Kernel and Application
Partitioning for EDF
Schedule Feasibility

Andrew Morton
University of Waterloo
Canada

1) Introduction and motivation
2) Review of kernel partitioning
3) EDF summary

4) Partitioning model

5) Results

6) Summary

Hardware/Software Codesign

Specification
Partitioning
Synthesis

Verification

Sample Codesign Flow

System
Modeling

Y

Hardware/
Software
Partitioning

Y

o Verification

Co-Synthesis

Software Interface

Hardware

W

system Integration

Co-Simulation and
Prodotyping

- Taken from Micaela
Serra at UVic

http://webhome.cs.uvic.ca/~mserra/HScodesign.html

Most codesign flows do
scheduling after
partitioning

Few consider
concurrent real-time
systems

http://webhome.cs.uvic.ca/~mserra/HScodesign.html

Previous work

O framework

User selected components of Atalanta kernel can be
moved to hardware

Demonstrated increased speed in database-type
application from 20-40%

Spring OS

Moved all scheduling into the SSCoP (Spring
Scheduling CoProcessor)

Demonstrated 4x — 6x speedup 1n scheduling

The kernel executes more often than any/all tasks

It 1s invoked every time a task releases, blocks,
unblocks or terminates

High execution frequency:

Small reductions in execution time can lead to
significant gains 1n schedule feasability

Earliest Deadline First (EDF)

- Definition of EDF

of all ready tasks, the task with the earliest deadline 1s
executed first

if another task arrives with earlier deadline, 1t preempts
the current task

Earliest Deadline First

EDF 1s optimal — will only miss a deadline 1f no other
policy could make it

It can achieve 100% processor utilization

(compared to 70% limit for Rate Monotonic)

It's a “natural” way to specify deadlines in embedded
system

Had studied it's theory and implementation during
PhD

T Y Y
|
¢ SRTA i A i T
D1=& (_,1=-‘
T A A A
d =/ ~ :F}
, D=4,C=2

s start time, T’ period, C, worst-case execution
time, D, deadline

SLIF Graphs

(system level intermediate format)
A call graph
Nodes represent functions
Labelled with hw size and hw/sw execution time
Directed edges represent invocations
Labelled with invocation frequency

One per task
Also task period 7' and deadline D,

kernel ..1T,D .. T, D

2

fsm
clsw]=216
c[hw]=9

sz[hw]=57

_schedlsr
c[sw]=109
c[hw]=4

sz[hw]=28 ow

cts
c[sw]=506
c[hwl=22
sz[hw]=163

gedf2
clsw]=510
clhw]=21
sz[hw]=181

1

Y

subdfs

_stProcChat Sched: doSched _dProcCtxt c[sw]=5036

c[sw]=559 clsw]=728 clsw]=564 clhw]=105 adddji mjdji ka2
c[hw]=17 o[hwl=28 clhw]=20 sz[hw]=654 clsw]=4094 elsw]=2652 elsw]=614
selhw]=148 sw| | sz{hwl=190 solhwl=121 sw clhw]=142 clbw]=106 ellw]=21

sz[hw]=1020 sz[hw]=723

hw]=161
sz[hw] .

subdf3 Msg:isnd 4 grdf?
clsw]=3036 clsw]=R6 clsw]=522
adddfs sqrt maildf3 c[hw]=105 c[hw]=3 c[hw]=20
MinHeap: pop MsgFifo: get ProcEifor get clsw]=40%4 clsw]=4556 c[sw]=2652 sz[hw]=654 sz[hw]=21 sz[hw]=168
c[sw]=151 clsw]=14 c[swl=14 clhw]=142 clhw]=147 clhw]=106
c[hw]=7 clhwl=1 c[hw]=1 sz[hw]=1020 sz[hw]=1171 sz[hw]=723

sz[hw]=58 sz[hw]=7 sz[hw]=2

MinHeap::insert Procireset

clsw]=126

FProcFiforput

c[sw]=17

c[hw]=4 clhw]=1 intLock MsgFifio: get _schedInvoke

sz[hw]=35 sz[hw]=6 szhw]=48 sw clsw]=4 c[sw]=14 c[sw]=3
clhwl=1 clhw]=1 c[hw]=1
sz[hw]=8 sz[hw]=7 sz[hw]=7

Y
MsgFifo: put

intUnlock

Bropy

cfsw]=4 c[sw]=17 clsw]=177
_readCwpHiLim c[hw]=1 c[hw]=1 clhw]=7
clsw]=4 sz[hw]=8 sz[hw]=7 sz[hw]=44

clhw]=1
sz[hw =7 sw

Assign nodes to hw/sw

Task or kernel nodes

Each cut task edge adds
2 kernel invocations

Each task also requires
2 kernel invocations for
release/terminate

YOO G,

(nl)

uablock-”

“erminal. -

Assign every node to hw/sw (kernel and application
nodes)

Objective: minimize processor utilization

Check schedule feasibility

Add constraints for violated deadlines and repeat

Used Embedded Systems Synthesis Suite (E3S)
application benchmarks

Automotive, consumer, networking, office
automation and telecommunications

Used MPC555 data
Kernel: 11 nodes

5 bound to software (e.g. context switch)

6 eligible for hw/sw
Application nodes
All eligible for hw/sw

Results
Nodes Assigned to Hardware

Automotive 83.3% 24 83.3%

Networking 83.3% 54.5%

Telecom 16.7% 100%

- Of 26 tasks, 21 were not partitioned (1.e. all
hardware or all software)

Contributions

Unified model for partitioning and scheduling of real-
time systems

Demonstrated a preference to assign kernel functions
to hardware

	Title
	Outline
	Intro 3
	Slide 4
	Slide 5
	Slide 6
	EDF
	Slide 8
	Notate 2
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Sum

