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Typical DSP Architecture
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Sample Loop Kernel

CLR   A X:(R0)+, X0   Y:(R4)+,Y0  [1]
REP        #N-1  [2]
MAC        X0,Y0, A     X:(R0)+, X0   Y:(R4)+, Y0 [3]
MACR     X0, Y0, A [4]

double FIR_filter(in double A[], in double B[], in int tap) {
int k;
double sum=0;

for(k=0; k< tap; k++)
sum += A[k] * B[k];

return sum;
}

ALU              X-Memory    Y-Memory 
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Goal of Data Partitioning

• Goal: To partition the data, prior to scheduling, to create a 
climate for very parallel, short schedules.

• Problems:
– Unbalanced Memory Activity
– Connectivity and non-commutative operations
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Load Balancing

• Parallelism in schedules of memory operations promotes 
the possibility of better schedules.
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Load Balancing Cont’d
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Register Connectivity
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Register Connectivity Cont’d
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Remembering the Problem

• Goal: To partition the data, prior to scheduling, to create a 
climate for very parallel, short schedules.

• Minimize delays due to values appearing in “wrong”
memory

• While satisfying all hard constraints
– E.g., not exceeding size capacity of either memory
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Our Model

• We model the problem as an Integer Linear Program

• The objective function aims to minimize the cost of:
• Having operands in “wrong” memory – for non-

commutative operations
• Need to update both memories
• Need to fetch paired operands on separate control 

steps – for commutative operations

• Block Execution Frequencies used to weight individual 
objectives can be found through simulation, estimation, 
experience, etc.
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Our Model

• Primary  Constraint

• capacity of either memory cannot be exceeded

• Additional Constraints (Preferences)

• item i must appear in x memory

• item i cannot appear in x memory

• items i and j must have instances in different memories

• items i and j must have instances in same memory

• item i cannot be duplicated
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Results
• Randomly generate three sets of problems:

– Set A – 50 variables
– Set B – 100 variables
– Set C – 200 variables

• For each set, we varied:
– # of variables preferred in the left memory (25%-50%)
– # of variables preferred in the right memory (25%-50%)
– # of variables that require updating (25%-50%)
– # of variables that appear in commutative operations (50%-75%)

• Each set contains 16 problem instances
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Results

Set Variables Solution Times
A 50 0.1s
B 100 1.0 – 2.0 s
C 200 6.0 – 12.0 s

• Lindo solver on Windows 2000, 2.4 GHz P4, 512MB
• Solutions to 5000 variable problems in < 60s
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