
A Multi-Objective Integer Linear Program
for Memory Assignment in the DSP

Domain

G. Grewal, A. Morton, S. Coros, and D. Banerji,

Presented by: Andrew Morton

Dept. of Electrical and Computer Engineering
University of Waterloo

Waterloo, Ontario, Canada

2

Outline

1. Typical DSP architecture
2. The memory assignment problem for dual

memories
3. Constraints and Objective functions
4. Results
5. Closing comments

3

Typical DSP Architecture

Y
Memory

X
Memory Address

Registers
Address
Registers

Accum2Accum1OpndReg2OpndReg1

4

Sample Loop Kernel

CLR A X:(R0)+, X0 Y:(R4)+,Y0 [1]
REP #N-1 [2]
MAC X0,Y0, A X:(R0)+, X0 Y:(R4)+, Y0 [3]
MACR X0, Y0, A [4]

double FIR_filter(in double A[], in double B[], in int tap) {
int k;
double sum=0;

for(k=0; k< tap; k++)
sum += A[k] * B[k];

return sum;
}

ALU X-Memory Y-Memory

5

++ld ld++
mac

++ld ld++
clr

++ld ld++
mac

macr

X-MEM Y-MEM

6

Goal of Data Partitioning

• Goal: To partition the data, prior to scheduling, to create a
climate for very parallel, short schedules.

• Problems:
– Unbalanced Memory Activity
– Connectivity and non-commutative operations

7

Load Balancing

• Parallelism in schedules of memory operations promotes
the possibility of better schedules.

ld

ld
Vs

ALU

ld ld

ALU

X-MEM Y-MEMALU X-MEM Y-MEMALU

8

Load Balancing Cont’d

st

ld

st

ld

ld

ALU

ALU

ALU

co
ng

es
tio

n Load balancing can be achieved
using:

• Objective Function

X-MEM ALU

9

Register Connectivity

CPY

ALU

CPY

b

a’

a

b’

non-commutative

X-MEM Y-MEMALU

10

Register Connectivity Cont’d

BA +

C

++
circular

dependency

A + B

B + C

A + C

A,B B
X-MEM Y-MEM

duplication

,C

11

Remembering the Problem

• Goal: To partition the data, prior to scheduling, to create a
climate for very parallel, short schedules.

• Minimize delays due to values appearing in “wrong”
memory

• While satisfying all hard constraints
– E.g., not exceeding size capacity of either memory

12

Our Model

• We model the problem as an Integer Linear Program

• The objective function aims to minimize the cost of:
• Having operands in “wrong” memory – for non-

commutative operations
• Need to update both memories
• Need to fetch paired operands on separate control

steps – for commutative operations

• Block Execution Frequencies used to weight individual
objectives can be found through simulation, estimation,
experience, etc.

13

Our Model

• Primary Constraint

• capacity of either memory cannot be exceeded

• Additional Constraints (Preferences)

• item i must appear in x memory

• item i cannot appear in x memory

• items i and j must have instances in different memories

• items i and j must have instances in same memory

• item i cannot be duplicated

14

Results
• Randomly generate three sets of problems:

– Set A – 50 variables
– Set B – 100 variables
– Set C – 200 variables

• For each set, we varied:
– # of variables preferred in the left memory (25%-50%)
– # of variables preferred in the right memory (25%-50%)
– # of variables that require updating (25%-50%)
– # of variables that appear in commutative operations (50%-75%)

• Each set contains 16 problem instances

15

Results

Set Variables Solution Times
A 50 0.1s
B 100 1.0 – 2.0 s
C 200 6.0 – 12.0 s

• Lindo solver on Windows 2000, 2.4 GHz P4, 512MB
• Solutions to 5000 variable problems in < 60s

Thanks for Listening

