Research Overview

Hardware/Software Codesign of Real-time Systems

Dr. Morton

Embedded Systems

- Embedded System
 - cellphone, automobile, medical equipment
 - medium to large production volumes, upgrades
 - minimize size, power consumption, development time
- System on Chip (SoC)
 - CPUs, Memory, I/O and custom logic all on one IC

Hardware/Software Codesign

- Traditional approach: design hardware and hope that software can meet timing requirements
 - leads to overdesign
- Hw/Sw Codesign: design hw and sw in parallel
 - allow trade-offs at each design stage to help meet system-level objectives (area, power, timing)
- Question: How best to use resources to meet system timing requirements?

EDF Coscheduler

- Implement sw scheduler in hw
- EDF = Earliest Deadline First (preemptive)
 - task with earliest deadline executes
 - optimal scheduling policy
- Implementation
 - software: min-heap (log n)
 - hardware: round-robin bidding

Hardware Structure

Results

- Case study
 - reduced kernel overhead by ~50%
 - fast event response
 - almost as much hw as a second CPU
 - benefits depend on application
- Commercial example
 - Sierra real-time kernel

Dynamically Reconfigurable Systems


```
main(...) { ...
   for(i=1 to 10) x(,,,);
   while(true) { ...
      y(...);}
x(...) {
         rand() ...}
y(...){
   for(j=...)
  eliptic()
```

Configuration Scheduling

- Kernel configuration takes time
 - can outweigh time saved by using hw kernel in place of sw kernel
- Dynamic scheduler
 - chooses when to use hw kernel and when to use sw kernel
 - optimize performance by choosing when to configure and when not
 - can itself be in sw or hw

Hw/Sw Programming Model

- hThreads (David Andrews, U of Kansas)
- adapt posix threads to support high-level programming model of both software and hardware
 - sync and share data between hw and sw threads

Hybrid Concurrency Framework

- pthreads is library-based concurrency
 - weaknesses: compiler, programmer error
 - program-based concurrency better
 - Java, Ada, uC++
- hybrid uC++ executive
- semaphore, monitor, active task

