τi : φi = 0 (b) φ1,1 = 8, φ1,3 = −8

Figure 3.8: Example: One Task, Blocked Once
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L′ = 15 and S ′ = {2, 6, 7, 12, 13, 14}. Analyzing the processor demand at each deadline

event, h′(2) = 2, h′(6) = 4, h′(7) = 8, . . .. At t = 7, the processor demand exceeded the

available time and so the analysis concludes that this task set cannot be feasibly scheduled

by the preemptive EDF policy.

In both passes of Algorithm 3.3, processor demand is checked over the interval [0, L′).

In the first pass L′ is calculated with all phases zero. In the second pass L′ is calculated

using φx,1 and φx,3 as described above. In both cases, the calculation of L′ ignores the

real possibility that a coprocessor-induced idle could occur. Therefore it is necessary to

consider the effect of such an event on each pass of the algorithm. If a coprocessor-induced

idle arises during [0, L′) of the first pass, it implies that all other tasks have completed and

only coprocessor-blocked subtask τi,3 remains to be executed (i.e. a coprocessor-induced

idle has occurred). This is in fact the case that the second pass of the algorithm checks.

If a coprocessor-induced idle arises during [0, L′) of the second pass, it cannot result in

any worse scenario than was started with for the second pass. So the occurrence of a

coprocessor-induced idle during [0, L′) of either pass does not invalidate the analysis.

3.2.2 One Task, Blocking on Coprocessors Multiple Times

Algorithm 3.3 is now extended to one coprocessor task blocking on coprocessors multiple

times per task instance. Let coprocessor task, τi, have worst-case execution time vector of

size N = |~Ci|. N = 3, 5, 7, . . . because each coprocessor block is preceded and succeeded

by processor execution (N = 1 implies a regular task). All odd-numbered elements of

~Ci represent execution on the processor and all even-number elements represent execution

on the coprocessor. The analysis of Algorithm 3.3 is done once with all phases equal

zero and then is repeated once per coprocessor block with phases as indicated in Figure

3.9. The coprocessor task is not shown in it’s entirety, only the part corresponding to
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Figure 3.9: Coprocessor Task Phases

the last six elements of its N-element worst-case execution time vector. On the first line,

the last coprocessor invocation, τx,N−1, is being analyzed. The one subtask after the last

coprocessor is τx,N with phase φx,N = −Dx,N−1. The phase causes τx,N to be released

at t = 0 with no slack. The other subtasks (τx,N−2, τx,N−4, . . .) would have positive phase

φ = T−Dx,N−1. On the second line, the second last coprocessor invocation, τx,N−3, is being

analyzed. Subtasks τx,N and τx,N−2 have phases φx,N = φx,N−2 = −Dx,N−3. The other

subtasks would have positive phase. The analysis is done for each coprocessor invocation,

using the appropriate phases.

Algorithm 3.4 describes the feasibility analysis for one coprocessor task with multiple

coprocessor blocks. Note that the coprocessor execution times in ~C need not all be the

same, accommodating use of multiple coprocessors.

Inside the outer loop of the algorithm is a section labeled “set coprocessor subtask

phases”. In the first pass (k = N + 1), the subtasks of the coprocessor-blocked task are

assigned phases of zero. In subsequent passes, k corresponds to the position in the worst-

case execution time vector of a coprocessor block. The coprocessor-induced idle that is

caused by this coprocessor block is being analyzed. Those subtasks that precede the block
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Data: task set τ (coprocessor task τi replaced by τi,1, τi,3, . . .)

N = |~Ci|, where Ci is the coprocessor task

Result: schedule feasibility

if U > 1 then return “not feasible” ;

/*one pass for phase zero and one pass per block */

for k in {N + 1, N − 1, N − 3 . . . , 2} do

for τi ∈ τ do

if |~Ci| = 1 then

φi = 0 ;

else

/*set coprocessor subtask phases */

if k = N + 1 then

/*first pass - all zero */

for a in {N, N − 2, . . . , 1} do φi,a = 0 ;

else

for a in {N, N − 2, . . . , k + 1} do φi,a = −Di,k ;

for a in {k − 1, k − 3, . . . , 1} do φi,a = Ti −Di,k ;

end
end

end

S ′ = ∪n
i=1{mTi + φi + Di : m = 0, 1, . . .} = {v1, v2, . . .} ;

k ← 1 ;

while vk < L′ do

if h′(vk) > vk then return “not feasible” ;

k ← k + 1 ;

end
end

return “feasible” ;

Algorithm 3.4: Feasibility: One Task, Blocked Multiple Times
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Table 3.2: Subtasks of τ1

Worst-Case

Task Target Period Deadline Exec. Time

τ1,1 processor T1,1 = T1 = 30 D1,1 = D1 − C1,2 − C1,3 − C1,4 − C1,5 = 7 C1,1 = 3

τ1,2 coprocessor T1,2 = T1 = 30 D1,2 = D1 − C1,3 − C1,4 − C1,5 = 9 C1,2 = 2

τ1,3 processor T1,3 = T1 = 30 D1,3 = D1 − C1,4 − C1,5 = 17 C1,3 = 8

τ1,4 coprocessor T1,4 = T1 = 30 D1,4 = D1 − C1,5 = 18 C1,4 = 1

τ1,5 processor T1,5 = T1 = 30 D1,5 = D1 = 20 C1,5 = 2

Table 3.3: Phases of τ1 by Iteration

Iter k φ1,1 φ1,3 φ1,5

1 6 0 0 0

2 4 T1 −D1,4 = 12 T1 −D1,4 = 12 −D1,4 = -18

3 2 T1 −D1,2 = 21 −D1,2 = -9 −D1,2 = -9

(τi,a : a = k − 1, k − 3, . . .) have positive phase. Those that follow (τi,a : a = N, N − 2, . . .)

have negative phase.

Consider this example: a task set that has one coprocessor task, τ1, and several other

tasks. τ1 has period T1 = 30, deadline D1 = 20 and worst-case execution time vector

~C1 = [3, 2, 8, 1, 2]. τ1 blocks on coprocessors twice, with worst-case execution times C1,2 = 2

and C1,4 = 1. The subtasks that represent τ1 are described in Table 3.2. The outer loop

of Algorithm 3.4 is repeated three times. In the first iteration, all tasks have phase zero.

This is the same processor demand analysis as Algorithm 3.1. The next iteration tests

the idle induced by C1,4, with τ1,1, τ1,3 and τ1,5 phases as described in Table 3.3. The last

iteration tests the idle induced by C1,2. If all three iterations pass, then the task set is

deemed feasible.
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3.2.3 Multiple Tasks Blocking on Coprocessors

Algorithm 3.4 does not extend well to multiple coprocessor-blocked tasks. For example

consider two coprocessor-blocked tasks τx and τy that block on coprocessors once per task

instance. If their coprocessor-induced idles overlap, it does not work to assume that both

remaining subtasks τx,3 and τy,3 have zero slack (as the algorithm does). The matter is

further complicated if coprocessors are shared among tasks. This problem of multiple

coprocessor-blocked tasks is left as a subject for future research.

3.2.4 Algorithm Benefits and Limitations

In this section, the benefits and limitations of Algorithm 3.3 and Algorithm 3.4 are com-

pared against the simpler analysis of Algorithm 3.2. The comparison is first done for task

sets with one coprocessor-blocked task that blocks once per task instance. It is then done

for task sets with one coprocessor-blocked task that block multiple times per task instance.

These comparisons are followed by a discussion of a simplification made in all the the fea-

sibility analysis algorithms (Algorithms 3.1 – 3.4). A further improvement to Algorithms

3.3 and 3.4 is then suggested.

One Coprocessor-Blocked Task, Blocking Once

This section analyzes the benefit of incorporating one coprocessor invocation into one task,

as pertains to feasibility analysis Algorithms 3.2 and 3.3. This is done by first quantifying

the change to task worst-case execution time as measured by each algorithm. The resulting

benefit to processor utilization is then compared for the algorithms.

• Algorithm 3.2

This algorithm sums all of the elements of the coprocessor-blocked task’s worst-case
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execution time vector. The difference in task worst-case execution time Cx is the

difference between software execution time Cx,2[sw] and hardware execution time

Cx,2[hw]:

∆Cx[3.2] = Cx,2[sw]− Cx,2[hw].

• Algorithm 3.3

This algorithm does not include the coprocessor execution time in the analysis so the

difference in Cx is:

∆Cx[3.3] = Cx,2[sw].

The change in processor utilization that results from using a coprocessor in τx is equal to

the change in execution time over the task period:

∆Ux =
∆Cx

Tx

.

The improvement in processor utilization of Algorithm 3.3 over Algorithm 3.2 is the dif-

ference in ∆Cx[3.3] and ∆Cx[3.2] over the task period:

∆Ux[3.3]−∆Ux[3.2] =
∆Cx[3.3]−∆Cx[3.2]

Tx

=
Cx,2[sw]− (Cx,2[sw]− Cx,2[hw])

Tx

=
Cx,2[hw]

Tx

In Chapter 5, it will be seen that the above analysis is somewhat simplified. When τx,2

is replaced with a coprocessor invocation, extra time is added to Cx,1 and Cx,3 to block

and unblock τx so that other tasks may execute while the coprocessor is active. This would

reduce ∆Cx[3.2] and ∆Cx[3.3] equally. The value of ∆Ux[3.3] − ∆Ux[3.2] would remain

unchanged.
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While Algorithm 3.3 takes full advantage of the reduced processor utilization afforded

by coprocessor use, it does impose a limitation. In the second iteration, subtask τx,3 of

coprocessor-blocked task τx starts at t = 0 with no slack. Therefore, all other tasks in the

task set must have enough slack to accommodate the execution of τx,3:

∀|~Ci| = 1 : Di ≥ Ci + Cx,3.

This situation may cause problems for tasks with short execution times and tight dead-

lines. It is suggested that if the limitation above causes a task set to be ruled infeasible

by Algorithm 3.3, then Algorithm 3.2 should also be tried since it does not impose this

limitation.

One Coprocessor-Blocked Task, Blocking Multiple Times

The observations above are now extended to the coprocessor-blocked task that blocks

multiple times.

• Algorithm 3.2

This algorithm calculates reduced worst-case execution time of the coprocessor task

τx as:

∆Cx[3.2] =
∑

k=2,4,...,N−1

(Cx,k[sw]− Cx,k[hw]) .

• Algorithm 3.4

This algorithm calculates reduced Cx as:

∆Cx[3.4] =
∑

k=2,4,...,N−1

Cx,k[sw].
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The improvement in processor utilization of Algorithm 3.4 over Algorithm 3.2 is the dif-

ference in ∆Cx[3.4] and ∆Cx[3.2] over the task period:

∆Ux[3.4]−∆Ux[3.2] =
∆Cx[3.4]−∆Cx[3.2]

Tx

=

∑
k=2,4,...,N−1 (Cx,k[sw]− (Cx,k[sw]− Cx,k[hw]))

Tx

=

∑
k=2,4,...,N−1 Cx,k[hw]

Tx

The limitation noted for the single blocking case is repeated each time τx blocks on

a coprocessor. The algorithm first checks processor demand with no phases, then with

phases corresponding to the ends of coprocessor blocks τx,k, k = N − 1, N − 3, . . . , 2. For

the analysis of each coprocessor block, the following subtask (τx,k+1) has no slack and must

be executed immediately at t = 0. So all other regular tasks must have enough slack to

accommodate it:

∀|~Ci| = 1 and ∀k ∈ {N − 1, N − 3, . . . , 2} : Di ≥ Ci + Cx,k+1.

Also, if the coprocessor invocation is not the last in the vector, there will be multiple

subtasks (i.e. τx,k+1, τx,k+3, . . .), the first with zero slack and the rest with tight deadlines.

For example, in Figure 3.9 when φ = −Dx,N−3, τx,N−2 has zero slack and τx,N has slack

equal to Cx,N−1.

Kernel Overhead in Feasibility Analysis

In the feasibility analysis algorithms that have been presented, overhead for scheduling ac-

tivity has been omitted. This can be interpreted as an ideal scenario in which all scheduling

activity takes zero time. This is not, however, reflective of reality. The scheduler is invoked

every time that a task is released or terminates. Such events change the set of tasks ready
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to execute and the scheduler must decide which of the ready tasks to execute. In the case

where a task is preempted, its context must be stored, and when a task is re-enabled, its

context must be restored.

One method that can be used to incorporate kernel (scheduler) overhead in the feasibil-

ity is to add the kernel worst-case execution time twice to the worst-case execution time of

each task (for task release and terminate). If the task blocks, for example on a coprocessor

or message queue, then the kernel time can be added twice more for each block/unblock

pair. This method is used in Chapters 4, 5 and 6 to incorporate kernel overhead into

schedule analysis.

Adding kernel overhead in this manner conservatively accounts for the total kernel

overhead over an extended period of execution. However, it may under-estimate kernel

overhead in certain instances. Consider for example three tasks, τ1, τ2 and τ3 released at

times 0, 5 and 10, respectively. If τ1 has the earliest deadline, it will continue execution

until it finishes. However by the time it finishes, the kernel will have been active three

times for: release of τ1, release of τ2 and release of τ3. After τ1 finishes, the kernel is active

three more times for: termination of τ1, termination of τ2 and termination of τ3. The

total number of kernel invocations is accounted for by adding the kernel overhead twice to

each task. However, in the analysis, it only adds two kernel invocations to the worst-case

execution time of τ1, instead of the actual three kernel invocations that occur before τ1

terminates. This may be an area for further study.

Subtask Deadlines and Feasibility Analysis

The deadline modification method for tasks invoking coprocessors that was presented in

Section 3.2.1 is re-evaluated here. A scheduling scenario with one coprocessor-blocked

task and two regular tasks is presented in Figure 3.10. In Figure 3.10(a), the deadline of
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(a) D1,1 = 6 (b) D′
1,1 = 4

Figure 3.10: Varying Subtask Deadline

subtask τ1,1 is assigned as described in Section 3.2.1. That is, it is as late as possible. In

this example, a deadline is missed when τ1,3 and τ2 both need to execute at t = 8. If the

deadline of τ1,1 is decreased by two as shown in Figure 3.10(b), then no deadline is missed.

If the feasibility analysis of Algorithm 3.4 is performed using the maximum D1,1, then it

would fail in the second iteration when φ1,3 = −8. If the feasibility analysis was done with

the shorter D′
1,1 (and shorter D′

1,2), then the phase of τ1,3 in the second iteration would be

φ′
1,3 = −6. This would give two time units of slack to τ1,3, enabling the task set to pass

the feasibility analysis. It is therefore suggested that a heuristic could be used that invokes

Algorithm 3.4 repeatedly, while varying the deadline of the coprocessor-blocked subtask

τx,1, to determine whether a Dx,1 exists that enables the task set to pass the analysis.
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3.3 Summary

The feasibility analysis for task sets scheduled by the preemptive EDF policy has been

introduced. The algorithm is extended for the analysis of task sets with one task that blocks

on coprocessors one or more times. Algorithm 3.4 takes more advantage of the gain in

processor utilization than does Algorithm 3.2 since Cx,2 is not included. However it imposes

limitations on the task set that Algorithm 3.2 does not. It is therefore suggested that

Algorithm 3.4 and Algorithm 3.2 both be used to verify feasibility of task sets. Algorithm

3.4 is difficult to extend to multiple coprocessor tasks and is left as a subject for further

investigation.

It should be noted that it has not been proven that the subtask deadline assignment

is an optimal way to schedule the coprocessor-blocked task. Scheduling of the subtasks

(and other tasks) is performed by the EDF policy, but the overall scheduling scheme is

a modification to EDF and so the optimality claims of EDF cannot be applied without

further proof. Also, the proof of Lemma 3.1, proves the worst-case effect of the coprocessor-

induced idle but does not prove that this analysis can guarantee feasibility for task sets

that include a coprocessor-blocked task.



Chapter 4

Case Study

This chapter describes a case study of a System on Programmable Chip (SoPC). An SoPC

is an SoC implemented on a Field Programmable Gate Array (FPGA) rather than an

Application Specific Integrated Circuit (ASIC). The implementation of a real-time kernel

and application are described. The kernel which schedules by the preemptive Earliest

Deadline First (EDF) policy has integrated support for application coprocessors. It is

described in Section 4.1. The application simulates and controls an automotive engine

running in idle. It consists of several tightly-interacting tasks that are scheduled by the

kernel. The application is described in Section 4.2.

When the system is implemented entirely in software, task deadlines are missed and

invalid results produced. Two coprocessors are implemented to help meet task deadlines.

The first coprocessor implements the cosine function which is used by the application. The

cosine coprocessor is described in Section 4.3. The second coprocessor implements EDF

scheduling which is used by the kernel. The EDF coprocessor is described in Section 4.4.

The effect of the coprocessors on missed deadlines is reported in Section 4.5. The feasibility

analysis of Chapter 3 is also applied in this section.

59
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This case study has three benefits:

1. it is a practical example of hardware/software partitioning of application and kernel,

2. the feasibility analysis developed in Chapter 3 can be compared with real results,

and

3. case study data is used to test the partitioners in Chapter 7.

4.1 Cs1 Kernel

The SoPC platform is summarized first before describing the kernel that was implemented

for this case study. The SoPC is implemented on Altera’s Nios Embedded Processor

Development Board [4]. The development board has an Altera Apex 20K200E FPGA,

256KB of SRAM, an RS-232 serial connector and a 33 MHz clock chip. The SoPC depicted

in Figure 4.1 is implemented on the FPGA. The processor is Altera’s Nios [3] soft-core

configurable RISC processor. The Nios is configured with a 32-bit data word size and

hardware multiply. The UART connects to the RS-232 serial connector for communication

with a host development computer. Application downloads and application I/O are done

over the RS-232 connection.

Only two kernels were found for the Nios processor. Neither of them were free and

neither implemented EDF scheduling, so a custom kernel was implemented in C++ for

this case study. The two design goals of the real-time kernel were:

1. Facilitate hardware/software partitioning of applications by providing integrated sup-

port for hardware coprocessors.

2. Implement a scheduling policy that achieves high processor utilization. The preemp-

tive fixed-priority policy has sub-optimal processor utilization [67]. Higher processor



4.1. CS1 KERNEL 61

Figure 4.1: SoPC Configuration

utilization can be achieved in theory by using the EDF policy [50].

To keep run-time overhead low, the kernel does not perform dynamic planning: all tasks

are created statically at compile time. Any schedule feasibility analysis must be performed

off-line.

The uni-processor real-time kernel is called cs1 (for CoScheduler1) [75]. Two types of

tasks are supported: periodic and aperiodic. The tasks are scheduled by the preemptive

EDF policy: of all active tasks, the task with the earliest deadline is executed first. If

another task arrives with an earlier deadline, it preempts the currently executing task. To

implement EDF, the cs1 kernel maintains two lists sorted by deadline:

1. the run list - all tasks that are ready to execute, and

2. the timer list - periodic tasks waiting to be released.
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Figure 4.2: cs1 kernel

The run list and timer list are implemented with the min-heap data structure which has

O(log n) insertion and deletion time.

Three system resources are managed by cs1: the system clock, inter-task message

queues and hardware coprocessors (Figure 4.2). The system clock is actually a custom

64-bit counter-timer that starts at zero on system initialization. It is programmed by the

cs1 kernel to interrupt the processor when the periodic task at the top of the timer list is

due for release. For periodic task τi, the kernel requires the initial release date (start time)

si, period Ti and relative deadline Di. The kernel does not store worst-case execution time

for tasks since it is only needed for schedule analysis which is done off-line. Upon release

of a periodic task it is placed on the run list and upon termination it is placed on the timer

list.
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An aperiodic task is released upon the occurrence of an event. The two event types

that are supported by the cs1 kernel are:

1. arrival of a message in a message queue, and

2. interrupt by hardware coprocessor.

For aperiodic task τi, the kernel requires the identity of the message queue or coprocessor

that generates the event and the relative deadline Di. Upon release of an aperiodic task it

is placed on the run list and upon termination it is placed in the wait list of the appropriate

message queue or coprocessor (wait lists not shown in Figure 4.2).

A brief explanation of how the kernel integrates coprocessors is given here since it is an

uncommon kernel feature. Each coprocessor is represented by a kernel coprocessor object.

The object stores information about the coprocessor such as control and status register

addresses. Tasks that use the coprocessor must gain access via kernel coprocessor object

methods (similar to a critical section). When a task invokes the coprocessor, the task is

blocked, freeing the processor for use by other tasks. The coprocessor interrupt is handled

by the kernel which checks the coprocessor status, disables the interrupt and unblocks the

appropriate task.

4.2 Idle Engine Application

The application selected for this case study consists of a model of an idling automotive

engine, environmental input and controllers. The application is not entirely authentic

because the environment and the engine model are actually simulated on the same processor

as the control application. However it does consist of several tightly interacting tasks, two

of which are controllers reacting to events.
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The idle engine model, as described in [11] is now summarized. A 4-cylinder automobile

engine is modeled in the idle state (out of gear). It is a hybrid model, combining a

continuous time system (CTS) with a discrete event system (DES). The components of

the CTS are manifold pressure, crankshaft speed and piston position. The cylinders are

modeled by an FSM that represents the interleaving between spark ignitions and dead-

centers (when a piston reaches the top of its stroke). The DES variables track the torque

generated by the pistons. The CTS, FSM and DES are tightly coupled: the FSM transitions

in response to CTS events, the DES updates variables based on CTS events and FSM state,

and the CTS is affected by DES output.

The model has control inputs, throttle angle and spark advance, and environment input,

load torque. Both increasing the throttle angle and increasing the spark advance increase

the generated torque. The throttle has greater control authority while the spark advance

has less authority but has a faster response time. The load torque disturbances for an idle

engine are generated by such phenomena as the air conditioning system and the steering

wheel servo-mechanism.

The goal is to maintain the crankshaft speed in the range of 800± 30 RPM (rotations

per minute) under load torque disturbances. The controller devised for this test-case

consists of a PID (proportional-integral-derivative) controller for the throttle angle and a

P controller for the spark advance. The application consists of four blocks: idle engine

model, environment, controller and user interface. The simulated environment input is

shown in Figure 4.3(a) and the resulting crankshaft speed is shown in Figure 4.3(b). The

crankshaft speed shown is when the controller is used and when it is not used.

The idle engine application was implemented with six tasks configured as shown in

Figure 4.4. The directed arrows indicate data dependency. s is start-time, T is period,

D is deadline, C is worst-case execution time. All times are given in units of seconds.
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FSM DES is an aperiodic task that is triggered by dead-center (dc) and spark (spk) events

which are generated by the CTS task. FSM DES is represented as a sporadic task with

minimum inter-arrival period T . All other tasks are periodic.

The task worst-case execution times do not include kernel execution which is invoked

for every task release and termination. The worst-case execution time of the cs1 kernel,

Ccs1 is 128 µs. When calculating processor utilization U , 2Ccs1 is added to each task Ci. As

stated in Chapter 3, a necessary condition for feasibly scheduling a hybrid task set under

EDF is U ≤ 1 [14]. For the idle engine task set, U = 1.097 indicating that it is infeasible

to schedule this task set by EDF. In practice, it was found that the Throttle task was late

22 times in a 10 second interval.

4.3 Application Partitioning

Two coprocessors were implemented in an attempt to make the idle engine application

feasible. The first coprocessor implements a part of the application functionality and is

described here. The second coprocessor implements a part of the kernel functionality and

is described in Section 4.4.

An examination of the application code reveals that the Environment task invokes the

C++ cos() library function each time it executes. The measured worst-case execution

time of this function is 1.435ms. This is a significant amount since it is greater than the

worst-case execution time of four of the tasks, and the Environment task is among the most

frequently executed tasks. The reason for the high execution time is likely that the software

implementation of cosine is based on a polynomial approximation such as a Taylor series.

This is the case for the OpenBSD math library implementation [80]. For an approximation

of degree 14, at least 6 floating-point multiplications and 5 floating-point additions would
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Figure 4.4: Application Configuration
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Figure 4.5: SoPC with Cordic Coprocessor

be required. Each floating-point multiplication and addition is time consuming since there

is no floating-point hardware and they must be implemented in software.

The coprocessor calculates the cosine function using the Cordic algorithm [102]. This al-

gorithm calculates the cosine of an n-bit fixed point number in n iterations using 3 adders, 2

shifters and a ROM for constants. The coprocessor first converts an IEEE double-precision

floating point number to a 64-bit fixed-point number, applies the Cordic algorithm, and

then converts the result back to floating point. The coprocessor is implemented with

micro-programmed control. The revised SoPC configuration is shown in Figure 4.5.

The implementation results are summarized in Table 4.1. The FPGA has two resource

types: logic elements (LE) and embedded system blocks (ESB) providing logic gates and

memory [4]. The SoPC with the coprocessor uses approximately 87% of the FPGA’s logic

resources and 47% of memory resources. The Environment task’s worst-case execution time

is 4.90 times faster. The effect on missed deadlines and schedule feasibility is discussed in
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Table 4.1: Cordic Results

Worst-Case Execution Time

C++ cos() func 1.435 ms

coproc. cordic cosine 0.081 ms

Env task with cos() 1.680 ms

Env task with cordic 0.343 ms

FPGA Resources

LE ESB

cordic 3840 12

SoPC with cordic 7246 25

FPGA Capacity 8320 52

Section 4.5.

4.4 Kernel Partitioning

The second coprocessor implements a part of the kernel functionality. As described in

Chapter 2, the δ Framework facilitates user-directed hardware/software partitioning of

the kernel. In another project, the Spring kernel was partitioned by moving some of

the scheduler into a coprocessor. Likewise, the goal in partitioning the cs1 kernel is not to

transfer the entire kernel into hardware but to choose a strategic part that yields significant

system speed-up with small cost. It was decided to implement the EDF scheduling in a

kernel coprocessor. The partitioned kernel is called cs2. The cs2 coprocessor replaces

management of the run list, the timer list and the system clock (Figure 4.2). The context

switching, message passing and coprocessor management remain in the software portion of
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the kernel. The application programming interface (API) is the same for both kernels.

The pseudocode of the cs1 and cs2 kernels are contrasted in Figures 4.6 and 4.7. The

pseudocode describes the activity each time the kernel is invoked. Those parts of cs1 that

are omitted from cs2 appear in italics. Those parts of cs1 that are modified in cs2 are

underlined.

The design of the cs2 kernel coprocessor is described in more detail than the cordic

coprocessor since cordic is a known algorithm [102, 103], whereas the cs2 coprocessor

design is original work. The cs2 coprocessor implements the EDF scheduling policy and

supports periodic and aperiodic tasks.

To help keep the coprocessor size small, the number of tasks and the task parameters

(period, deadline, etc.) are fixed at compile time. To further reduce the coprocessor size,

all tasks share the same control logic. For this reason, tasks are processed in a time-slice

manner.

In essence, each task in the rotation bids to determine which has the earliest deadline.

The first task in the rotation is the Idle task - a pseudo-task employed by the scheduling

algorithm. The Idle task writes its deadline (= 264− 1) to the minimum deadline register,

dmin, and its identifier to a task identity register, tidmin. Each successive ready task in the

rotation compares its deadline to the value in dmin, overwriting dmin and tidmin with its

own values if its deadline is earlier. The last task in the rotation is another pseudo-task

called the Irq task. At the end of every rotation the Irq task compares tidmin with the

value from the previous rotation. If the task with the earliest deadline has changed, the

processor is interrupted to indicate that a context switch is required. When no application

tasks are ready for execution, the Idle task wins the bidding and is scheduled. Otherwise

the task with the earliest deadline wins.

The cs2 coprocessor is mapped into the processor’s address space and communicates
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Figure 4.6: cs1 Kernel Pseudocode
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Figure 4.7: cs2 Kernel Pseudocode
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Figure 4.8: cs2 coprocessor interface

over the system bus. The cs2 coprocessor interface is depicted in Figure 4.8. To commu-

nicate to the cs2 kernel that a context switch is required, the cs2 coprocessor asserts the

interrupt request (irq) and writes the task identifier of the next task to run in the tidOut

register. The cs2 kernel communicates changes in task status to the cs2 coprocessor by

writing the task identifier to the tidIn register and writing the appropriate code to the

control register (terminate, sleep, wake).

The structure of the cs2 coprocessor is shown in Figure 4.9. The task set always

consists of τ0, the Idle task, and τn+1, the Irq task. τ1 to τn are the application tasks.

For demonstration purposes, a periodic task (τ1) and an aperiodic task (τ2) are shown in

the figure. The periodic task has 4 constants: task type (periodic), start time (s), period

(T), and relative deadline (D). It also has 3 variables: state, release date (r), and absolute

deadline (d). The other task types (aperiodic, idle, irq) require a subset of this information.
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Figure 4.9: cs2 coprocessor structure

Each task is governed by a finite state machine (FSM). The FSMs of the periodic,

aperiodic, Idle and Irq task types are shown in Figure 4.10. For example, each of the

periodic tasks would be governed by the FSM in Figure 4.10(a). This doesn’t mean however

that all of the periodic tasks transition through the same states simultaneously. They each

have unique state but share the FSM control and data-path logic by being processed in

time-slice manner. This reduces the size of the cs2 coprocessor.

The size of the cs2 coprocessor depends on the number and type of tasks. The size

and performance of the cs2 coprocessor is analyzed in detail in [76]. In Table 4.2, results
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(a) Periodic (b) Aperiodic

(c) Idle (d) Irq

Figure 4.10: Task Type FSMs
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Table 4.2: Cs2 Results

Worst-Case Execution Time

cs1 128 µs

cs2 66 µs

cs2 coproc 4.56 µs

FPGA Resources

LE ESB

cs2 coproc 2496 1

SoPC with coproc 5242 14

FPGA Capacity 8320 52

are reported for the cs2 kernel and coprocessor configured for the idle engine application.

Impact on schedule feasibility is analyzed in Section 4.5.

4.5 Feasibility Results

The effect that coprocessors have on the idle engine application’s feasibility is evaluated for

four cases: 1) SoPC with no coprocessor, 2) SoPC with cordic coprocessor, 3) SoPC with

cs2 coprocessor, and 4) SoPC with cordic and cs2 coprocessors. The feasibility analysis of

Algorithm 3.4 is used to test for feasibility. In the two cases where the cordic coprocessor

is used, Algorithm 3.2 is also used. (Both algorithms work the same when no application

coprocessor is used as in the first and third cases.)

SoPC - no coprocessor

The kernel worst-case execution time, Ccs1 = 128µs, is added twice to each task’s

worst-case execution time: Ci = Ci + 2Ccs1. As a result, U = 1.097. The task set
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is deemed infeasible by the analysis of Algorithm 3.4. When the application was

run for 10 seconds on the SoPC, the Throttle task was late 22 out of 1000 times,

corroborating the feasibility analysis. (During a 10 second run of the application,

over 8000 tasks instances are executed. The absence of missed task deadlines is not

a proof of feasibility but the number of missed deadlines is expected to be roughly

indicative of the difficulty of scheduling the task set.)

SoPC - cordic coprocessor

The Environment task worst-case execution time vector is:

~Cenv = 〈0.000074, 0.000081, 0.000269〉 .

The task first executes on the processor for 74 µs, then executes on the coprocessor

for 81 µ and then executes on the processor again for 269 µs. For the feasibility

analysis, the Environment is represented by subtasks τenv,1 and τenv,3 which execute

on the processor and τenv,2 when executes on the coprocessor. The kernel worst-case

execution time Ccs1 is added twice to each software task’s worst-case execution time.

The Environment subtasks have parameters:

Ti Di Ci

τenv,1 0.005000 0.004394 0.000330

τenv,2 0.005000 0.004475 0.000081

τenv,3 0.005000 0.005000 0.000525

Following Algorithm 3.4:

• U = 0.881101

• Processor demand analysis (∀τi : φi = 0):
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– L = 0.039564

– S = {0.002500, 0.004394, 0.005000, . . . , 0.039394} (|S| = 25)

– h(0.002500) = 0.002520 −→ infeasible

Since processor utilization is less than one, processor demand can be analyzed. Anal-

ysis is first done with all task phases equal zero. The synchronous busy period has

length L = 0.039564. The set of deadline events in [0, L) is constructed. Processor

demand analysis of the first event in S, v = 0.0025, shows that h(v) > v and the

task set is deemed infeasible.

When Algorithm 3.2 is used, the processor utilization is higher: U = 0.897301. This

is because the coprocessor time is included in the task worst-case execution time. It

fails at the same point that Algorithm 3.4 fails.

When the application was run on the SoPC for 10 seconds, no task deadlines were

missed. This apparent discrepancy can be resolved by observing that the analysis

is conservative: it ignores task start times and also assumes that each task has

execution time equal to its worst-case for every invocation. While the analysis may

return “infeasible” for a feasible task set, it should never return “feasible” for an

infeasible task set.

SoPC - cs2 coprocessor

The kernel worst-case execution time, Ccs2 = 0.000066s is added twice to each task’s

worst-case execution time: Ci = Ci + 2Ccs2.

Following Algorithm 3.4 (or Algorithm 3.2):

• U = 0.993720

• Processor demand analysis (∀τi : φi = 0):
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– L = 0.299680

– S = {0.002500, 0.005000, 0.007500, . . . , 0.297500} (|S| = 178)

– h(0.002500) = 0.002272

h(0.005000) = 0.005928 −→ infeasible

U is higher than for the cordic coprocessor case above and L is much longer, resulting

in a larger event set to check. At the first event, v = 0.0025, h(v) ≤ v meaning that all

tasks with deadlines by 0.0025 have time to execute. However at the second event,

v = 0.0050, processor demand exceeds available time and the task set is deemed

infeasible.

When the application was run on the SoPC for 10 seconds, the Throttle task was

late 17 times out of 1000. This result supports a view that the cordic coprocessor

contributed more to task feasibility than the cs2 coprocessor. Examining the analyt-

ical results, U for the cs2 coprocessor case is very close to one, which may indicate

that the task set is difficult to schedule.

SoPC - cordic and cs2 coprocessor

The cordic and cs2 coprocessor did not fit onto the FPGA used for this case study.

However the feasibility analysis can still be conducted. The kernel worst-case exe-

cution time is Ccs2 = 0.000066s. This changes the Environment subtask parameters

since Ccs2 is added twice to each of τenv,1 and τenv,3. The resulting parameters are:

Ti Di Ci

τenv,1 0.005000 0.004518 0.000206

τenv,2 0.005000 0.004599 0.000081

τenv,3 0.005000 0.005000 0.000401
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Following Algorithm 3.4:

• U = 0.752720

• Processor demand analysis (∀τi : φi = 0):

– L = 0.019071

– S = {0.002500, 0.004518, 0.005000, . . . , 0.017500} (|S| = 10)

– for each v ∈ S, h(v) ≤ v:

h(0.002500) = 0.002272

h(0.004518) = 0.002478

h(0.005000) = 0.004723

. . .

h(0.017500) = 0.014181

• Processor demand analysis (φenv,1 = T −Denv,2 φenv,3 = −Denv,2):

– L = 0.019472

– S = {0.000401, 0.002500, 0.004919, . . . , 0.017500} (|S| = 14)

– h(0.000401) = 0.000401

h(0.002500) = 0.002673 −→ infeasible

The task set passes analysis with all task phases equal zero. For the second iteration

of Algorithm 3.4, τenv,1 and τenv,3 have phases as indicated above. The first event,

v = 0.000401 is the deadline of τenv,3 which has zero slack. At the second event,

v = 0.0025, h(v) > v and the task set is deemed infeasible. (The worst-case execution

time of the kernel was experimented with and the analysis passed when the kernel

time was reduced to Ccs2 = 37µs - approximately half of the true value.)

Following Algorithm 3.2:
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• U = 0.768920

• Processor demand analysis (∀τi : φi = 0):

– L = 0.019395

– S = {0.002500, 0.005000, 0.007500, . . . , 0.017500} (|S| = 7)

– for each v ∈ S, h(v) ≤ v:

h(0.002500) = 0.002272

h(0.005000) = 0.004804

h(0.007500) = 0.006287

. . .

h(0.017500) = 0.014424

Again processor utilization is higher, as expected. Although its synchronous busy

period is longer (L = 0.019395), it tests fewer deadline events than the first iteration

of Algorithm 3.4 because the Environment task is treated as one task, rather than

two subtasks. Even though the processor demand at most events is higher than in

Algorithm 3.4, all deadline events pass the analysis, indicating that the task set is

feasible. Note that failing the analysis of Algorithm 3.4, does not mean that the task

set is infeasible; only that the analysis cannot guarantee that there will be no missed

deadlines.

The four test cases that were evaluated show that, as expected, the feasibility analysis

is conservative, rejecting tasks sets as infeasible that may in fact be feasible (i.e. did not

miss deadlines during testing). Furthermore, in the last case, Algorithm 3.2 passed while

Algorithm 3.4 failed, showing the importance of using both algorithms. Note also that as

U decreased, the number of missed deadlines also decreased (see Table 4.3).
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Table 4.3: U vs Missed Deadlines

Processor Utilization Missed

Case Algorithm 3.4 Algorithm 3.2 Deadlines

SoPC - no coproc. U = 1.097 U = 1.097 22

SoPC - cs2 U = 0.993720 U = 0.993720 17

SoPC - cordic U = 0.881101 U = 0.897301 0

SoPC - cordic + cs2 U = 0.752720 U = 0.768920 n/a

Table 4.4: Coprocessor Comparison

∆t ∆U LE ESB (∆U/LE) x 106

cordic 1.081ms 0.2162 3840 12 56.30

cs2 62µs 0.1036 1836 1 56.42

4.5.1 Coprocessor Evaluation

Two methods were used above to evaluate the effect a coprocessor had on schedule feasi-

bility: implementation testing and feasibility analysis. The hardware/software partitioners

that are developed in the next two chapters must evaluate many coprocessors in varying

combinations. For large problems, the implementation and testing of every coprocessor

in every combination would be too time consuming. The feasibility analysis should not

require as much effort but is also expected to be too time consuming. Therefore a faster

indicator of task feasibility is needed. From the results above, it was noted that as proces-

sor utilization decreased, the number of missed deadlines also decreased. In Table 4.4, the

cordic and cs2 coprocessor are compared by ∆U .

∆t for cordic is calculated from the difference in worst-case execution times for the

Environment task from Table 4.1 and by subtracting 2Ccs1 since two extra kernel invocation
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are required to block and unblock the task. ∆U is calculated by dividing ∆t by the

Environment task period, Ti = 5ms.

∆t for cs2 is calculated from the difference in worst-case execution times for the kernels

from Table 4.2. The size of the coprocessor is adjusted by the size of the counter-timer

since the cs2 coprocessor eliminates the need for it. The counter-timer coprocessor uses

660 LEs and 0 ESBs. ∆U for the cs2 coprocessor is calculated as:

∆U =
∑
τi∈τ

2∆t

Ti

.

The kernel is invoked twice for each task invocation for release and termination, so ∆t

cs2 is saved twice for each task invocation. 2∆t cs2 is divided by each task’s period and

summed to calculate ∆U .

∆U for cordic is approximately twice ∆U for cs2. This agrees with the experimental

results where the SoPC with cordic coprocessor had no late tasks, while the SoPC with the

cs2 coprocessor reduced late tasks from 22 to 17. However the cordic coprocessor requires

approximately twice as many FPGA resources as the cs2 coprocessor. In a system where

multiple coprocessors may be used, it might be useful to scale ∆U by the coprocessor size

to estimate gain per LE. The cordic coprocessor uses 46% of the FPGA LEs and 23% of

ESBs. The cs2 coprocessor uses 22% of the FPGA LEs and 2% of ESBs. In both cases a

larger percentage of LEs than ESBs are used to implement the coprocessor. Therefore ∆U

is scaled by LEs. It is also multiplied by 106 for easier reading. The resulting values are

very close: 56.3 for cordic and 56.4 for cs2. Both ∆U and ∆U/LE are considered as gain

measures for the partitioning heuristic described in Chapter 6.

It is interesting to note that ∆U calculations for both coprocessors depend not only

on the task/kernel that uses the coprocessor but also on other parameters. For the cordic

coprocessor, ∆t depends on the kernel worst-case execution time as well as the change
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to the Environment task. For the cs2 coprocessor, ∆U depends on the change to kernel

worst-case execution time and the number of kernel invocations which is determined by

the task set. This dependence of ∆U on both the task set and kernel is incorporated into

the partitioning heuristic in Chapter 6.

4.6 Summary

A case study has been performed on an SoPC with a real-time kernel and application. An

all-software implementation failed the EDF feasibility analysis and in testing, the Throt-

tle task was late 22 times out of 1000. Hardware/software partitioning of the application

and the kernel was demonstrated. The larger application coprocessor was successful in

eliminating missed deadlines. However neither coprocessor caused it to pass the feasi-

bility analysis which is conservative. However it was noted that as processor utilization

decreased, the number of missed deadlines also decreased. Two metrics for fast comparison

of coprocessors have been suggested: U and U/LE. Both metrics facilitate the comparison

of coprocessors, whether kernel coprocessors or application coprocessors. These metrics

are considered in development of the hardware/software partitioning heuristic in Chapter

6.



Chapter 5

Hardware/Software Partitioning

This chapter defines the hardware/software partitioning problem being studied in this

dissertation. In Section 5.1, the problem is defined with its accompanying assumptions

and limitations. In Section 5.2, a non-linear programming (NLP) model is developed. A

heuristic solution to the problem is proposed in Chapter 6. Results from evaluating the

NLP model and the heuristic solver are presented in Chapter 7.

5.1 Problem Definition

The hardware/software partitioning problem identified in this chapter has two key features

which are listed here.

1. Partition the combined application and kernel.

Several codesign systems were reviewed in Chapter 2 that performed hardware/software

partitioning of the application. Other work was reviewed that explored hardware/software

implementation of the kernel (or operating system). However the two activities were

not combined.

85
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2. Partition concurrent systems so as to produce feasible schedules.

Of the systems in Chapter 2 that combined scheduling with partitioning, none ex-

amined concurrent applications. Any systems that managed concurrent applications,

synthesized schedulers after the partitioning stage. They did not integrate scheduling

of concurrent applications with partitioning.

The hardware/software partitioning problem discussion is divided into four parts. In Sec-

tion 5.1.1, the input format of the application and kernel is discussed. The implementation

target input requirements are presented in Section 5.1.2. Assumptions made in modeling

edge and node costs are discussed in Section 5.1.3, followed by a declaration of the problem

in Section 5.1.4.

5.1.1 Problem Input: Application and Kernel

The focus of this thesis is on partitioning and scheduling. For this reason, the internal

representation (IR) is described in detail but the method of system specification is left

open. Any specification method that contains the information needed to build the IR

should be compatible with this work. The System Level Intermediate Format (Slif) was

chosen as the IR for the following four reasons.

1. Node granularity - The nodes of a Slif graph represent application behaviour at the

function level. This is fine enough that a task can be partitioned into multiple nodes

(see case study Slif graphs in Appendix B.2). It is coarse enough to allow simple

calculation of task execution times: edge counts and node execution times can be

easily combined to calculate task execution time. If a finer granularity was used, such

as the basic block or operation level, then conditional execution of loops and choice

statements would complicate calculation of execution time. It is also a convenient
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level to represent library functions for which no source code is available (further

decomposition would be difficult without source code). However this representation

can limit the partitioner’s options as becomes apparent when transforming the case

study data for partitioning in results Section 7.1.

2. Node and edge annotations - The annotations incorporate data needed by the parti-

tioner such as node execution times, node sizes, and edge counts.

3. Benchmarks - Six benchmarks are available that are based on real applications. Un-

fortunately they are all uni-process and do not extend easily to concurrent problem

representation.

4. Generic problem generator - A public domain utility, called gpslifgen, is available that

generates generic problem instances based on statics obtained from the benchmarks.

The Slif annotations used in the model in Section 5.2 are: node worst-case execution times

(hardware and software), node size (hardware and software) and edge count. Edge count

represents the number of times, per source node execution, that the edge’s destination

node is invoked.

There is one Slif graph for the kernel and one Slif graph for each application task.

Application task Slif graphs can have nodes in common: for example, two tasks may

invoke the same subroutine. It is expected that the node annotations will be identical if

the node appears in multiple Slif graphs. Kernel nodes cannot be shared with application

tasks. This is an important simplification in developing the heuristic in Chapter 6. It would

also probably occur without such a restriction because kernel nodes implement scheduling

policy and other kernel services which are not likely to be implemented in application task

code.
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The Earliest Deadline First (EDF) policy is used for reasons described in Chapter 3,

so task scheduling parameters are also needed in the problem input. For each task τi,

relative deadline Di and period (or minimum inter-arrival rate for sporadic tasks) Ti must

be specified. Worst case execution time Ci for task τi is not specified: it is calculated

from the Slif graph and depends on how the nodes are partitioned. Explicit scheduling

information is not required for the kernel: the same kernel is invoked for any scheduling

activity such as task release, block, unblock and termination.

5.1.2 Problem Input: Implementation Target

In order to partition the application and kernel, the implementation target onto which

they are being mapped needs definition. The following definition of the target technology

is assumed:

1. there is one processor with fixed throughput,

2. coprocessors are memory mapped (see discussion in Section 5.1.3),

3. programmable logic for coprocessors has limited capacity, and

4. memory for program and data may be limited.

These assumptions of the target technology are applicable to System on Chip (SoC) and

System on Programmable Chip (SoPC) systems. In Chapter 4, a case study of an SoPC

is described. A single processor connects to a system bus to which memory, peripherals

and coprocessors connect. Results from the case study indicate that a small part of the

application and kernel functionality can fill the programmable logic to capacity. Whether

memory is a limiting factor depends on the configuration of the SoC/SoPC. If the memory

is embedded memory, derived from the FPGA resources, it can be a limiting factor. If



5.1. PROBLEM DEFINITION 89

the memory is external, as in the SRAM on the development board of the case study, it

may not be a limiting factor. Another way that memory can be expanded in an SoC is to

integrate logic chips and memory chips in one package [104].

Multi-processor systems are not included in this definition of the hardware/software

partitioning problem but are discussed as a possible extension of the work in Chapter 8.

The implementation parameters required by the partitioner are: processor throughput

(clock speed or retired instruction rate), logic size (logic elements or gate equivalents) and

memory size (embedded memory blocks or bytes of external memory). In addition, Slif

nodes must be measured for execution time and size on the target implementation - both

software and hardware. Other resources could be measured and constrained as discussed

in Section 5.2.5.

5.1.3 Problem Modeling: Assumptions

A key assumption of the model developed for the hardware/software partitioning problem

is that uncut edges do not incur additional cost but that cut edges do. This assumption is

consistent with the other hardware/software partitioning tools surveyed in Chapter 2. To

justify this assumption, four cases are considered. Before examining the cases recall that

in a Slif graph an edge represents an invocation of one function by another. (It may also

represent an access to a global variable but that interpretation is not used in this model.)

With two nodes per edge and two implementation targets there are four permutations to

consider. These four cases are discussed as they apply to task edges. Kernel edges are

discussed later in this section.

1. software to software (uncut)

Parameters are pushed onto the stack by the invoking function which then executes a

“branch to subroutine” instruction. The invoked function retrieves parameters from
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the stack and when finished, optionally puts a result on the stack and executes a

“return from subroutine” instruction. These edge costs are included in the invoking

and invoked node costs.

2. hardware to hardware (uncut)

The invoking node possibly latches output parameters and asserts a control signal

to enable the invoked node. The invoked node reads the output signals from the

invoking node, generates an output and asserts another signal to indicate that the

result is valid. These edge costs are included in the invoking and invoked node costs.

3. software to hardware (cut)

Instead of pushing parameters onto the stack, the invoking function writes them to

memory-mapped registers on the coprocessor. The coprocessor reads input param-

eters from the registers and when finished, optionally puts a result in a memory-

mapped register and interrupts the processor. The invoking function reads the re-

sult from the register. These edge costs are included in the source and destination

node costs. Furthermore, the cost for the invoking node should be similar to the

software-software case and the cost for the invoked node should be similar to the

hardware-hardware case.

There are however other costs. The interaction of software with coprocessor is mod-

eled on the case study kernel. Tasks block on coprocessor invocation and the kernel

handles the coprocessor interrupt, unblocking the invoking task. Therefore a software

node invoking a hardware node (a cut edge) incurs the additional cost of two kernel

invocations.

4. hardware to software (cut)

Instead of latching parameters into an internal register, the coprocessor latches them
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Table 5.1: Edge Cost Summary

Slif Edge Included Cost Extra

Graph Direction Cut? In Src. Node In Dst. Node Cost

Task sw → sw no param. push,

call, result pop

param. pop, re-

sult push, return

hw → hw no ” ”

sw → hw yes ” ” block

unblock

hw → sw yes ” ” block

unblock

Kernel any n/a ” ”

into a memory-mapped register and asserts the interrupt request. As in the case

study, the kernel handles the interrupt and unblocks or releases the appropriate

task. That task reads the input parameters from the memory-mapped registers and

when finished writes the result to a memory-mapped register and writes a value to

the coprocessor control register to transfer control. The task would then block or

terminate. In this case the cost to the invoking node is similar to the hardware-

hardware case and the cost to the invoked node is similar to the software-software

case. Again the cut edge incurs the additional cost of two kernel invocations.

Based on these four cases, it is assumed that the cost of uncut edges is incorporated into

the invoking and invoked node costs, and that cut edges incur the additional cost of two

kernel invocations. This discussion is summarized by Table 5.1.

The discussion of edge costs has so far only dealt with application task edges. Kernel

edges are assumed to have no cost, whether they are cut or uncut. This is because the
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kernel does not block on a coprocessor invocation. Instead it busy-waits on the coprocessor

until the coprocessor finishes. This busy-waiting also eliminates the overhead of an extra

interrupt-service call to handle the coprocessor interrupt.

An example is introduced in Figure 5.1 that shows the relationship between source code

and partitioned Slif graphs. It also shows how Slif graphs relate to the time vectors ~Ci

used in Chapter 3. Figure 5.1(a) shows a source code representation for a function, n1(),

that invokes another function, n2(). The part of n1() that executes before invoking n2() is

labeled n1a and the part that executes after is labeled n1b.

Figure 5.1(b) shows how this task would be represented as a time vector ~Ci if n2() was

implemented on a coprocessor and n1() remained in software. Time is added before and

after n1a for task release and task block. The combined times of n1a, release and block is

the first element, Ci,1, in the vector. The execution time of n2 on the coprocessor is the

second element, Ci,2. The combined times of n1b, unblock and terminate is Ci,3.

In Figure 5.1(c) this task is represented by a Slif graph for hardware/software parti-

tioning. The Slif edge direction indicates which node invokes the other. However, each

edge is actually traversed twice: once to transfer control to the invoked node and once

to transfer control back to the invoking node. Dashed lines have been added to the Slif

graph to indicate when an edge causes kernel activity. Unshaded nodes are assigned to

software and shaded nodes to hardware. Cut edges are indicated by a slash through the

edge. Node n1 is a indivisible unit with execution time equal to the sum of n1a and n1b.

Since node n1 is the root of the Slif graph and is implemented in software (unshaded),

kernel overhead is incurred once to release the task and once to terminate the task. Since

node n2 is implemented in hardware (shaded), kernel overhead is incurred once to block

n1 and once to unblock n1. Note that the Slif graph specification does not include enough

information to generate the worst-case execution time vector for EDF feasibility analysis:
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(a) Source Code View (b) Time Vector View (c) Slif Graph View

Figure 5.1: Partitioned Task with One Cut Edge

n1 is annotated with only the sum of n1a and n1b, so it cannot be determined at what

point in execution the outgoing edge is traversed.

Figure 5.2 shows another partitioned Slif graph. In this case, the root node is bound

to hardware. For the partitioning model, it is assumed that a root node implemented in

hardware would be released independent of the kernel and so no release/terminate pair are

needed to enter/exit the root node. The two children of the root are bound to software

and are shown being released/terminated for each node. Depending on how the graph

is transformed into source code, the software nodes could be combined into one task or

divided into multiple tasks. In either case, each traversal of a cut edge requires two kernel

invocations. Two uncut edges (software to software, and hardware to hardware) are also

shown: these do not require kernel activity.
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Figure 5.2: Partitioned Task with Multiple Cut Edges

5.1.4 Problem Declaration

The hardware/software partitioning problem is declared as a constraint satisfaction prob-

lem:

Declaration 5.1. Given one processor with fixed throughput, limited programmable logic,

and possibly limited program/data memory, partition the application and kernel such that

all deadlines are met when scheduled by the EDF policy.

This definition of the hardware/software partitioning problem and the assumptions and

limitations above are encapsulated by the non-linear programing (NLP) model that follows.



5.2. NON-LINEAR PROGRAMMING MODEL 95

5.2 Non-Linear Programming Model

The NLP model of the hardware/software partitioning problem is presented in four parts:

input parameters, variables, objective function and constraints. The goal is to partition

the system so that it can be feasibly scheduled by the EDF policy. This is done in two

steps. First, the model is solved to optimize for processor utilization U (the rationale for

choosing U is discussed in Section 5.2.3). Second, an algorithm is used to add scheduling

constraints to the NLP model until a feasible EDF schedule is obtained or the problem is

deemed infeasible.

5.2.1 Parameters

Parameters are the set of values that describe a particular system to be partitioned. The

application task set is denoted τ . Each application task τi in τ has a set of nodes Ni and

edges Ei. Each task also has deadline Di and period Ti. The kernel has node set Nk but

the edge set is not used because cut kernel edges have zero cost as discussed in Section

5.1.3.

Since application tasks can have nodes in common, the set of all unique application task

nodes is defined: Nτ =
⋃

τi∈τ

Ni. Nodes are not shared between the application tasks and the

kernel: Nτ ∩Nk = ∅. The set of all nodes N , is the union of task nodes and kernel nodes:

N = Nτ ∪ Nk. The hardware size of node a in set N is sza[hw] and the software size is

sza[sw]. Node size is independent of the tasks or kernel to which it belongs. However, the

same node may have different total worst-case execution times in different tasks because

it may be invoked different numbers of times. Therefore, node worst-case execution time

is defined per task or kernel. Task i node a has worst-case execution time in hardware,

ci,a[hw], and software, ci,a[sw]. Kernel node a has times ck,a[hw] and ck,a[sw]. These times
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represent the total time spent executing the node during an invocation of τi or the kernel.

(The Slif annotation gives node execution time per node execution, so a transformation is

required to total execution time as described in Appendix Section B.1.)

The set of all edges is defined: E =
⋃

τi∈τ

Ei. Edge p in set E, ep, has source node, ep[src],

and destination node, ep[dst], and invocation count (fp). The count represents the total

invocations along the edge, per task instance. (The Slif edge count annotation represents

the number of times that the destination node is invoked by the source node per execution

of the source node. The transformation from the Slif edge count annotations to total edge

count, as required for this model, is described in Appendix Section B.1.)

The implementation target is described implicitly by the application and kernel node

worst-case execution times and sizes. The only other parameters required for the target

are the programmable logic capacity, Sz[hw] and memory capacity, Sz[sw]. Note that the

processor capacity, cycles per second, is described implicitly in the node execution times.

The schedule feasibility analysis checks that the processor capacity is not exceeded.

The nature of some nodes may require that they be bound to either hardware or

software. For example the context save of the kernel must be executed on the processor.

The set of nodes whose binding to hardware is predetermined is B[hw] and to software is

B[sw].

Table 5.2, at the end of this chapter, contains a list of all parameters and variables used

to define the NLP partitioning model and the heuristic partitioner of Chapter 6.

5.2.2 Variables

The following 0-1 variables have been used to formulate the NLP partitioning model. (A

variable value 0 represents false and 1 true.)
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Name Description

na[hw] node a is bound to hardware

na[sw] node a is bound to software

ep[h/s] edge p is cut (source node in hardware and destination

node in software)

ep[s/h] edge p is cut (source node in software and destination

node in hardware)

5.2.3 Objective Function

The final goal of the partitioning is to pass the feasibility analysis of Algorithm 3.2. Algo-

rithm 3.2 checks that processor utilization is not greater than one and then performs the

processor demand analysis. The strategy of the partitioner is to first ensure that U ≤ 1,

and then to modify to partition to pass the processor demand analysis. The initial objective

is therefore to minimize processor utilization:

min U =
∑
τi∈τ

Ci

Ti

,

where Ci is the worst-case execution time of task i. Ci is calculated:

Ci =
∑

na∈Ni

(ci,a[hw] · na[hw] + ci,a[sw] · na[sw])

+2Ck · nroot[sw]

+2Ck

∑
ep∈Ei

fp (ep[h/s] + ep[s/h]) ,

(5.1)

The first line sums worst-case execution times of τi nodes according to their bindings

(hardware or software). The reason that both software and hardware times are included

is that Algorithm 3.2 is used by the feasibility repair algorithm (Section 5.2.6), which

calculates Ci by summing the worst-case execution times of nodes assigned to software and

nodes assigned to hardware.
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The second line adds 2Ck if the root node of τi is bound to software, where Ck is the

kernel software worst-case execution time. The third line adds 2Ck for each cut edge,

multiplied by the edge count. The rationale for adding these terms is described in Section

5.1.3. Ck is the sum of worst-case execution times of kernel nodes according to their binding

(hardware or software):

Ck =
∑

na∈Nk

(ck,a[hw] · na[hw] + ck,a[sw] · na[sw]) . (5.2)

The objective function for this NLP model is to minimize processor utilization. This

optimization goal and others such as minimum execution time and minimum cut set are

evaluated in Chapter 7 for their impact on schedule feasibility. The objective function is

quadratic because the na[hw|sw] variables are multiplied by the ep[h/s|s/h] variables when

Equation 5.2 is substituted into Equation 5.1.

5.2.4 Constraints

1. Each node is assigned to either hardware or software.

∀na ∈ N : na[hw] + na[sw] = 1.

2. An edge is cut if the nodes that it connects have different bindings.

∀ep ∈ E : na[hw] + nb[sw]− ep[h/s] ≤ 1,

na[sw] + nb[hw]− ep[s/h] ≤ 1,

where na = ep[src] and nb = ep[dst].

If edge ep is cut, then one of ep[h/s] or ep[s/h] is set to one. These variables are are

used in the calculation of Ci (Equation 5.1). Consider ep[h/s]: if the source node is

bound to hardware and the destination node is bound to software, it is set to one. If

not, then optimization of the objective function sets ep[h/s] to zero.
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3. Hardware and software capacities must not be exceeded.∑
na∈N

sza[hw] · na[hw] ≤ Sz[hw].∑
na∈N

sza[sw] · na[sw] ≤ Sz[sw].

The first equation ensures that the sum of sizes of application and kernel nodes bound

to hardware does not exceed Sz[hw]. The second equation performs the same check

for software.

4. Some nodes may have predetermined bindings.

∀na ∈ B[hw] : na[hw] = 1.

∀na ∈ B[sw] : na[sw] = 1.

These constraints are a “knapsack” formulation and so the problem is a “0-1 quadratic

knapsack” assignment problem [35].

5.2.5 Vectored Resource Capacities

The capacities of the hardware target, Sz[hw], and the software target, Sz[sw], have been

modeled as unit capacities: representing FPGA logic elements or processor memory, for

example. It may be desirable to associate multiple resource capacities with an implemen-

tation target. For example the FPGA could have logic element, embedded system block

and pin capacities; or the processor could have separate program memory and data mem-

ory capacities. Or perhaps system level constraints such as design effort (time) could be

added. Multiple resource capacities could be modeled using vectored capacity parameters,

~Sz[hw] and ~Sz[sw]. The sizes of ~Sz[hw] and ~Sz[sw] need not be the same. The node size

annotations would also be represented in vector form: ~sza[hw] and ~sza[sw]. Their sizes

would parallel the capacity vector sizes: | ~sza[hw]| = | ~Sz[hw]| and | ~sza[sw]| = | ~Sz[sw]|.

Constraint 3 would be repeated for each element in the vector.
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5.2.6 Feasibility Repair Algorithm

When the NLP model is solved, processor utilization, U , is minimized and worst-case

execution times are generated. Now one of Algorithm 3.2 or Algorithm 3.4 can be used

to check whether the task set can be feasibly scheduled by the EDF policy. Algorithm 3.4

can only be used for task sets in which one task invokes coprocessors. Solutions produced

by the NLP model may have multiple tasks that block on coprocessors, ruling out the use

of Algorithm 3.4. Therefore Algorithm 3.2 is used to verify schedule feasibility.

Algorithm 3.2 checks that processor utilization does not exceed one: U ≤ 1. Then it

generates the set S of deadline events. The deadline events are checked in order. If for any

deadline event v ∈ S the processor demand exceeds the available time (h(v) > v), then the

EDF feasibility analysis fails. However it might be possible to modify the partition to meet

these deadlines. The set of deadline events, S, is returned by the analysis. The processor

demand analysis at each event v ∈ S is added to the NLP model as a fifth constraint:

5. At each deadline event, v in S, the processor demand h(v) must not exceed v.

∀v ∈ S :
∑

Di≤v

(
1 +

⌊
v−Di

Ti

⌋)
Ci ≤ v.

The NLP model is solved again with this new constraint added. Note that the NLP model

is solved the first time without Constraint 5 because the output of the model (task worst-

case execution time) is required to determine the synchronous busy period [0, L) over which

S is generated.

If a feasible solution to the revised model is found then the feasibility analysis must

be repeated because L may have changed due to changed task execution times. A bigger

L may add more deadline events that need checking. This process is repeated until the

feasibility analysis passes or the NLP model becomes infeasible. The pseudocode for this
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feasibility repair algorithm is listed in Algorithm 5.1.

Result: partitioned application task set and kernel

solve NLP model (min. U with constraints 1 – 4) ;

while U ≤ 1 do

S ← invoke Algorithm 3.2 ;

if EDF analysis (Algorithm 3.2) passes then

return solution ;

end

use S to generate constraint 5 ;

solve NLP model (min. U with constraints 1 – 5) ;

if “NLP model infeasible” then

return no solution ;

end
end

return no solution ;

Algorithm 5.1: Feasibility Repair Algorithm

Use of the feasibility repair algorithm is demonstrated using the task set and kernel

represented in Figure 5.3. In this simple example, the kernel has one node (and no schedul-

ing information). The two tasks consist of two nodes each with scheduling information as

displayed. Hardware and software worst-case execution times and sizes are given for each

node. The programmable logic capacity is Sz[hw] = 2 and the program/data memory

capacity is Sz[sw] = 10.

When U is minimized, the kernel node is bound to hardware and all other nodes are
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(a) kernel (b) task 1 (c) task 2

Figure 5.3: Feasibility Repair Example

bound to software, which corresponds to:

Ck = 1

C1 = 10 + 10 + 2Ck = 22

C2 = 10 + 10 + 2Ck = 22

U =
22

60
+

22

50
= 0.8067.

In calculating both C1 and C2, 2Ck is added to allow for task release/terminate. When

Algorithm 3.2 is invoked, L = 44 and S = {20}. When the (only) deadline at t = 20 is

checked, processor demand exceeds capacity (h(20) = 22) and the analysis fails.

A fifth constraint is added to the model to enforce that h(20) ≤ 20. Since only τ1 has
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a deadline by t = 20, the constraint is C1 ≤ 20, which when expanded becomes:

20 ≥ (6n1 1[hw] + 10n1 1[sw]) + (3n1 2[hw] + 10n1 2[sw])

+2Ckn1 1[sw]

+2Ck(e1[h/s] + e1[s/h]).

Solving the model again, nodes n1 1 and n2 2 are bound to hardware and all other nodes

are bound to software, which corresponds to:

Ck = 2

C1 = 6 + 10 + 2Ck = 20

C2 = 10 + 6 + 2Ck + 2Ck = 24

U =
20

60
+

24

50
= 0.8133.

When calculating C1, the root node is bound to hardware and so 2Ck is only added for

the cut edge. When calculating C2, the root node is bound to software and the other

node to hardware, so 2Ck is added for task release/terminate and for the cut edge. When

Algorithm 3.2 is invoked, L = 44 and S = {20}. This time h(20) = 20 and the analysis

passes.

5.3 Summary

A hardware/software partitioning problem has been defined that includes kernel and ap-

plication tasks and that integrates EDF feasibility analysis of concurrent applications. The

model is limited to SoCs/SoPCs with one processor. It is assumed that edges only incur

additional cost if they are cut. An NLP model has been defined that minimizes processor
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utilization U , while accounting for extra kernel overhead to service cut edges in application

task Slifs. A feasibility repair algorithm was also presented that adds constraints to the

NLP model to ensure feasible scheduling by the EDF policy.
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Table 5.2: Partitioning Symbols

Symbol Indices Definition

τ i, j task set

N a, b node set

Nτ , Nk a, b set of all unique task nodes, set of kernel nodes

Ni a, b task i node set

E p, q edge set

Ei p, q task i edge set

Eni,a
p, q task i node a edge set

ep[src], ep[dst] edge p source and destination nodes

fp edge p traversal count (“frequency”)

B[hw], B[sw] a, b predetermined node binding sets

Hw, Sw hardware and software partitions

ci,a[hw|sw], ck,a[hw|sw] task i node a and kernel node a worst-case execution times

sza[hw], sza[sw] node a hardware and software sizes

Sz[hw], Sz[sw] target size limits

na[hw], na[sw] node a binding variables

ep[h/s], ep[s/h] edge p cut variables

U processor demand

C, T, D i, j task worst-case execution time, period and deadline

χ i cutset

gc
a gain (execution time) of node a

gχ
a gain (cutset) of node a

gU
a gain (processor utilization) of node a

νk kernel invocation frequency
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Chapter 6

Heuristic Partitioning

The hardware/software partitioning problem was defined and an NLP model was developed

in Chapter 5. In this chapter, a heuristic is proposed that solves the same problem as the

NLP model. The goal in developing the heuristic is to find good solutions at a fraction of

the run-time of the optimal NLP solution.

The heuristic is similar to the Fiduccia/Mattheyses (FM) node move heuristic [31]

discussed in Chapter 2 except that gain for node moves is calculated differently. FM was

chosen since its computational complexity is less than that of the Kernighan/Lin heuristic

[54, 31]. Krishnamurthy’s [58] or Sanchis’ [88] heuristic were not used because the Slif

graph edges only connect two nodes and so level gains are not applicable.

The heuristic pseudocode is shown in Algorithm 6.1. The heuristic starts with an

(almost) arbitrary partition of the node set N into a set of hardware nodes, Hw, and

a set of software nodes, Sw. Any nodes with predetermined bindings (i.e. belonging to

B[hw] or B[sw]) are permanently bound to the appropriate partition. The size limits of

the hardware and software targets are never violated. The node move heuristic chooses the

node with the largest gain of all the unlocked nodes that can be moved without violating

107
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size limits. Once moved, a node is locked and cannot move until the end of the pass. When

a node is moved it changes the gains of some other nodes, so these are updated. Nodes

continue to be moved until no unlocked nodes remain that can be moved without violating

size limits. This ends the pass. The step s on which the maximum gain was achieved is

selected as the starting point for the next pass. If the maximum gain of the pass was zero,

then the partition is locally optimal and the heuristic stops.

Table 5.2, at the end of Chapter 5, is a list of all symbols used in defining this heuristic

and in defining the NLP partitioning model.

6.1 Node Move Gains

The heuristic chooses a node to move based on its gain. As with the NLP model, the final

goal of the partitioning is to pass the feasibility analysis of Algorithm 3.2. To pass the

analysis, processor utilization must not exceed one, U ≤ 1, and the processor demand must

not exceed processor time at each deadline that is checked (∀v ∈ S : h(v) ≤ v). There are

two goals to consider for the heuristic: 1) minimize U , and 2) minimize h(v) for each v in

S. Four gains are discussed below that may help meet one or both of these goals.

6.1.1 Worst-Case Execution Time Gain

The first and least complex to calculate gain is the decrease in worst-case execution time.

This may aid scheduling by reducing processor demand before a deadline. Since an appli-

cation task node can be shared by multiple tasks but a kernel node cannot be shared, task

node gains and kernel node gains are calculated differently.
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Data: N = Nτ ∪Nk

Hw = hardware node subset, Sw = software node subset

Sz[hw] = hardware Size Limit, Sz[sw] = software Size Limit

start with any arbitrary partition {Hw, Sw} such that:

◦Hw ∪ Sw = N , Hw ∩ Sw = ∅

◦
∑

a∈Hw sza[hw] ≤ Sz[hw] and
∑

a∈Sw sza[sw] ≤ Sz[sw]

◦∀na ∈ B[hw] : na ∈ Hw and ∀na ∈ B[sw] : na ∈ Sw;

all nodes are unlocked (except those in B[hw] and B[sw]);

repeat

s← 1 ;

repeat

choose 1 unlocked node to move such that:

◦gain g is maximized

◦Sz[hw] and Sz[sw] are not violated;

lock moved node;

1 update gains of other nodes;

s← s + 1 ;

until until no nodes can move;

choose step s on which the sum of gains G =
∑s

i=1 gi is maximized ;

if G > 0 then

unlock all nodes (except those in B[hw] and B[sw]);

restore partition from step s;

end
until until G = 0;

partition is locally optimal ;

Algorithm 6.1: Partitioning Heuristic
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If na ∈ Nτ : gc
a =

∑
τi∈τ

ni,a=na

gc
i,a

gc
i,a = ci,a[old]− ci,a[new]

(6.1)

Else (na ∈ Nk) : gc
a = ck,a[old]− ck,a[new] (6.2)

Task node gain, gc
a for na ∈ Nτ , is the sum of worst-case execution time differences gc

i,a for

each task τi in which na is used. gc
i,a is calculated by subtracting the worst-case execution

time in the [new] partition (hw or sw) from the worst-case execution time in the [old]

partition (sw or hw). Kernel node gain, gc
a for na ∈ Nk, is not a sum since kernel nodes

are not shared. For both task and kernel nodes, gain gc
a does not change in a pass: it is

independent of other nodes or edges. As a result no update of other node gains is required

when a node is moved (Algorithm 6.1, Label 1).

6.1.2 Scaled, Weighted Cutset Gain

The original FM heuristic calculates gain as the decrease in cutset. As discussed in Section

5.1.3, cut application task edges incur an additional cost of two kernel invocations. Reduc-

ing the number of kernel invocations contributes to a decrease in processor utilization. The

cutset is weighted by the edge invocation count parameter which is described in Section

5.2.1. Since different tasks can have different frequencies, the task edge weights (counts)

are scaled by task frequency. The scaled, weighted cutset is denoted χ.

If na ∈ Nτ : gχ
a =

∑
τi∈τ

ni,a=na

gχ
i,a

Ti

gχ
i,a =

∑
ep∈Eni,a

nb∈ep

nb[new]=1

fp −
∑

ep∈Eni,a
nb∈ep

nb[old]=1

fp
(6.3)

Else (na ∈ Nk) : gχ
a = 0 (6.4)

Task node gain gχ
a sums the weighted cutset gains, divided by task period for each task to
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which na belongs. The gain gχ
i,a of moving task i node a from [old] to [new] is calculated by

summing the cut edge weights and subtracting the sum of uncut edge weights. Set Eni,a
is

the set of edges in task i to which node na is connected. Node nb is the node to which node

na is connected by edge ep ∈ Eni,a
. Those edges connected to nodes in [new] will become

uncut by the move and their edge weight (count) adds to gain. Those edges connected

to nodes in [old] will become cut and subtract from gain. Kernel edges are assigned zero

weight since they are assumed to incur no additional cost when cut (discussed in Section

5.1.3). When task node na is moved, the gains of other nodes that connect to it must be

updated as described in Algorithm 6.2.

foreach τi ∈ τ do

foreach edge ep ∈ Eni,a
do

nb is other node on ep ;

if binding of nb = new binding of na then

∆gχ
i,b = −2fp ;

else

∆gχ
i,b = +2fp ;

end

gχ
b = gχ

b +
∆gχ

i,b

Ti
;

end
end

Algorithm 6.2: χ Gain Update

6.1.3 Processor Utilization Gain

A more direct way to ensure that U does not exceed one is to define gain as the decrease in

U . However this is a more complex gain calculation and more work is required to update
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other node gains when a node is moved. The gain in processor utilization gn
a when node

na is moved incorporates the two previous gains, gc and gχ.

If na ∈ Nτ : gU
a =

∑
τi∈τ

ni,a=na

gU
i,a

Ti

gU
i,a = gain in Ci = gc

i,a + 2Ck

(
gχ

i,a

)
if na = ni,root and [new] = [hw] : gU

i,a = gU
i,a + 2Ck

else if na = ni,root and [new] = [sw] : gU
i,a = gU

i,a − 2Ck

(6.5)

Else (na ∈ Nk) : gU
a = νk · gc

a

νk =
∑
τi∈τ

2(χi+ni,root[sw])

Ti

(6.6)

The gain of moving task node na is the sum of changes in Ci divided by Ti for each

task which uses na. Ci is calculated according to Equation 5.1 which is reflected in the

calculation of gU
i,a. There are three parts:

1. decrease in node execution time - gc
ia,

2. decrease in cutset - gχ
i,a (each cut edge incurs two kernel invocations - Ck), and

3. if the node is the root of the Slif and it is moved to software, 2Ck is added for

release/terminate, decreasing gain, and if it is moved to hardware 2Ck is subtracted,

increasing gain (as discussed in Section 5.1.3).

The gain of moving kernel node na is the product of decreased node execution time gc
a

and kernel invocation frequency νk. The kernel is invoked by each task’s cutset (χi = sum of

task i cut edge counts) and once more if the task’s root node is in software (ni,root[sw] = 1).

Each task’s kernel invocation count is divided by its period and summed to form νk, the

kernel invocation frequency.

The gains of kernel nodes and task nodes are now inter-connected. If a kernel node

is moved, Ck changes, which changes task node gains, so all of the task node gains must
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be recalculated. If a task node is moved, that task’s cutset changes, which changes νk,

so all of the kernel node gains must be recalculated. It is because of the inter-connected

nature of task and kernel node moves that tasks may share nodes with each other but not

with the kernel (as stated in Section 5.1.1). The gain update algorithms are described in

Algorithms 6.3 and 6.4.

Algorithm 6.3 updates node gains when a task node is moved. The gains of other task

nodes that are connected to it by edges change because the edges becomes either cut or

uncut. This also affects the frequency with which the kernel is invoked, νk. After updating

gains of all connected task nodes, all kernel node gains are updated with the changed νk.

Algorithm 6.4 updates node gains when a kernel node is moved. The other kernel nodes

are not affected since cut kernel edges do not incur a penalty. However, Ck changes which

requires that all task node gains are updated.

6.1.4 Gain Summary

Three node move gains have been proposed to improve the partitioned task set EDF

schedule feasibility. The gains, in order of calculation complexity (and expected solution

quality), are:

1. gc – decrease in node worst-case execution time,

2. gχ – decrease in scaled, weighted cutset,

3. gU – decrease in processor utilization, and

4. gU/sz – decrease in processor utilization divided by node hardware size.

A fourth gain has been added that is related to ∆U/LE metric suggested in Chapter 4:

gU/sz. It is expected that the hardware size limit will restrict the solution space more



114 CHAPTER 6. HEURISTIC PARTITIONING

foreach τi such that ni,a = na do

foreach edge ep ∈ Eni,a
do

nb is other node on ep ;

if binding of nb = new binding of na then

∆gU
i,b = −2 (2Ck · fp) ;

∆νk = −2 · fp ;

else

∆gU
i,b = +2 (2Ck · fp) ;

∆νk = +2 · fp ;

end

gU
b = gU

b +
∆gU

i,b

Ti
;

νk = νk + ∆νk

Ti
;

end

if na is the root node and it is now in software then

νk = νk + 2
Ti

;

else if na is the root node and it is now in hardware then

νk = νk − 2
Ti

;

end
end

foreach na ∈ Nk do

recalculate gU
a using Equation 6.6;

end

Algorithm 6.3: U Gain Update (Task Node Move)
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Ck = Ck + gc
a ;

foreach na ∈ Nτ do

recalculate gU
a using Equation 6.5;

end

Algorithm 6.4: U Gain Update (Kernel Node Move)

than the software size limit. Since the heuristic chooses the largest gain possible in each

step, it may fill up the hardware with a small number of nodes with large gain. Better

results might be obtained if the node’s gain is scaled by its size so that the hardware does

not get dominated by a few nodes. The results comparing these four gains are presented

in Chapter 7.

6.2 Feasibility Repair Heuristic

As with the NLP model of Chapter 5, after executing the heuristic partitioner, the solution

may require repair to pass the EDF feasibility analysis of Algorithm 3.2. The repair

heuristic, which is based on the FM heuristic, is described in Algorithm 6.5. If U > 1

then the solution cannot be repaired. If U ≤ 1 but the task set fails the EDF analysis

of Algorithm 3.2, then the heuristic attempts to fix missed deadlines, one at a time. The

processor demand at the first missed deadline vk is selected as the goal for the partitioner.

Recall that processor demand is calculated:

h(t) =
∑
Di≤t

(
1 +

⌊
t−Di

Ti

⌋)
Ci.

Node gain gh
a is defined as the decrease in h(vk). It is calculated by summing the decrease

that moving node na causes to each Ci multiplied by the number of times that the Ci is

summed in the h(vk) calculation. The heuristic finds a locally optimal processor demand
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at the missed deadline (minimizes h(vk)). At the same time the heuristic is restricted so

that it does not cause earlier deadlines to be violated by a node move (i.e. a node move

must satisfy the constraint ∀vj < vk : h(vj) ≤ vj). After minimizing processor demand at

the violated deadline, the relation h(vk) ≤ vk is tested. If false, then the solution cannot

be repaired. If true, then the next missed deadline is selected for repair until no deadlines

are missed or a deadline is found that cannot be met.

6.3 Summary

A heuristic solution to the hardware/software partitioning problem has been proposed. It is

based upon the Fiduccia/Mattheyses heuristic which is used for netlist partitioning in VLSI

circuit layout. Four gain metrics have been proposed: gc - worst-case execution time, gχ -

scaled, weighted cutset, gU - processor utilization, and gU/sz - processor utilization divided

by size. Results from comparing these gains are presented in Chapter 7. The performance

and solutions of the NLP model and the heuristic are also compared in Chapter 7. A

heuristic has also been proposed to repair the heuristic partitioning solution so that it can

be feasibly scheduled by the preemptive EDF policy.
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Input: data from partitioning heuristic

Result: partition with feasible schedule

while U ≤ 1 do

if EDF analysis (Algorithm 3.2) passes then

return solution ;

end

select first violated deadline vk (s.t. h(vk) > vk) ;

all nodes are unlocked (except those in B[hw] and B[sw]);

repeat

s← 1 ;

repeat

choose 1 unlocked node to move such that:

◦ gain g = ∆h(vk) is maximized

◦ no deadlines before vk are missed (∀vj < vk : h(vj) ≤ vj)

◦Sz[hw] and Sz[sw] are not violated;

lock moved node;

update gains of other nodes;

s← s + 1 ;

until until no nodes can move;

choose step s on which the sum of gains G =
∑s

i=1 gi is maximized ;

if G > 0 then

unlock all nodes (except those in B[hw] and B[sw]);

restore partition from step s;

end
until until G = 0;

if h(vk) > vk then

return no solution ;

end
end

return no solution ;

Algorithm 6.5: Feasibility Repair Heuristic
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Chapter 7

Results

In this chapter results are presented for the NLP model and heuristic partitioners of Chap-

ters 5 and 6. Two data sources were used to test the partitioners. The first data source

is the case study of the idle engine application. The case study provides one test case

with both scheduling parameters and measurable node execution times in software. It’s

limitation is a shortage of measurable node execution times and sizes in hardware. The

method used to estimate these parameters is discussed in Section 7.1. The second data

source is generic test cases generated automatically by the gpslifgen tool (General Pur-

pose Slif Generator) [97]. The generic test cases have node execution times and sizes in

both software and hardware. However they lack scheduling parameters. The method used

to generate the scheduling parameters is described in Section 7.2. Before comparing the

heuristic results against the NLP model results, the number of times to run the heuristic

per test case must be determined. The heuristic starts each run with a random partition

and proceeds to find the locally optimal solution. In Section 7.3 the number of runs of the

heuristic per test case is determined experimentally. The results from comparing the NLP

model with the heuristic partitioner are presented in Section 7.4. The optimal partition,

119
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obtained by solving the NLP model, for the idle engine test case is examined in detail in

Section 7.4.1. In Section 7.5, results are presented from the evaluation of the four gains

that were proposed for the heuristic in Chapter 6.

7.1 Case Study Data

In Chapter 4 a case study of an SoPC is presented. The application consists of six tasks

scheduled by a multi-tasking kernel. To model the test case for hardware/software parti-

tioning, a Slif graph was created for each of the application tasks and for the kernel. These

Slif graphs are depicted in Appendix Figures B.3 – B.9. The graph annotations required

by the partitioners are:

1. edge invocation count,

2. node hardware size (logic elements),

3. node hardware worst-case execution time (cycles), and

4. node software worst-case execution time (cycles).

Also associated with each task is a deadline and period as listed in Figure 4.4.

Before discussing the four Slif graph annotations above, the implementation targets

need comment. The two implementation targets in the case study were the programmable

logic of the FPGA and the processor. Two FPGA resource constraints were discussed in

the case study: logic elements (LE) and embedded system blocks (ESB). It was shown in

Section 4.5.1 that LEs were the limiting factor in fitting the coprocessors onto the FPGA.

Therefore the number of LEs have been used as the measure of hardware size in the Slif

graph node annotations. The hardware size constraint, Sz[hw], was 4914 LEs, the number

of LEs not used by the processor and standard peripherals (UART, timer).



7.1. CASE STUDY DATA 121

The two software resource constraints were memory and processor cycles. Cycles are

counted in the node software worst-case execution time annotation and accounted for by

the EDF schedule feasibility analysis. The development board provides 256KB of SRAM of

which the total application only needs 40KB for program memory and 24KB for task stacks.

Therefore no limit on software size, Sz[sw], was set and node software size annotations

were not used.

The four required Slif graph annotations are now discussed. Edge invocation counts

were produced by a manual examination of the application and kernel source code. (The

application and kernel were coded in C++). Node software worst-case execution times

were produced in one of two ways.

1. Where function source code was available, the compiler was used to produce assembly

listings from which worst-case execution times were manually calculated.

2. Source code was not available for C++ library functions such as the cos() function.

In this case, the application was executed for 10 seconds and a timer was used to

capture node worst-case execution time.

Node hardware worst-case execution time and node hardware size were only measurable

for the cos node of the Environment task. A coprocessor was implemented that calculated

cosine by the cordic algorithm (Section 4.3). A method was needed to estimate node

hardware worst-case execution and node hardware size for all the other case study nodes,

based on the only node data available: software worst-case execution time. A list of

parameters that are known and those that need estimates is given in Table 7.1 (which also

lists the GPS1 and GPS2 test cases described in Section 7.2). Those that are known have

a
√

, otherwise they need to be estimated.
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Table 7.1: Known and Estimated Parameters

c[sw] c[hw] sz[hw] D T Sz[hw]

Idle Eng. - cos()
√

est. est.
√ √ √

cos()
√ √ √ √ √ √

GPS1
√ √ √

est. est. est.

GPS2
√ √ √

est. est. est.

Note that another coprocessor was implemented to replace a part of the kernel (Section

4.4). However the cs2 coprocessor does not fit well with the kernel Slif graph because the

coprocessor replaces two whole nodes (MinHeap::pop and MinHeap::insert) and parts of the

Sched::doSched function. This limitation gives reason to consider another representation

scheme such as control and data-flow graphs (CDFG) that represent at the basic block

level. However, as discussed in Section 7.2, a generic test case generator was available

whose output was Slif graphs. Therefore the choice of the Slif representation was a trade-

off between flexibility of representation and availability of test cases.

7.1.1 Node Hardware Worst-Case Execution Time Estimation

The work of Vahid and dm Le [97] investigated the relationship between software execution

time and hardware execution time. They performed a linear regression using data from

their six benchmark applications. The linear regression parameters are reproduced in Table

7.2.

The ratio of hardware execution time to software execution time, Rc = c[hw]
c[sw]

, ranges

from 0.0188 to 0.0406. In contrast, the ratio for the cos function of the case study was

Rc = 2700
47961

= 0.0563. The results of an experiment to choose a ratio for the idle engine test

case are reported in Section 7.1.3. Having proposed a method to estimate node hardware
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Table 7.2: Replication of Table 1 from [97]

Bench- Regression Correlation

mark Nodes equation coefficient

ANS 44 c[hw] = 1.12 + 0.0404c[sw] +0.58

ETHER 124 c[hw] = 0.228 + 0.0220c[sw] +0.92

FUZZY 69 c[hw] = 0.24 + 0.0191c[sw] +0.98

ITV 84 c[hw] = −0.070 + 0.0406c[sw] +0.89

MWT 31 c[hw] = 0.462 + 0.0188c[sw] +0.83

VOL 38 c[hw] = 0.245 + 0.0330c[sw] +0.78

execution time, node hardware size needs to be estimated.

7.1.2 Node Hardware Size Estimation

There are two numbers from which the node hardware size can be estimated: node software

worst-case execution time and node hardware worst-case execution time. Node hardware

size estimation is a very difficult problem and not within the scope of this research. How-

ever, a relationship must be chosen out of necessity. Appendix section B.2.1 describes

the justification for the ratios used. The two ratios of hardware size to execution time,

Rsz = sz[hw]
c[hw]

, that were used were:

1. Rsz = 4.74x107 LE/s, and

2. Rsz = 5.47x108 LE/s.

The experiment reported in the next section was performed to choose the two ratios: Rc

and Rsz.
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7.1.3 Case Study Estimation Parameter Experiment

An experiment was conducted to help choose ratios Rc and Rsz by evaluating their impact

on partitioning results. Three Rc values were tested.

• 0.0191 - This value is from line 3 of Table 7.2 was chosen for the high correlation

coefficient.

• 0.0563 - This value is calculated from the cos() function and Cordic coprocessor data.

• 0.0376 - This value is the mid-point between the other two values.

Three Rsz values were tested.

• 4.74x107LE/s - This value is from the Cordic coprocessor.

• 5.47x108LE/s - This value is from the cs2 coprocessor.

• 2.48x108LE/s - This value lies between the other two values.

Node hardware worst-case execution time and size estimates are adjusted by an amount

picked from the uniform random distribution [+20%,−20%]. For example:

sz[hw] = c[sw] ·Rsz · (0.8 + 0.4r) ,

where r is chosen from the random uniform distribution [0, 1].

This experiment (as well as all other partitioning experiments) was conducted on a

Intel Pentium-4 2.60GHz processor running the Linux operating system. The NLP model

was solved using Opbdp [13], a Davis-Putnam based enumeration algorithm that finds an

optimal solution. The heuristic was coded in C++.

Both the NLP model and the heuristic were used for this experiment. The NLP model

was solved once for each Rc/Rsz combination. The heuristic was run 100 times using gain
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Table 7.3: Idle Engine Estimation Parameter Results

Rc = c[hw]
c[sw]

Rsz = sz[hw]
c[hw]

0.0191 0.0376 0.0563

4.74x107 LE/s opt U = 0.09174 opt U = 0.1550 opt U = 0.2161

# feas = 99 # feas = 100 # feas = 99

min U = 0.09174 (+0%) min U = 0.1550 (+0%) min U = 0.2161 (+0%)

avg U = 0.1349 (+47%) avg U = 0.1649 (+6%) avg U = 0.2572 (+19%)

2.48x108 LE/s opt U = 0.4360 opt U = 0.4657 opt U = 0.6722

# feas = 71 # feas = 31 # feas = 6

min U = 0.4360 (+0%) min U = 0.4657 (+0%) min U = 0.8018 (+19%)

avg U = 0.4434 (+2%) avg U = 0.4807 (+3%) avg U = 0.8076 (+20%)

5.47x108 LE/s opt U = 0.4713 opt U = infeas. opt U = infeas.

# feas = 37 # feas = 0 # feas = 0

min U = 0.4713 (+0%) min U = — min U = —

avg U = 0.4809 (+2%) avg U = — avg U = —

gU for each combination. The optimal processor utilization (opt U) from the NLP model

is reported in Table 7.3. The number of feasible solutions (# feas) and minimum (min U)

and average (avg U) processor utilization for feasible solutions from the heuristic are also

reported in Table 7.3. The difference between the optimal U and minimum U is reported

as a percentage, as is the difference between the optimal U and average U. All cases except

two in the third row were feasible when solved using the NLP solver, Opbdp. This can

be explained by noting that as Rsz increases, the problem becomes more difficult because

node hardware sizes increase but the hardware capacity, Sz[hw], remains fixed.
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Examining Table 7.3 by row, the first row shows that every run of the heuristic produced

a feasible solution, while the last row results in 2 unsolvable test cases. The second row

(Rc = 2.48x108 LE/s) was chosen for test cases that are more challenging than in the first

row, but are still solvable, unlike the those in the third row. The second column of the

second row (Rsz = 0.0376) was chosen for similar reasons. Also, it lies in the range of

ratios presented in Table 7.2. Using these two ratios, the first partitioning data source, the

idle engine test case, was prepared for partitioning. The estimated annotation values are

shown in the Slif graphs in Appendix Figures B.3 – B.9.

7.2 Generic Problem Sets

To better evaluate the partitioners, a second data source was needed. Thus the gpslifgen

tool [97] was used to automatically generate generic test cases of varying size. Two sets of

eight generic test cases each were generated. The set of larger test cases, Generic Problem

Set 1 (GPS1), was used as reported in Section 7.5 to test the various gain metrics proposed

for the partitioning heuristic. It was found that the run-times of the NLP model solver,

Opbdp, were too long on the GPS1 test cases. Therefore a set of smaller test cases, Generic

Problem Set 2 (GPS2), was used to test the NLP model as reported in Section 7.4. The

development of the set of larger test cases, GPS1, is explained in detail, followed by a short

discussion of the set of smaller test cases, GPS2.

Vahid and dm Le [97] developed a method to automatically produce generic Slif graphs

of arbitrary size (i.e. node count). The graph characteristics are based on statistics gath-

ered from six real benchmarks. The four annotations described in Section 7.1 are present

in the Slif graphs generated by gpslifgen: edge invocation count, node hardware size, node

hardware worst-case execution time, and node software worst-case execution time. Ten
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percent of nodes in the generated Slif graphs are root nodes (a node with no incoming

edges). Each root node is the root of a directed acyclic graph (DAG) which can be used

as the Slif graph of an application task. The DAGs have nodes in common, so the tasks

can have node counts ranging between one and ninety percent of the node count of the

Slif graph generated by gpslifgen. Thus the one generated Slif graph can be interpreted as

multiple single-root Slif graphs, each representing a task in a set of concurrent tasks.

Once a single-root Slif graph has been associated with a task, a deadline and period

must be generated for it (see list of parameters to estimate in Table 7.1). In addition to

generating task deadlines and period, an additional Slif graph is generated for the kernel

and the size capacity of the hardware target is determined.

For each test case, a different kernel Slif graph is generated that has 11 nodes (this

is the number of kernel nodes in the case study - Figure B.3). When gpslifgen generates

the kernel Slif graph, it has two root nodes. This problem is corrected by adding an edge

from one of the root nodes to the other. The edge has an invocation count of one. In

the case study, five of the eleven kernel nodes are bound to software (e.g. the context

switch nodes, ldProcCtxt and stProcCtxt, must be in software). This is imitated in the

generated kernel Slif graph by determining randomly with a 5/11 probability if each node

is bound to software.

Each task requires a deadline Di and period Ti. In order to generate Di and Ti, the

task worst-case execution time Ci is first calculated. Ci is calculated using Equation 5.1

and assuming that all task nodes are bound to software. The magnitude of Ci is used

as a reference for the relative size of Di and Ti. This is done by choosing Di from the

uniform random distribution in [w ·Ci, n ·Ci] where w is determined experimentally and n

is the number of tasks. Ti is chosen from the uniform random distribution in [x ·Di, n ·Ci]

where x is determined experimentally. These ranges for Di and Ti are illustrated in Figure
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Figure 7.1: Di and Ti Ranges

7.1. A point is being chosen randomly from within the boxed region. As Di increases, the

slack increases, making it easier to meet the deadline. As Ti increases, the task’s processor

utilization decreases, making it easier to schedule the task set. The value n ·Ci was used as

the upper bound for Di and Ti because it results in a processor utilization of one, U = 1.

If all task periods are equal to n · Ci, then:

U =
n∑

i=1

Ci

Ti

=
n∑

i=1

Ci

nCi

=
n∑

i=1

1

n
= 1

Recall that Ci is calculated assuming an all-software implementation. Therefore, in all but

the special case where all Ti = n · Ci, the test case will need partial implementation in

hardware to satisfy the condition necessary for EDF scheduling that U ≤ 1.
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Schedule parameters w and x described above were tested by examining their effect on

number of feasible solutions found by the heuristic for each generated test case. At the

same time, an appropriate hardware size capacity Sz[hw] was also investigated. The node

sizes of all task and kernel nodes is summed to form the hardware total, hwTotal. Sz[hw] is

chosen from the uniform random distribution in [y · hwTotal, z · hwTotal]. The experiment

with scheduling parameters w and x, and size parameters y and z is described next.

7.2.1 GPS1

Eight test cases are generated for GPS1. Two Slif graphs for each size (number of nodes)

of 100, 200, 500 and 1000 were generated with gpslifgen. The test cases are labeled p100 1,

p100 2, p200 1, etc. Nine combinations of schedule parameters were tested using w =

{1, 2, 4} and x = {1, 2, 4}. These nine combinations of schedule parameters where tested

using two size ranges: y = 0.01, z = 0.05 and y = 0.05, z = 0.10. For each case (w, x, y, z),

the eight test cases were formed and tested with the heuristic partitioner. The heuristic

was invoked five times for each of the four proposed gain metrics (Chapter 6). Note that

for a given combination of w, x, y, z, the values of Di, Ti and Sz[hw] do not change between

runs of the heuristic partitioner. The results for size range y = 0.01, z = 0.05 are shown

in Table 7.4 and the results for size range y = 0.05, z = 0.10 are shown in Table 7.5. If

at least one feasible solution was found for a test case from the set, the table was marked

with a
√

. Otherwise it was left unmarked.

Based on the results in Tables 7.4 and 7.5, schedule parameters (w = 2, x = 2) and

size parameters (y = 0.01, z = 0.05) were selected for generating GPS1. The goal was to

choose parameters that make the test cases difficult to solve, without generating too many

unsolvable test cases. For the chosen parameters, six of eight generated test cases were

solvable by this test. Problems p100 1 and p1000 1 were not solvable by this test with
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Table 7.4: Problem Generation Parameters w, x (y, z = 0.01, 0.05)

y – z 0.01 – 0.05

w 1 2 4

x 1 2 4 1 2 4 1 2 4

p100 1
√ √

p100 2
√ √ √ √ √

p200 1
√ √ √ √ √ √ √ √

p200 2
√ √ √ √ √ √

p500 1
√ √ √ √ √ √

p500 2
√ √ √ √ √ √ √ √ √

p1000 1

p1000 2
√ √ √ √ √ √ √ √ √

Table 7.5: Problem Generation Parameters w, x (y, z = 0.05, 0.10)

y – z 0.05 – 0.10

w 1 2 4

x 1 2 4 1 2 4 1 2 4

p100 1
√ √

p100 2
√ √ √ √ √

p200 1
√ √ √ √ √ √ √ √ √

p200 2
√ √ √ √ √ √

p500 1
√ √ √ √ √ √ √ √ √

p500 2
√ √ √ √ √ √ √ √ √

p1000 1

p1000 2
√ √ √ √ √ √ √ √ √
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these parameters. For these test cases, the following parameters were found to result in

some feasible solutions:

• p100 1 (w = 4, x = 4) and (y = 0.10, z = 0.20)

• p1000 1 (w = 75, x = 75) and (y = 0.10, z = 0.20)

In both cases the hardware range was increased from (y = 0.01, z = 0.05) to (y = 0.10, z =

0.20), at least doubling the hardware target capacity. This gives the partitioner more

choices of nodes to move between partitions. The schedule parameters were also increased

with the result that the processor utilization for each was U = 1. In the testing results

that follow (Sections 7.3 and 7.5), the results for these two test cases do not stand out

from the others.

Table 7.6 gives a brief summary of the eight test cases generated using the parameters

determined above. For each test case three values are reported:

1. number of tasks,

2. processor utilization (when all nodes in software), and

3. hardware target capacity as a percent of hwTotal.

In all cases but p100 1 and p1000 1 the processor utilization is greater than one indicating

that the test case is infeasible unless some nodes are partitioned to hardware. For p100 1

and p1000 1, processor utilization is one but this does not necessarily mean that the test

case is feasible: the task set must also pass the processor demand part of the EDF feasibility

analysis (see Algorithm 3.2). Additional statistics regarding the demand on the processor
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Table 7.6: Generated Problem: Summary Statistics

Problem N Tasks U (all sw) Hw Size Frac

p100 1 10 1.000 15.3%

p100 2 10 1.040 2.53%

p200 1 20 1.228 1.12%

p200 2 20 1.095 1.19%

p500 1 50 1.197 4.39%

p500 2 50 1.147 2.26%

p1000 1 100 1.000 11.6%

p1000 2 100 1.132 1.25%

by the test cases is described in Appendix Table B.4 where Ci/Ti and Ci/Di are reported

for each test case.

7.2.2 GPS2

When the test cases in GPS1 were solved for the NLP model using Opbdp, the run-times

exceeded 10000 seconds. (The run-times with 30 application nodes approaches 10000

seconds as reported in Table 7.8. Since the 0-1 knapsack problem is NP-hard [35], this

time for 30 application nodes will grow exponentially for larger problems.) Therefore a

second set of generic test cases, GPS2, was developed. The same methodology was used to

make GPS2 as was used for GPS1. The main difference is that for all test cases, gpslifgen,

was used to make generic Slif graphs of 30 nodes. These were used to make task sets with

three tasks. The kernel Slif graphs were generated in the same manner as for GPS1. The

schedule parameters remained the same (w = 2, x = 2) but the hardware size parameters

were changed to (y = 0.20, z = 0.50). The bigger hardware allocation was needed to
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Table 7.7: Percent Feasible Runs vs. # Runs

# Runs

Problem 25 50 100 200 400

idle eng 32 32 31 24.5 25.25

p100 1 72 82 82 83 85.75

p100 2 100 100 100 100 100

p200 1 88 92 92 93 95.25

p200 2 100 100 100 100 100

p500 1 4 4 4 4.5 3

p500 2 100 100 100 99 99.5

p1000 1 72 70 68 71 70

p1000 2 100 100 100 100 100

generate feasible test cases. The test cases in GPS2 are named p30 1, p30 2, . . . p30 8.

7.3 Heuristic Run Length

Before evaluating the heuristic partitioner, it is necessary to determine an appropriate

number of runs (“run length”). For each run, the heuristic starts with a random solution

and performs repeated node moves to find the local optimum. The heuristic is run multiple

times per test case with a different random partition each time in an attempt to find a

good solution. Five run lengths were tested: 25, 50, 100, 200 and 400. The idle engine test

case and the eight test cases of GPS1 were solved with the heuristic using gain metric gU .

The number of feasible solutions found is recorded as a percent of the run length in Table

7.7.
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For each test case, the percent of feasible solutions generated does not vary more than

a few percent between runs of 50 and 400. The only exception is the idle engine test case

where the percent of feasible solutions decreases by 6.75%. Run lengths of 100 are used

for the results reported in the rest of this chapter.

7.4 NLP Model and Heuristic Comparison

This first set of results is from a test comparing the optimal NLP solution against the

heuristic solution. The experimental platform was described in Section 7.1.3. The test

data consisted of the idle engine test case and the eight test cases of GPS2. The NLP

solver was run once to obtain the optimal solution. Run-time (in seconds) and optimal

U were recorded for the NLP solver. The heuristic was run 100 times per test case and

the total run-time (in seconds) was recorded. The number of feasible solutions and the

minimum, average and standard deviation of U for feasible solutions were recorded. The

number of times that the minimum U was found was also reported. These results are

presented in Table 7.8.

The heuristic run times are 3 orders of magnitude faster than the NLP solver. The

heuristic found the optimal solution at least once in every case. The heuristic found a

feasible solution between 28% and 89% of the time. The standard deviation in processor

utilization was small for seven cases (actually zero for five cases) indicating that there may

have been few good solutions and that the heuristic found them most of the time. Two

cases (p30 4 and p30 8) had larger variance, with average processor utilization at least

double the optimal. However the optimal value was still found at least 23 times out of 100

for these two cases. The heuristic compared well with the NLP model for these relatively

small test cases.
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Table 7.8: NLP vs Heuristic Results

NLP Heuristic

Task Set Time U Time # Feas Umin Uavg Ustddev # Min

idle eng 134.3 0.4657 0.12 31 0.4657 0.4807 0.01881 18

p30 1 8296.25 0.4358 0.14 45 0.4358 0.5020 0.04280 5

p30 2 2556.19 0.1643 0.16 28 0.1643 0.1643 0 28

p30 3 569.85 0.9824 0.10 66 0.9824 0.9824 0 66

p30 4 329.84 0.1933 0.19 82 0.1933 0.4292 0.3065 29

p30 5 431.56 0.7475 0.10 88 0.7475 0.7475 0 88

p30 6 3466.19 0.6010 0.11 32 0.6010 0.6010 0 32

p30 7 328.62 0.8022 0.15 46 0.8022 0.8022 0 46

p30 8 317.62 0.1418 0.13 89 0.1418 0.7319 0.3774 23

7.4.1 Analysis of Idle Engine Results

The partition found by the NLP model for the idle engine test case is compared here with

the manual partitioning done in the case study of Chapter 4. The NLP model results are

described in detail in Appendix Section B.2.3. The majority of nodes were assigned to

hardware: 28 out of 41 nodes. Of the six kernel nodes not pre-bound to software, five were

assigned to hardware. Notably, the cos() function was not bound to hardware as was done

in the case study. The processor utilizations achieved were:

• NLP model U = 0.465680

• Case Study U = 0.881101 (SoPC + cordic)

The objective in the case study was to choose one part of the application to move to

hardware that resulted in a significant decrease in U . The automated partitioner however



136 CHAPTER 7. RESULTS

selected many nodes to move to hardware since this achieved the lowest U . However the

task of converting the 28 selected functions into hardware would involve a large amount of

design effort. To make the results applicable to real-world design problems, the effort to

synthesize the partitioned nodes should be included in the partitioning solver. This could

be done by using a hardware capacity vector, ~Sz[hw], as suggested in Section 5.2.5. ~Sz[hw]

would have two elements: size and design time. This would require that each node also

be annotated with an estimate of the time to convert the design to hardware. For those

nodes with pre-existing hardware designs, the design time would be zero.

Another observation that can be made is related to the functional pairing of nodes.

Some nodes are connected by common data structures: for example MinHeap::insert and

MinHeap::pop. In this case they were assigned to the same implementation target (hard-

ware). However they could have been placed assigned to different implementation targets.

If the related nodes could be identified, the model could be refined by adding a constraint

that such related nodes be assigned to the same implementation target.

7.5 Heuristic Gain Evaluation

In this section the results of an evaluation of the four proposed gain metrics are reported.

At each step of the partitioning heuristic (Algorithm 6.1) the node with the largest gain is

selected to be moved. Four gain metrics were proposed in Chapter 6. They were:

1. gc – decrease in node worst-case execution time,

2. gχ – decrease in scaled, weighted cutset,

3. gU – decrease in processor utilization, and

4. gU/sz – decrease in processor utilization divided by node hardware size.



7.5. HEURISTIC GAIN EVALUATION 137

Table 7.9: Gain Experiment Results Summary

Run-Time (seconds) # Feasible

Problem gc gχ gU gU/sz gc gχ gU gU/sz

idle eng 0.14 0.10 0.12 0.26 0 0 31 100

p100 1 0.65 4.99 0.52 0.57 0 40 82 83

p100 2 0.41 0.32 0.35 0.37 0 3 100 100

p200 1 31.18 0.68 25.11 25.52 92 0 92 98

p200 2 0.69 0.63 1.57 1.84 0 3 100 100

p500 1 5.61 2.72 97.92 120.93 0 0 4 0

p500 2 3.92 2.26 2.45 3.14 0 5 100 99

p1000 1 41.16 129.31 204.37 207.23 0 14 68 52

p1000 2 13.56 6.17 7.12 9.03 0 1 100 100

Total 92 66 677 732

These gain metrics were compared using the idle engine test case and the eight test cases

of GPS1. The heuristic was run 100 times, per gain metric, per test case. The run-times

and number of feasible solutions are reported in Table 7.9.

Examining the total number of feasible solutions generated by gain metric (Table 7.9),

it can be seen that gc and gχ produced far fewer feasible solutions than did gU and gU/sz (7

to 11 times fewer). This result was as expected. gc reduces task worst-case execution times,

Ci, without considering task frequency. gχ reduces the number of kernel invocations but

ignores task node worst-case execution times. An unexpected result was that gc and gχ did

not reduce run-times: in 5 of 9 cases, run-times for gU and gU/sz were shorter than for one

of gc and gχ. Optimizing for processor utilization resulted in more feasible solutions than

optimizing for cutset or node worst-case execution times, and had comparable run-times.
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Table 7.10: Processor Utilization Results for gU and gU/sz

gU gU/sz

Problem U min U std dev U min U std dev

idle eng 0.4657 0.01881 0.4657 0.01350

p100 1 0.8984 0 0.8984 0

p100 2 0.8512 0 0.8512 0

p200 1 0.6772 0.02347 0.6772 0.02316

p200 2 0.7836 0 0.7836 0

p500 1 0.5538 0.006246 — —

p500 2 0.7064 0 0.7064 0

p1000 1 0.7739 0.04015 0.8275 0.02619

p1000 2 0.2445 0 0.2445 0

The run-time using gU/sz doesn’t exceed the run-time using gU by more than 30% in

all cases except the idle engine test case were the run-time was approximately double. The

total number of feasible solutions is 8% higher for gU/sz than gU , although on a case by

case basis neither was consistently better than the other. To further compare these two

gain metrics, the processor utilization minimum and standard deviation are reported per

gain metric, per test case in Table 7.10.

Examining Table 7.10 shows that the minimum processor utilizations obtained using

gU and gU/sz were the same in seven of nine cases. In one of the other cases, p1000 1, gU

performed better, and in the other, p500 1, no feasible solution was obtained using gU/sz.

There was little difference in the standard deviations in processor utilization obtained using

either gain metric. From the results of Tables 7.10 and 7.9, it appears that scaling gU by

node hardware size provides little or no benefit and has slightly longer run-times.



7.5. HEURISTIC GAIN EVALUATION 139

7.5.1 Partitioned Kernel and Task Comparison

The best partitions generated using gU were examined for the idle engine test case and

each of the test cases in GPS2. The fraction of kernel nodes assigned to hardware and

the fraction of application task nodes assigned to hardware are recorded in Table 7.11.

In all cases, some kernel nodes were assigned to hardware, whereas sometimes no task

nodes were assigned to hardware. The fraction of kernel nodes assigned to hardware was

higher than the fraction of task nodes assigned to hardware, in all cases except the idle

engine test case. That the automated partitioner always assigned some kernel nodes to

hardware indicates that including the kernel in the partitioning is beneficial: it gives the

partitioner more choices in trying to satisfy schedule feasibility. This preference for kernel

nodes is explained by examining their contribution to processor utilization. The kernel is

invoked more often than any task, which helps to increase the gain of moving the node to

hardware. Also, unlike task edges, cut kernel edges do not incur additional cost. This give

the partitioner more freedom to put any kernel node into hardware.

7.5.2 Repair Algorithm Evaluation

The heuristic gain experiment results can also be used to evaluate the repair algorithm

(Algorithm 6.5) which attempts to fix a partition that does not pass the EDF analysis.

For all nine test cases and all four gain metrics, the repair algorithm was invoked 363

times and was successful 26 times, with a resulting success rate of 7.16%. (See Appendix

Tables B.5 - B.13 for repair data by test case and by gain metric.) This demonstrates

that the repair algorithm does work, although with a low success rate. Furthermore, it

only had success repairing partitions generated using gχ. The run-times are also higher

for those solutions upon which repairs are attempted. Therefore, instead of attempting to
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Table 7.11: Nodes Assigned to Hardware

Problem Kernel Task

idle eng 45.4% 76.7%

p100 1 36.4% 3.0%

p100 2 36.4% 1.0%

p200 1 9.1% 2.5%

p200 2 45.4% 0%

p500 1 45.4% 6.2%

p500 2 63.6% 0%

p1000 1 36.4% 3.3%

p1000 2 54.5% 0.2%

repair partitions, it may be more beneficial to spend the effort on longer run lengths of the

heuristic.

7.6 Summary

The results of comparing the NLP model and heuristic partitioners were presented in

this chapter. Each was used to partition concurrent applications and their kernels into

hardware and software in order to pass the EDF feasibility analysis. The NLP model

minimized processor utilization U . This was also found to be the best goal for the FM-

based heuristic. In order to test the partitioners, two data sources were used: the idle engine

application from the case study, and generic test case sets GPS1 and GPS2. In order to

use the idle engine data, the node hardware size and worst-case execution time had to be

estimated. The data from the cs2 coprocessor was of limited use since it didn’t fit neatly
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into the function call graph that Slif uses. A representation at a lower level, for instance a

CDFG, would have accommodated the cs2 coprocessor better. However adopting the Slif

graph representation allowed use of the gpslifgen tool to produce generic test cases. The

generic test cases required fabrication of scheduling parameters and hardware capacities.

The heuristic was shown to produce near-optimal results and to run three orders of

magnitude faster than the NLP model solver. Evaluating the partitioning results for the

idle engine test case revealed that the cost of synthesis should be included in the partitioner

to make the results of practical use. The repair algorithm, while shown to function correctly,

had a low success rate and increased run-times. Therefore it is concluded that the repair

algorithm should not be used or a different approach investigated.



142 CHAPTER 7. RESULTS



Chapter 8

Summary and Concluding Remarks

In this dissertation, the results of a study on the relationship between partitioning and

scheduling of real-time embedded systems have been presented. In particular the rela-

tionship between hardware/software partitioning of uni-processor systems and scheduling

by the preemptive Earliest Deadline First (EDF) was studied. The study was divided

into three parts: EDF feasibility analysis for task sets with application coprocessors, a

case study in hardware/software partitioning of an application and real-time kernel, and

automated hardware/software partitioning of applications and kernels so as to pass EDF

feasibility analysis.

8.1 EDF Feasibility Analysis

In the first study, the EDF feasibility analysis algorithm developed by Stankovic et al [91]

was extended to task sets that include a task that blocks on coprocessors multiple times.

The extended analysis accounts for the parallel execution which can occur between the

processor and coprocessor.

143
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8.1.1 Contributions

The extension of EDF feasibility analysis for coprocessors made the following contributions.

• Identified and characterized the problem of accounting for application coprocessors

in EDF feasibility analysis.

• Proposed a first solution for the EDF feasibility analysis for task sets that include

coprocessor use.

• Extends the study of an important real-time scheduling policy to the codesign pro-

cess. Many embedded systems designed by the hardware/software codesign process

are real-time systems. This work helps to make the EDF scheduling policy a viable

option for hardware/software codesign.

8.1.2 Future Research

The work in EDF feasibility analysis for task sets with coprocessors can be extended and

improved upon in four ways as described below.

• The analysis accounts for the parallel execution between processor and coprocessor.

However it imposes limitations on tasks that have short relative deadlines and little

slack. This limitation was made evident when the SoPC with cordic coprocessor was

analyzed for schedule feasibility (Section 4.5). An improvement to this work would

be to develop an algorithm that accounts for the parallel execution without imposing

this limitation; perhaps by shifting slack between subtasks as suggested in Section

3.2.4.

• Extend the analysis for task sets that include multiple tasks that block on (multiple)

coprocessors.
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• Extend the analysis to multi-processor systems.

• Develop dynamic planning algorithms for EDF that incorporate tasks employing

coprocessors.

This first study analyzed a specific way in which partitioning an application into soft-

ware with hardware coprocessors affects scheduling.

8.2 Case Study

A case study of a System on Programmable Chip (SoPC) was presented. The target was

a development board with Field Programmable Gate Array (FPGA) that had a soft-core

processor. A real-time kernel was developed that provided the following services: task

scheduling by the EDF policy, inter-task message queues, and application coprocessor in-

tegrations. An application was developed that used the kernel services to schedule periodic

and aperiodic tasks. The application missed deadlines when implemented completely in

software, so manual partitioning of the application and kernel was performed.

8.2.1 Contributions

The contributions to study of embedded systems made by this case study are listed below.

• This case study added to the relatively small body of research on hardware/software

partitioning of the kernel. (The other studies reviewed in Chapter 2 were the δ

Framework and the Spring scheduling coprocessor - SSCoP).

• A metric (∆U/LE) was introduced for the comparison of kernel and application

processors. It measures the improvement to processor utilization per unit of hardware
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used (∆U/LE). Without scheduling information, it is difficult to assess the benefit

that a coprocessor offers the application. The metric can be used for both kernel and

application coprocessors.

• A real-time kernel was developed that had integrated support for application copro-

cessors.

• The case study also provides data which is measured, not estimated, which can be

used to help evaluate automated hardware/software partitioners.

8.2.2 Future Research

The case study has potential for future research in three directions.

• The case study was not entirely authentic because the idle engine and environmental

input were simulated on the same chip as the controllers. Additional case studies

of real-time SoC/SoPC applications would generate better data on which to test

partitioning and scheduling algorithms.

• Implement the nodes of the kernel Slif graph on the FPGA. This would have two

benefits: it would verify the hardware size and time estimates used in Chapter 7, and

it could be used to confirm the automated partitioner results with regard to schedule

feasibility.

• The case study focused on an SoPC with one processor to which coprocessors were

added to enhance schedule feasibility. A question that arises is this, “Which is more

beneficial: adding processors or coprocessors (application specific hardware)?” Ker-

nel overhead may be higher for multi-processor systems than for single-processor
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systems. However, the added processor could be considered as a more flexible co-

processor, available for use by a wide range of tasks, yet with slower execution time

than a custom hardware coprocessor. This question adds another dimension to the

hardware/software partitioning problem.

The case study demonstrated application partitioning and kernel partitioning, and com-

parison of their results.

8.3 Hardware/Software Partitioning

A definition of the hardware/software partitioning problem was declared for single-processor

systems. The goal was to partition systems such that all deadlines were met when sched-

uled by the preemptive EDF policy. In addition, kernel partitioning was incorporated with

application partitioning. The problem definition was explored with a non-linear program-

ming (NLP) model and a heuristic based upon the Fiduccia/Mattheyses circuit partitioning

heuristic.

8.3.1 Contributions

Development of the automated partitioners and their evaluation provided some insights

and contributions to the study of hardware/software codesign.

• The evaluation of real-time schedule feasibility for concurrent systems was integrated

with hardware/software partitioning. In particular EDF schedule analysis was inte-

grated into the partitioning problem.

• Results indicate that minimization of processor utilization U is a better partitioning

objective than minimizing node worst-case execution times or minimizing cutsets.
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• Partitioning of kernels was joined with partitioning of applications. The results

showed that kernel nodes were often selected for implementation in hardware, indi-

cating that including the kernel is a positive contribution to the partitioning process.

• Design time was identified as an important metric in hardware/software partition-

ing. Comparing results from the automated partitioner with the case study showed

that design cost accounting should also be included in the automated partitioners.

This would probably make kernel partitioning even more desirable because once it is

partitioned, it can be reused for multiple applications with little design effort. The

same applies for commonly used application functions: for example, data structure

or mathematical functions.

• The partitioning results support the thesis statement that partitioning and scheduling

of concurrent systems are best approached in an integrated manner. When the

heuristic partitioner did not directly minimize processor utilization, relatively few

partitions with feasible schedules were produced (Section 7.5). In other words, the

scheduling problem is hard enough that it is not likely to be satisfied unless directly

addressed by the partitioner.

8.3.2 Future Research

The work on automated hardware/software partitioning can be extended in several ways.

• The Slif graph representation was adopted for this work, in part due to the availabil-

ity of the automated generic test case generator (gpslifgen). However, as discussed

in Section 7.1, representing an application at the function level may limit the parti-

tioner’s choices. Representation at a lower level, such as the control and data-flow

graph may yield better partitioning results. At the same time it would probably
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increase the complexity of the partitioning model due to the presence of conditional

branches.

• The partitioning problem, as defined, had two implementation targets: a hardware

target and a software target. The partitioners could be extended by accommodating

multiple implementation targets. As suggested in Section 8.2.2, it would be interest-

ing to compare the trade-offs between addition of coprocessors and use of multiple

software targets.

• Another direction in which this work could be taken is to explore hardware synthesis

from software descriptions (i.e. a form of behavioral synthesis). The automated parti-

tioning approach assumes that hardware and software implementations are available

for each node. This is not practical due to the effort required to design each node in

hardware and software.

One approach to this problem is specification in SystemC [41]. SystemC adds hard-

ware constructs to the C++ software implementation language. These hardware

constructs facilitate generation of code for hardware synthesis or can be left entirely

in software and compiled. This does however impose a style on the designer that

mixes hardware and software design constructs.

If software implementation code could be automatically transformed into code for

hardware synthesis, it would probably simplify the task of the designer. A new ap-

proach being investigated by Hounsell et al [49] is called “coprocessor synthesis”.

They start by identifying software functions for implementation in hardware. The

object code of the compiled function is used to generate a coprocessor which is ac-

tually a small micro-programmed processor that is optimized for that function. One

possible drawback to this approach is that speed-up of the function might be limited
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because the function is essentially being executed in software form.

Hardware and software designs that perform the same task can be based on differ-

ent paradigms. For example the software min-heaps of the case study kernel were

transformed into round-robin bidding in the cs2 coprocessor. Such non-linear trans-

formations could be very complex for a synthesis tool to perform, requiring innovative

techniques.

The hardware/software partitioning study revealed the importance of integrating sched-

ule feasibility, and the benefit of including the kernel.

8.4 Final Observations

The inter-related nature of hardware/software partitioning, and scheduling of concurrent

systems has been demonstrated through three studies. The importance of integrating

schedule feasibility into the partitioning stage has been demonstrated. In the process,

scheduling by the preemptive Earliest Deadline First policy has been explored in its relation

to hardware/software codesign.
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level communication synthesis. In CODES, pages 48–53, 2001.

[49] Ben Hounsell and Richard Taylor. Co-processor synthesis: A new methodology for
embedded software acceleration. In Proceedings of the Design, Automation and Test
in Europe Conference and Exhibition, 2004.

[50] J. R. Jackson. Scheduling a production line to minimize maximum tardiness. Re-
search Report 43, Management Science Research Project, University of California,
Los Angeles, 1955.

[51] A. A. Jerraya, M. Romdhani, C. A. Valderrama, Ph. Le Marrec, F. Hessel, G. F.
Marchioro, and J. M. Daveau. Languages for System-Level Specification and Design,
chapter 7. Hardware/Software Codesign: Principles and Practice. Kluwer Academic
Publishers, Netherlands, 1997.

[52] Asawaree Kalavade and Edward A. Lee. A global criticality/local phase driven
algorithm for the constrainted hardware/software partitioning problem. In
CODES/CASHE, Third International Workshop on Hardware/Software Codesign,
pages 42–48, 1994.

[53] Asawaree Kalavade and Edward A. Lee. The extended partitioning problem: Hard-
ware/software mapping and implementation-bin selection. In Sixth International
Workshop on Rapid Systems Prototyping, 1995.



156 BIBLIOGRAPHY

[54] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
Bell System Technical Journal, 49(2):291–307, 1970.

[55] Kurt Keutzer. Hardware-software co-design and esda. In Design Automation Con-
ference, pages 435–436, San Diego, California, 1994.

[56] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[57] Michael J. Knieser and Christos A. Papachristou. Comet: A hardware-software code-
sign methodology. In Proceedings European Design Automation Conference, pages
178–183, Geneva, Switzerland, 1996.

[58] B. Krishnamurthy. An improved min-cut algorithm for partitioning vlsi networks.
IEEE Transactions on Computers, C-33(5):438–446, May 1984.

[59] David C. Ku and Giovanni De Micheli. Relative scheduling under timing con-
straints: Algorithms for high-level synthesis of digital circuits. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 11(6):696–718, June
1992.

[60] Edward A. Lee. Overview of the ptolemy project. UCB/ERL Memorandum M98/72,
Department of Electrical Engineering and Computer Science, University of Califor-
nia, Berkeley, February 1999.

[61] Edward A. Lee. What’s ahead for embedded software? IEEE Computer, pages
18–26, September 2000.

[62] Jaehwan Lee, Vincent John Mooney III, Anders Daleby, Karl Ingström, Tommy
Klevin, and Lennart Lindh. A comparison of the rtu hardware rtos with a hard-
ware/software rtos. In Proceedings of the Asia and South Pacific Design Automation
Conference, pages 683–688, January 2003.

[63] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John Wiley
and Sons, London, 1990.

[64] Yanbing Li, Tim Callahan, Ervan Darnell, Randolph Harr, Uday Kurkure, and Jon
Stockwood. Hardware-software co-design of embedded reconfigurable architecture.
In CODES, pages 507–512, 2000.



BIBLIOGRAPHY 157
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ing. In Proceedings of the Conference on Design, Automation, and Test in Europe,
Paris, France, 2000.

[69] Jan Madsen, Jesper Grode, and Peter V. Knudsen. Hardware/Software Partitioning
using the LYCOS System, chapter 9. Hardware/Software Codesign: Principles and
Practice. Kluwer Academic Publishers, Netherlands, 1997.

[70] Hugo J. De Man, Ivo Bolsens, Bill Lin, Karl van Rompaey, Steven Vercauteren,
and Diederik Verkest. Co-Design of DSP Systems, pages 75–104. Kluwer Academic
Publishers, Netherlands, 1996.

[71] Giovanni De Micheli and Rajesh K. Gupta. Hardware/software co-design. Proceedings
of the IEEE, 85(3):349–365, March 1997.

[72] Vincent J. Mooney III and Douglas M. Blough. A hardware-software real-time op-
erating system framework for socs. IEEE Design & Test of Computers, 2002.

[73] Vincent J. Mooney III, Claudionor N. Ceolho Jr., Toshiyuki Sakamoto, and Gio-
vanni De Micheli. Synthesis from mixed specifications. In Proceedings European
Design Automation Conference, pages 114–119, 1996.

[74] Andrew Morton. Partitioning hardware/software codesigns for embedded systems.
Phd research proposal, University of Waterloo, 2000.

[75] Andrew Morton and Wayne M. Loucks. Real-time kernel support for coprocessors:
Empirical study of an sopc. In Proceedings of the Embedded Systems and Applications
Conference, pages 10–15, 2003.



158 BIBLIOGRAPHY

[76] Andrew Morton and Wayne M. Loucks. A hardware/software kernel for system on
chip designs. In Proceedings of the ACM Symposium on Applied Computing, pages
869–875, 2004.

[77] Takumi Nakano, Andy Utama, Mitsuyoshi Itabashi, Akichika Shiomi, and Masaharu
Imai. Hardware implementation of a real-time operating system. In Proceedings of
the 12th TRON Project International Symposium, pages 34–42, 1995.

[78] Ralf Niemann and Peter Marwedel. An Algorithm for Hardware/Software Partition-
ing Using Mixed Integer Linear Programming, chapter 1. Design Automation for
Embedded Systems. Kluwer Academic Press, 1997.

[79] Richard O’Donnell. Prolog to hardware-software co-design of embedded systems.
Proceedings of the IEEE, 82(7):965–966, July 1994.

[80] OpenBSD. src/lib/libm/src/k cos.c - view - 1.2. World wide web document,
http://www.openbsd.org, 2002.
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Appendix A

EDF Scheduling

A.1 Upper Bound Definition

Upper bounds are set on the interval over which the processor demand analysis is per-
formed. Derivation of two of these bounds, ub1 and ub2, is explained here. The explanation
is adapted from [91] where the following theorem is employed:

Theorem A.1 (Baruah et. al. [14]). If τ is not feasible and U < 1, then h(t) > t
implies t < Dmax or t < maxi=1,...,n{Ti −Di} U

1−U
.

Proof. Assume h(t) > t and t ≥ Dmax. It must be proved that t < maxi=1,...,n{Ti−Di} U
1−U

.
Given: t < h(t).
By definition:

h(t) =
∑
Di≤t

(
1 +

⌊
t−Di

Ti

⌋)
Ci

eliminate floor function and rearrange :

≤
n∑

i=1

(
t + Ti −Di

Ti

)
Ci

≤ t

n∑
i=1

Ci

Ti

+
n∑

i=1

Ci

Ti

(Ti −Di)

≤ tU + max
i=1,...,n

{Ti −Di}
n∑

i=1

Ci

Ti

h(t) ≤ tU + max
i=1,...,n

{Ti −Di}U
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Substituting into t < h(t):

t < tU + max
i=1,...,n

{Ti −Di}U

rearrange and factor out t :

t(1− U) < max
i=1,...,n

{Ti −Di}U

t < max
i=1,...,n

{Ti −Di}
U

1− U

Zheng and Shin [108] define an upper bound that can be found by substituting

h(t) ≤
n∑

i=1

(
t + Ti −Di

Ti

)
Ci

from above into t < h(t) to get:

t <
n∑

i=1

(
t + Ti −Di

Ti

)
Ci

t < t
n∑

i=1

Ci

Ti

+
n∑

i=1

(
Ti −Di

Ti

)
Ci

t(1− U) <
n∑

i=1

(
Ti −Di

Ti

)
Ci

t <

∑n
i=1

(
1− Di

Ti

)
Ci

1− U

Zheng and Shin’s upper bound is:

ub1 = max

Dmax,

∑n
i=1

(
1− Di

Ti

)
Ci

1− U

 .

George et al [36] similarly obtain another upper bound:

ub2 =

∑
Di≤Ti

(
1− Di

Ti

)
Ci

1− U
.
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Partitioning Problem Data

B.1 Slif Pre-Processing

The partitioners of Chapters 5 and 6 use Slif graphs to describe the structure of tasks and
the kernel. The Slif graph is a function access graph, meaning that each node represents a
function and each (directed) edge represents a function invocation, where the edge source
is the caller and the edge destination is the called function. The nodes are annotated with
function execution-times for hardware and software (see Figures B.3 – B.9 for example
Slifs). These are times for each invocation of the node (function) and are referred to here
as base execution times. The edges are labeled with invocation counts which represent the
number of times that the source node invokes the destination node per execution of the
source node. These edge counts are referred to as base counts. Before the partitioners use
the Slif graphs, the base execution times and base edge counts need to be converted to
total execution times (ci,j[hw], ci,j[sw]) and total edge counts (fi,p).

Procedures PropagateTree and PropagateEdge are used to calculate total node ex-
ecution times and total edge counts for a full traversal of the Slif graph. Procedure
PropagateTree identifies the root node of Slifi (which has no incoming nodes). Its in-
vocation count is defined to be one. The total execution time of the root node is therefore
the same as the base execution time. Procedure PropagateEdge is invoked for each of the
root node’s outgoing edges.

Procedure PropagateEdge is a recursive procedure. It calculates the total edge count
by multiplying the edge’s base count by the invocation count of the calling node. The
edge’s destination node is then examined. If all of the node’s incoming edges’ total counts
have been calculated, then their sum is assigned to the node invocation count. This is used
to calculate the node’s total execution time. The procedure recurses for each of the node’s

163



164 APPENDIX B. PARTITIONING PROBLEM DATA

find root node ni,j ;
fi,j ← 1 ;
ctotal
i,j ← cbase

i,j ;
foreach outgoing edge ei,p of ni,j do

call PropagateEdge(ei,p, fi,j) ;

end

Procedure: PropagateTree(Slifi)

outgoing edges.

f total
i,p ← fbase

i,p ∗ fin ;
identify destination node ni,j ;
if all incoming edges ei,q of ni,j have f total

i,q then
fi,j ←

∑
ei,q∈incoming edges f total

i,q ;

ctotal
i,j ← cbase

i,j ∗ fi,j ;
foreach outgoing edge ei,q of ni,j do

call PropagateEdge(ei,q, fi,j) ;
end

end

Procedure: PropagateEdge(ei,p, fin)

A small example is shown in Figure B.1. In Figure B.1(a) five nodes are shown with
base execution time (b. e. t.) only and 5 edges with base count (b. c.) only. Figure B.1(b)
shows, the same example after invoking Procedure PropagateTree: total execution times
(t. e. t.) and total edge counts (t. c.) have been calculated.
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(a) before (b) after

Figure B.1: PropagateTree Example
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B.2 Idle Engine Data

B.2.1 Node Hardware Size Estimation

Node hardware worst-case execution time has been chosen as the most logical value from
which to estimate node hardware size. However it is difficult to find literature that relates
hardware size to hardware execution time. Out of necessity, however, a relationship needs
to be chosen. It is proposed here that as hardware size (i.e. logic gates) increases, execution
time also increases. In favour of this argument, consider that as the hardware size increases,
the depth of combinational logic gates is likely to increase, increasing signal propagation
delay. This argument is further supported by an example from industry. Asics World
Services, Ltd [6] offers a suite of floating-point arithmetic blocks from which a floating-
point unit can be built. There are four 32-bit blocks: add/subtract, multiply, divide and
compare. There are also four 64-bit blocks implementing the same operations. Gate count
and propagation delay are reported for a 0.18u process (the results for the 64-bit divide
block are not provided). The data is plotted in Figure B.2. Linear regressions for the
32-bit and 64-bit blocks have correlation coefficients r2 = 0.96 and r2 = 0.87.
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The linear relationship between hardware size and time (latency) is supported by the
correlation coefficients for the floating-point block example. However that is not the com-
plete picture. For example, a synchronous circuit can be made smaller and execution time
increased by decreasing parallelism. Although the evidence of a linear relationship be-
tween hardware size and execution time is weak, out of necessity it will be assumed for
the purposes of estimating node hardware sizes for the idle engine test case. The ratio of
hardware size to hardware execution time, Rsz = sz[hw]

c[hw]
, is derived from the two case study

coprocessors:

1. Cordic coproc: Rsz = 3840 LE / 8.10x10−5s = 4.74x107 LE/s

2. cs2 coproc: Rsz = 2496 LE / 4.56x10−6s = 5.47x108 LE/s

B.2.2 Application and Kernel Slif Graphs

This section shows the kernel and task Slif graphs for the idle engine problem as used by
the partitioners. Worst-case execution time (c[sw] and c[hw]) is reported in cycles (of the
system clock) and hardware size (sz[hw]) is reported in logic elements (LE). C++ library
function names are distinguished using italics. Those functions that are bound to a target
are marked with a hw or sw in the lower right corner of the box (see for example the
context switch functions ( ldProcCtxt, stProcCtxt) of Figure B.3).
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Figure B.3: Kernel Slif Graph
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Figure B.4: User Interface Task Slif Graph
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Figure B.5: Environment Task Slif Graph
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Figure B.6: CTS Task Slif Graph
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Figure B.7: FSM Task Slif Graph

Figure B.8: Throttle Control Task Slif Graph
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Figure B.9: Spark Advance Control Task Slif Graph
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B.2.3 Partitioning Result

The idle engine problem, as represented in the preceding Slifs, was partitioned using the
NLP model and the heuristic. The optimal result had processor utilization U = 0.465680
and used 4877 of the available 4914 LEs. The majority of nodes (28 out of 41) were bound
to hardware. Therefore only those nodes bound to software are listed here.

• kernel nodes bound to software:

– Sched::doSched, Proc::reset, ldProcCtxt, readCwpHiLimit, schedIsr, stProcCtxt

• task nodes bound to software:

– fixdfsi, floor, printDbl, printf, user, cos, divdf3

The resulting weighted cutsets and worst-case execution times per task are listed in
Table B.1.

Table B.1: Idle Engine Partition Results
kern user env cts fsm thr s.a.

|cutset| n/a 6 1 0 0 1 0
Ci 2862 290436 54412 2562 1363 32855 398
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B.3 Generated Problem Data

Eight problems were randomly generated for partitioning. Some statistics describing the
generated problems are presented here.

Table B.2: Generated Problem: Nodes per Task
Problem Average Minimum Maximum Std. Dev.
p100 1 19.4 2 53 18.77
p100 2 22.1 1 49 16.48
p200 1 31.3 1 70 20.86
p200 2 25.8 2 95 25.41
p500 1 30.38 1 103 24.53
p500 2 31.32 3 102 21.58
p1000 1 37.4 1 161 35.72
p1000 2 37.18 1 139 33.04

Table B.3: Generated Problem: Edges per Task
Problem Average Minimum Maximum Std. Dev.
p100 1 29.1 1 93 32.79
p100 2 30.5 0 75 26.35
p200 1 42.45 0 112 33.87
p200 2 32.9 1 158 39.71
p500 1 34.2 0 142 31.44
p500 2 33.48 2 118 25.31
p1000 1 40.2 0 205 42.31
p1000 2 39.51 0 167 38.70
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Table B.4: Generated Problem: Processor Demand per Task
Ci/Ti per Task Ci/Di per Task

Problem Average Std. Dev. Average Std. Dev.
p100 1 0.1 1.178e-09 0.1448 0.02194
p100 2 0.1040 0.008620 0.2020 0.09268
p200 1 0.06138 0.02384 0.1383 0.09016
p200 2 0.05476 0.007520 0.1218 0.05962
p500 1 0.02394 0.008624 0.07761 0.09298
p500 2 0.02295 0.006848 0.06823 0.08130
p1000 1 0.01 0 0.01159 0.0009630
p1000 2 0.01132 0.003086 0.02771 0.02471
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B.4 Heuristic Gain Results

Detailed results are tabulated here for the heuristic gain experiment conducted in Chapter
7.

Table B.5: Heuristic Gain Results: idle engine
Gain Time # U χ Repairs

(s) Feas min avg std dev avg Attempt Success
gc 0.14 0 0 0 0 0.0002920 0 0
gχ 0.10 0 0 0 0 4.200e-07 0 0
gU 0.12 31 0.4657 0.4807 0.01881 8.442e-06 0 0
gU/LE 0.26 100 0.4657 0.4964 0.01350 1.470e-05 0 0

Table B.6: Heuristic Gain Results: p100 1
Gain Time # U χ Repairs

(s) Feas min avg std dev avg Attempt Success
gc 0.65 0 0 0 0 2.644e-05 0 0
gχ 4.99 40 0.8984 0.8992 0.001114 1.533e-07 23 23
gU 0.52 82 0.8984 0.8984 0 3.983e-07 0 0
gU/LE 0.57 83 0.8984 0.8984 0 2.925e-07 0 0

Table B.7: Heuristic Gain Results: p100 2
Gain Time # U χ Repairs

(s) Feas min avg std dev avg Attempt Success
gc 0.41 0 0 0 0 0.0002534 0 0
gχ 0.32 3 0.8512 0.8512 0 0 3 3
gU 0.35 100 0.8512 0.8512 0 0 0 0
gU/LE 0.37 100 0.8512 0.8512 0 0 0 0
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Table B.8: Heuristic Gain Results: p200 1
Gain Time # U χ Repairs

(s) Feas min avg std dev avg Attempt Success
gc 31.18 92 0.7586 0.7833 0.02082 0.0001358 6 0
gχ 0.68 0 0 0 0 0 0 0
gU 25.11 92 0.6772 0.7372 0.02347 6.623e-05 0 0
gU/LE 25.52 98 0.6772 0.7313 0.02316 8.702e-05 0 0

Table B.9: Heuristic Gain Results: p200 2
Gain Time # U χ Repairs

(s) Feas min avg std dev avg Attempt Success
gc 0.69 0 0 0 0 0.0004072 0 0
gχ 0.63 3 0.8431 0.8480 0.003494 0 0 0
gU 1.57 100 0.7836 0.7836 0 0 0 0
gU/LE 1.84 100 0.7836 0.7836 0 0 0 0

Table B.10: Heuristic Gain Results: p500 1
Gain Time # U χ Repairs

(s) Feas min avg std dev avg Attempt Success
gc 5.61 0 0 0 0 0.0001795 0 0
gχ 2.72 0 0 0 0 2.683e-08 0 0
gU 97.92 4 0.5538 0.5613 0.006246 7.658e-05 96 0
gU/LE 120.93 0 0 0 0 8.483e-05 100 0

Table B.11: Heuristic Gain Results: p500 2
Gain Time # U χ Repairs

(s) Feas min avg std dev avg Attempt Success
gc 3.92 0 0 0 0 0.0003413 0 0
gχ 2.26 5 0.7089 0.7745 0.03280 0 0 0
gU 2.45 100 0.7064 0.7064 0 0 0 0
gU/LE 3.14 99 0.7064 0.7064 0 2.783e-08 0 0
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Table B.12: Heuristic Gain Results: p1000 1
Gain Time # U χ Repairs

(s) Feas min avg std dev avg Attempt Success
gc 41.16 0 0 0 0 0.0001125 0 0
gχ 129.31 14 0.9259 0.9270 0.0003177 5.804e-07 63 0
gU 204.37 68 0.7739 0.8829 0.04015 2.470e-06 28 0
gU/LE 207.23 52 0.8275 0.9085 0.02619 2.761e-06 44 0

Table B.13: Heuristic Gain Results: p1000 2
Gain Time # U χ Repairs

(s) Feas min avg std dev avg Attempt Success
gc 13.56 0 0 0 0 0.0002376 0 0
gχ 6.17 1 0.4063 0.4063 0 0 0 0
gU 7.12 100 0.2445 0.2445 0 1.121e-09 0 0
gU/LE 9.03 100 0.2445 0.2445 0 1.121e-09 0 0
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Appendix C

Glossary of Acronyms

API - Application Programming Interface

ASIC - Application Specific Integrated Circuit

CDFG - Control and Data-Flow Graph

CTS - Continuous Time System

DAG - Directed Acyclic Graph

DES - Discrete Event System

EDF - Earliest Deadline First

FPGA - Field Programmable Gate Array

FSM - Finite State Machine

HDL - Hardware Description Language

IC - Integrated Circuit

ILP - Integer Linear Programming

IR - Internal Representation

IRQ - Interrupt ReQuest

KB - Kilo Byte
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MB - Mega Byte

MHz - Mega Hertz

MIPS - Millions of Instructions Per Second

OS - Operating System

NLP - Non-Linear Programming

P - Proportional band controller

PID - Proportional-Integral-Derivative controller

RAM - Random Access Memory

RISC - Reduced Instruction Set Computer

RPM - Rotations Per Minute

RTOS - Real-Time Operating System

Slif - System Level Intermediate Representation

SoC - System on Chip

SoPC - System on Programmable Chip

SRAM - Static Random Access Memory

UART - Universal Asynchronous Receiver Transmitter

VLSI - Very Large Scale Integration


