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Introduction

 Hardware/Software Codesign
 Specification
 Partitioning
 Synthesis
 Verification



  

Sample Codesign Flow

 Taken from Micaela 
Serra at UVic

 http://webhome.cs.uvic.ca/~mserra/HScodesign.html



 Most codesign flows do 
scheduling after 
partitioning

 Few consider 
concurrent real-time 
systems

http://webhome.cs.uvic.ca/~mserra/HScodesign.html


  

Partitioning the Kernel

 Previous work
 δ framework

 User selected components of Atalanta kernel can be 
moved to hardware

 Demonstrated increased speed in database-type 
application from 20-40%

 Spring OS
 Moved all scheduling into the SSCoP (Spring 

Scheduling CoProcessor)
 Demonstrated 4x – 6x speedup in scheduling



  

Why the Kernel?

 The kernel executes more often than any/all tasks
 It is invoked every time a task releases, blocks, 

unblocks or terminates
 High execution frequency:

 Small reductions in execution time can lead to 
significant gains in schedule feasability



  

Earliest Deadline First (EDF)

 Definition of EDF
 of all ready tasks, the task with the earliest deadline is 

executed first
 if another task arrives with earlier deadline, it preempts 

the current task



  

Why EDF?

 Earliest Deadline First
 EDF is optimal – will only miss a deadline if no other 

policy could make it
 It can achieve 100% processor utilization

 (compared to 70% limit for Rate Monotonic)
 It's a “natural” way to specify deadlines in embedded 

system
 Had studied it's theory and implementation during 

PhD



  

Scheduling Notation

 si start time, Ti period, Ci worst-case execution 
time, Di deadline



  

Partitioner Input

 SLIF Graphs
 (system level intermediate format)
 A call graph
 Nodes represent functions

 Labelled with hw size and hw/sw execution time
 Directed edges represent invocations

 Labelled with invocation frequency
 One per task

 Also task period Ti and deadline Di



  

Partitioner Input

τ2 : T2, D2τ1 : T1, D1kernel



  

Assumptions

 Assign nodes to hw/sw
 Task or kernel nodes

 Each cut task edge adds 
2 kernel invocations

 Each task also requires 
2 kernel invocations for 
release/terminate



  

Principle of Operation

1)Assign every node to hw/sw (kernel and application 
nodes)

2)Objective: minimize processor utilization
3)Check schedule feasibility
4)Add constraints for violated deadlines and repeat



  

Testing

 Used Embedded Systems Synthesis Suite (E3S) 
application benchmarks

 Automotive, consumer, networking, office 
automation and telecommunications

 Used MPC555 data
 Kernel: 11 nodes

 5 bound to software (e.g. context switch)
 6 eligible for hw/sw

 Application nodes
 All eligible for hw/sw



  

Results
Nodes Assigned to Hardware

Kernel Task
App Eligible Assigned Fraction Eligible Assigned Fraction
Automotive 6 5 83.3% 24 20 83.3%
Consumer 6 5 83.3% 12 0 0%
Networking 6 5 83.3% 13 8 54.5%
Office 6 4 66.7% 5 0 0%
Telecom 6 1 16.7% 30 30 100%

 Of 26 tasks, 21 were not partitioned (i.e. all 
hardware or all software)



  

Summary

 Contributions
 Unified model for partitioning and scheduling of real-

time systems
 Demonstrated a preference to assign kernel functions 

to hardware
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