

Kernel and Application
Partitioning for EDF
Schedule Feasibility

Andrew Morton
University of Waterloo

Canada

Outline

1) Introduction and motivation
2) Review of kernel partitioning
3) EDF summary
4) Partitioning model
5) Results
6) Summary

Introduction

 Hardware/Software Codesign
 Specification
 Partitioning
 Synthesis
 Verification

Sample Codesign Flow

 Taken from Micaela
Serra at UVic

 http://webhome.cs.uvic.ca/~mserra/HScodesign.html

 Most codesign flows do
scheduling after
partitioning

 Few consider
concurrent real-time
systems

http://webhome.cs.uvic.ca/~mserra/HScodesign.html

Partitioning the Kernel

 Previous work
 δ framework

 User selected components of Atalanta kernel can be
moved to hardware

 Demonstrated increased speed in database-type
application from 20-40%

 Spring OS
 Moved all scheduling into the SSCoP (Spring

Scheduling CoProcessor)
 Demonstrated 4x – 6x speedup in scheduling

Why the Kernel?

 The kernel executes more often than any/all tasks
 It is invoked every time a task releases, blocks,

unblocks or terminates
 High execution frequency:

 Small reductions in execution time can lead to
significant gains in schedule feasability

Earliest Deadline First (EDF)

 Definition of EDF
 of all ready tasks, the task with the earliest deadline is

executed first
 if another task arrives with earlier deadline, it preempts

the current task

Why EDF?

 Earliest Deadline First
 EDF is optimal – will only miss a deadline if no other

policy could make it
 It can achieve 100% processor utilization

 (compared to 70% limit for Rate Monotonic)
 It's a “natural” way to specify deadlines in embedded

system
 Had studied it's theory and implementation during

PhD

Scheduling Notation

 si start time, Ti period, Ci worst-case execution
time, Di deadline

Partitioner Input

 SLIF Graphs
 (system level intermediate format)
 A call graph
 Nodes represent functions

 Labelled with hw size and hw/sw execution time
 Directed edges represent invocations

 Labelled with invocation frequency
 One per task

 Also task period Ti and deadline Di

Partitioner Input

τ2 : T2, D2τ1 : T1, D1kernel

Assumptions

 Assign nodes to hw/sw
 Task or kernel nodes

 Each cut task edge adds
2 kernel invocations

 Each task also requires
2 kernel invocations for
release/terminate

Principle of Operation

1)Assign every node to hw/sw (kernel and application
nodes)

2)Objective: minimize processor utilization
3)Check schedule feasibility
4)Add constraints for violated deadlines and repeat

Testing

 Used Embedded Systems Synthesis Suite (E3S)
application benchmarks

 Automotive, consumer, networking, office
automation and telecommunications

 Used MPC555 data
 Kernel: 11 nodes

 5 bound to software (e.g. context switch)
 6 eligible for hw/sw

 Application nodes
 All eligible for hw/sw

Results
Nodes Assigned to Hardware

Kernel Task
App Eligible Assigned Fraction Eligible Assigned Fraction
Automotive 6 5 83.3% 24 20 83.3%
Consumer 6 5 83.3% 12 0 0%
Networking 6 5 83.3% 13 8 54.5%
Office 6 4 66.7% 5 0 0%
Telecom 6 1 16.7% 30 30 100%

 Of 26 tasks, 21 were not partitioned (i.e. all
hardware or all software)

Summary

 Contributions
 Unified model for partitioning and scheduling of real-

time systems
 Demonstrated a preference to assign kernel functions

to hardware

	Title
	Outline
	Intro 3
	Slide 4
	Slide 5
	Slide 6
	EDF
	Slide 8
	Notate 2
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Sum

