

Kernel and Application
Partitioning for EDF
Schedule Feasibility

Andrew Morton
University of Waterloo

Canada

Outline

1) Introduction and motivation
2) Review of kernel partitioning
3) EDF summary
4) Partitioning model
5) Results
6) Summary

Introduction

 Hardware/Software Codesign
 Specification
 Partitioning
 Synthesis
 Verification

Sample Codesign Flow

 Taken from Micaela
Serra at UVic

 http://webhome.cs.uvic.ca/~mserra/HScodesign.html



 Most codesign flows do
scheduling after
partitioning

 Few consider
concurrent real-time
systems

http://webhome.cs.uvic.ca/~mserra/HScodesign.html

Partitioning the Kernel

 Previous work
 δ framework

 User selected components of Atalanta kernel can be
moved to hardware

 Demonstrated increased speed in database-type
application from 20-40%

 Spring OS
 Moved all scheduling into the SSCoP (Spring

Scheduling CoProcessor)
 Demonstrated 4x – 6x speedup in scheduling

Why the Kernel?

 The kernel executes more often than any/all tasks
 It is invoked every time a task releases, blocks,

unblocks or terminates
 High execution frequency:

 Small reductions in execution time can lead to
significant gains in schedule feasability

Earliest Deadline First (EDF)

 Definition of EDF
 of all ready tasks, the task with the earliest deadline is

executed first
 if another task arrives with earlier deadline, it preempts

the current task

Why EDF?

 Earliest Deadline First
 EDF is optimal – will only miss a deadline if no other

policy could make it
 It can achieve 100% processor utilization

 (compared to 70% limit for Rate Monotonic)
 It's a “natural” way to specify deadlines in embedded

system
 Had studied it's theory and implementation during

PhD

Scheduling Notation

 si start time, Ti period, Ci worst-case execution
time, Di deadline

Partitioner Input

 SLIF Graphs
 (system level intermediate format)
 A call graph
 Nodes represent functions

 Labelled with hw size and hw/sw execution time
 Directed edges represent invocations

 Labelled with invocation frequency
 One per task

 Also task period Ti and deadline Di

Partitioner Input

τ2 : T2, D2τ1 : T1, D1kernel

Assumptions

 Assign nodes to hw/sw
 Task or kernel nodes

 Each cut task edge adds
2 kernel invocations

 Each task also requires
2 kernel invocations for
release/terminate

Principle of Operation

1)Assign every node to hw/sw (kernel and application
nodes)

2)Objective: minimize processor utilization
3)Check schedule feasibility
4)Add constraints for violated deadlines and repeat

Testing

 Used Embedded Systems Synthesis Suite (E3S)
application benchmarks

 Automotive, consumer, networking, office
automation and telecommunications

 Used MPC555 data
 Kernel: 11 nodes

 5 bound to software (e.g. context switch)
 6 eligible for hw/sw

 Application nodes
 All eligible for hw/sw

Results
Nodes Assigned to Hardware

Kernel Task
App Eligible Assigned Fraction Eligible Assigned Fraction
Automotive 6 5 83.3% 24 20 83.3%
Consumer 6 5 83.3% 12 0 0%
Networking 6 5 83.3% 13 8 54.5%
Office 6 4 66.7% 5 0 0%
Telecom 6 1 16.7% 30 30 100%

 Of 26 tasks, 21 were not partitioned (i.e. all
hardware or all software)

Summary

 Contributions
 Unified model for partitioning and scheduling of real-

time systems
 Demonstrated a preference to assign kernel functions

to hardware

	Title
	Outline
	Intro 3
	Slide 4
	Slide 5
	Slide 6
	EDF
	Slide 8
	Notate 2
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Sum

