Outline

- Introduction
- Decentralized Oracle Model
- Astraea I: Double-Player Protocol
- Astraea II: Paired-Question Protocol
- Astraea III: Peer Prediction Protocol
- Comparison
• Consider a betting smart-contract for the coin flip before the Superbowl.
• We can take a bet, but how do we pay out a winning bet?

```solidity
contract CoinFlipBet {
    enum CoinFlip {Heads, Tails}
    address bettor = 0;
    uint wager = 0;
    CoinFlip wageredOutcome;

    // ... snip ...

    // Pay out based on what the bettor reports
    function payout(CoinFlip realOutcome) {
        require(msg.sender == bettor);
        if (realOutcome == wageredOutcome) {
            bettor.transfer(2 * wager);
        }
    }
}
```
We can’t trust the bettor to report the outcome of the coin toss

```solidity
contract CoinFlipBet {
    enum CoinFlip {Heads, Tails}
    address bookie = /* Bookie address */;
    address bettor = 0;
    uint wager = 0;
    CoinFlip wageredOutcome, realOutcome;
    bool reported = false;

    // ... snip ...

    // Allow the bookie to report the outcome
    function report(CoinFlip outcome) {
        require(msg.sender == bookie);
        reported = true;
        realOutcome = outcome;
    }
}
```
Introduction

The Gateway Problem
- If the bookie is trusted, then why use a decentralized smart contract?
- If you need a blockchain to interact with the real world, you have a big problem – *Blockchains are blind to real-life world events!*
 - e.g., prediction markets, insurance, managing financial assets, adjudication
- Solution: *query a decentralized oracle!*

Other benefits of decentralized oracles:
- Data collection and annotation via crowd-sourcing
- Ensuring data availability
Introduction

Current oracle solutions – they all require “centralized trust”

Oraclize.it
• Fetches data from specified web source
• Requires “trust” to a central server – can deny requests or collude with website owners

Town Crier
• Similar + trusted hardware proofs (e.g., Intel’s SGX) verify authenticity
• Also requires “trust” to a central server and Intel Corp.
Introduction

Current oracle solutions – they all require “centralized trust”

Chainlink
- Aims to provide a cross-chain portal to internet-available information i.e., data available on websites
- Although with multiple information sources, selection and aggregation mechanisms are proposed by the user

Augur
- Token holders report answers or challenge reports
- Requires “trust” to a designated reporter – a privileged (centralized) user who reports first
Introduction

Trustless and decentralized oracle markets

• **Decentralized = permissionless + equiprivileged:**
 • Any member of the public can answer questions
 • Needs proper game-theoretical incentives for honest reporting

The lazy equilibrium

• Why wouldn’t everyone just always vote True?
• Easier than trying to figure out the “correct” answer
• A Nash equilibrium – analogous to the Verifier’s Dilemma
Decentralized Oracle Model

- Smart contract maintains pool of active **Boolean** (True or False) propositions p_1, p_2, p_3, \ldots
- Users can submit new propositions at any time
- Must also submit:
 - **Bounty** to pay for participation
 - **Bond** for incentives
 - **Duration** of proposition

```
<table>
<thead>
<tr>
<th>Send bounty and bond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send proposition</td>
</tr>
<tr>
<td>Select duration</td>
</tr>
<tr>
<td>ORACLE</td>
</tr>
</tbody>
</table>
```
Decentralized Oracle Model

- **Voter**: any user that requests participation by posting a bond
- Receives a *randomly* chosen proposition
- Submits sealed vote of True or False

```
1. Post bond
2. Receive proposition
3. Submit sealed vote
```
Decentralized Oracle Model

- Each proposition is *randomly* assigned to multiple voters
- Votes are tallied to determine output when proposition expires
Decentralized Oracle Model

• **Private opinion** \((PO_{ij})\): Opinion of voter \(v_i\) on proposition \(p_j\) (True/False)
 • Honest voters keep their \(PO\) unknown to other voters
 • Dishonest voters may collude and share their \(PO\) (i.e., may vote differently to \(PO_{ij}\))

• **Voting strategy**: \(\sigma_{ij}(PO_{ij}) = \text{answer that } v_i \text{ reports on } p_j\)
 • If honest, then \(\sigma_{ij}(PO_{ij}) = PO_{ij}\)

• **Most Probable Private Opinion** \((MPPO_j)\): Majority \(PO\) on \(p_j\) (True/False)
 • Serves as the 'ground truth' or the 'correct' answer
 • We want the decentralized oracle (market) to output \(MPPO_j\)
Definitions

• $c_i = \text{voter } v_i \text{'s perceived probability of agreeing with } MPPO$
 • Note that v_i generally does not know other voters’ PO

• $c = \text{probability that randomly selected voter reports } MPPO$
 • Measure of “degree of contention” of proposition
 • $c = 1 \rightarrow \text{everyone agrees}$
 • $c = 0.5 \rightarrow \text{maximum disagreement}$
 • $0.5 \leq c \leq 1 \text{ if everyone is honest}$
Outline

- Introduction
- Decentralized Oracle Model
- Astraea I: Double-Player Protocol
- Astraea II: Paired-Question Protocol
- Astraea III: Peer Prediction Protocol
- Comparison
Double-Player Protocol

- First decentralized oracle protocol
- Two types of voters: **voters** and **certifiers**

<table>
<thead>
<tr>
<th>Bond and Perceived Reward Value</th>
<th>Proposition Assignment</th>
<th>Payoff Rules</th>
<th>Risk interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voters</td>
<td>Small</td>
<td>Random</td>
<td>Reward: agree with the majorities of both voters and certifiers; Penalty: vote against both majorities</td>
</tr>
<tr>
<td>Certifiers</td>
<td>Large</td>
<td>Chosen by certifier</td>
<td>Reward: agree with the majorities of both voters and certifiers; Penalty: vote against either majorities</td>
</tr>
</tbody>
</table>
Double-Player Protocol

- **Rewards**: payment for voting correctly
- Paid from a *reward pool* which depends on the vote value (True/False)
- Pools are funded by bounties and forfeited bonds
- After a proposition is decided True/False, reward pool for the opposite value increases
- Always voting the same way is not the most profitable strategy (because the opposite pool increases)
Double-Player Protocol - Analysis

• Assume each player’s strategy directly depends on only PO_i

• Voting and certification can be seen as two independent series of Bernoulli trials

• the probability of $MPPO_j$ being selected by the majority of n_j voters on proposal p_j if all voters are honest is denoted by majority function M_v:

$$M_v(n_j, MPPO_j) = 1 - B\left(\frac{n_j}{2}, n_j, q_j\right)$$

• Similarly, for certifiers:

$$M_c(m_j, MPPO_j) = 1 - B\left(\frac{m_j}{2}, m_j, q_j\right).$$
Double-Player Protocol - Analysis

Probability of oracle correctness

\[P_{Corr} = \text{probability that majority of voters answer the MPPO} \]

At \(c = 1.0 \), everyone agrees. Oracle will always be correct.

\[P_{Corr} \] improves with more voters (ideally 10-20) as long as \(c > 0.5 \).

At \(c = 0.5 \), \(P_{Corr} \) cannot be better than random \((0.5^2 = 0.25)\).
Double-Player Protocol - Adversaries

Probability of successful manipulation

Assume there are in total 100 propositions, adversaries try to manipulate p_j

#voter increases \rightarrow probability of successful manipulation decreases

<table>
<thead>
<tr>
<th>#voter /prop.</th>
<th>Total stake</th>
<th>Adversarial stake</th>
<th>c</th>
<th>$\Pr(o_i=\neg\text{MPPO}_i)$ (voter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>$2000 \times s_{\max}$</td>
<td>0</td>
<td>0.8</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.95</td>
<td></td>
<td>$< 1 \times 10^{-9}$</td>
</tr>
<tr>
<td>100</td>
<td>$10000 \times s_{\max}$</td>
<td>0</td>
<td>0.8</td>
<td>0.0028</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.95</td>
<td></td>
<td>$< 1 \times 10^{-6}$</td>
</tr>
<tr>
<td>100</td>
<td>$10000 \times s_{\max}$</td>
<td>0</td>
<td>0.8</td>
<td>0.1275</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.95</td>
<td></td>
<td>0.0123</td>
</tr>
</tbody>
</table>

$Pr(o_i=\neg\text{MPPO}_i)$ decreases significantly from #voter = 20 to #voter = 100

s_{\max}: maximum stake of voter
Double-Player Protocol - Adversaries

Probability of successful manipulation

Assume there are in total 100 propositions, adversaries try to manipulate \(p_j \)

More costly to manipulate with certifiers

Adversaries need a significant amount of stake when \#voter and \(c \) are high

With the addition of certifiers, adversaries need to stake \(500c_{\min} \) more to manipulate certifying while \(\Pr(o_j=\neg\text{MPPO}_j)\) (final) is now \(< 1 \times 10^{-8}\)

\(s_{\max} \): maximum stake of voter

\(c_{\min} \): minimum stake of certifier

\(c_{\min} > s_{\max} \)
Paired-Question Protocol

• Voters answer one proposition
• Submitter must submit two binary propositions p and p' and a bond
• Bond is returned iff the final outputs for p and p' are complementary
• p and p' should be designed to have different answers
 • Easiest method: make p' the converse statement of p
• Voters are only rewarded for answering p and p' if the final outputs of the oracle on p and p' are complementary
Paired-Question Protocol

Intuition

- Voting the same way on both p and p' yields no rewards
- Solves the lazy equilibrium problem
- Submitters are incentivized to submit pairs that clearly have opposite answers
- Each voter will believe that approximately 50% of propositions are True
- Results in stronger voter incentives
Paired-Question Protocol: Analysis

Expected Voter Payoffs

• Voter v_i receives reward on p if
 • They agree with the majority
 • Output of p and p' differ

• Voter v_i receives penalty on p if
 • They disagree with the majority
 • Output of p and p' differ

• We set Reward amount $=$ Penalty amount $= 1$

• If output of p and p' are the same, voters receive their bounties and submitter gets penalized by losing his bond
Paired-Question Protocol

Assumptions

• Every voter is able to answer any question (i.e., assigned randomly)
• Sufficiently many voters are available (ideally 10-20)
• Voter v_i’s strategy directly depends on only PO_i
 • Doesn’t depend on other voters’ PO
 • Doesn’t directly depend on the question statement
 • Precludes strategies such as “guess which of p and $p’$ is the converse, and vote False on the converse”
 • Assumption is relaxed later when analyzing adversaries
Paired-Question Protocol: Analysis

Probability of oracle correctness

\[P_{corr} = \text{probability that majority of voters answer the MPPO} \]

At \(c = 1.0 \), everyone agrees. Oracle will always be correct.

\(P_{corr} \) improves with more voters (ideally 10-20) as long as \(c > 0.5 \).

At \(c = 0.5 \), there is no agreement. \(P_{corr} \) cannot be better than random.
Paired-Question Protocol: Analysis

Expected Voter Payoffs

- Let $c = 0.75$ (overall degree of contention on p_j)

Payoff improves with probability of agreeing with the MPPO (c_i)
Paired-Question Protocol: Analysis

Lazy voting cannot do better than honest voting
• Everyone votes the same way $\rightarrow p$ and p' will never have different outputs
• No penalties, but no rewards either (Expected payoffs = 0)
• If you’re reasonably accurate, it’s much better to vote honestly!

Honest voting is a Nash equilibrium, oracle disincentivizes “lying”
• No mixed strategy can do better than pure honesty
Paired-Question Protocol: Adversaries

Adversarial model

- Adversary controls n_a voters
- n_h honest voters
- $N = n_a + n_h = \text{total # of voters}$
- $c_h = c_i$ of honest voters
- Suppose adversary tries to force incorrect output

With few adversarial votes, output is MPPO with high probability

With majority of votes, adversary has complete control of output
Paired-Question Protocol: Adversaries

Expected Voter Payoffs

Payoffs for honesty are good as long as:

\[n_h > \frac{N}{2c_h} \]

Adversary profits when it outnumbers honest voters

Expected payoffs, \(N = 30, c_h = 0.9 \)
Paired-Question Protocol: Adversaries

- **Quorum size** (q): minimum fraction of votes required to establish an output
- Increasing q can diminish the adversary’s influence $(N=30)$
Outline

Introduction

Decentralized Oracle Model

Astraea I: Double-Player Protocol

Astraea II: Paired-Question Protocol

Astraea III: Peer Prediction Protocol

Comparison
Peer Prediction Protocol

• Previous approaches cannot verify if
 • the output is the “correct” answer, nor
 • distinguish between noise / honest voting
 • *i.e.*, Is MPPO wrong? Correct?

• What if the question is difficult or not likely to have a common opinion?

• Peer prediction leverages those problems by assigning scores to each opinion based on reported *prediction on popularity*
 • The higher the score is, the more likely it is truthful
Peer Prediction Protocol - RBTS

• The protocol is based on the idea of **Robust Bayesian Truth Serum***

• RBTS is the first peer prediction mechanism that does not rely on knowledge of the common prior to provide **strict incentive compatibility** for every number of agents $n > 3$

• Each *agent*-i submit a binary **information report** and a numerical **prediction report** to a proposal
 - **Information report** (x_i) represents a revealed opinion of the agent
 - *i.e.*, the proposal is True/False
 - **Prediction report** (y_i) reflects the agent’s belief about the distribution of information reports in the population
 - *i.e.*, 95% of all agents believe the proposal is True

Peer Prediction Protocol - RBTS

• Score for each agent-i is determined by comparing their two reports with two other randomly selected agent-j and agent-k selected as follows:
 • Reference agent $(j = (i + 1) \% n)$: whose prediction report y_j is used
 • Peer agent $(k = (i + 2) \% n)$: whose information report x_k is used
 • $n =$ total # of agents

• The final RBTS score for agent-i is determined by summing up the information score and prediction score
Peer Prediction Protocol – adopted RBTS

• RBTS score varies by ordering of the agents therefore may not be consistent

Therefore, to make the scores more “fair”:

• **General idea:** Instead of scores based on the reports from two other agents, takes the mean of all agents excluding agent i
• Use majority of information report as x_k
• This guarantees consistency of score without changing the incentive compatibility
Peer Prediction Protocol

Overall Protocol:

- Submitters submit complementary pairs of proposals p and p'
- Voters submit an **information vote** and a **prediction** for each assigned proposal
- When the proposal is closed, score is assigned to every agent based on all the submitted reports
- Based on the average score of Truth-voting and False-voting voters, an outcome is determined for p
- Similar to paired-question protocol, voters are only rewarded for answering p and p' if the final outputs of the oracle on p and p' are complementary
Peer Prediction Protocol

Model Assumptions

- All voters are Bayesian thinkers – they maintain a belief in the form of a probabilistic distribution over several possible states on the proposal
 - *i.e.*, Picasso is the greatest modern artist – Every voter is equally confident in that there are 30% or 80% of the population agree with this statement

- All voters update their prediction belief based on private opinion PO_i
 - *i.e.*, a voter thinks that Picasso is indeed the greatest modern artist – the voter updates their belief so that they are more confident that more of the population are in favor of this idea

- All voters are risk-neutral and seek to maximize their expected score
 - *i.e.*, if honest reporting is an equilibrium, they will report honestly
Peer Prediction Protocol

Reporting Process of an honest voter-\(i\):

- Before processing a proposal, voter-\(i\) has a prediction belief \(PB_i\) on how popular the proposal is.
- When processing the proposal, voter-\(i\):
 - comes up with private opinion \(PO_i\), which is a random variable with value \(\{T, F\}\) and agrees with MPPO with probability \(q\).
 - updates their prediction belief \(PB_i\) to \(PB_i'\) based on \(PO_i\).
 - reports an answer \(v_i\) based on \(PO_i\), and a prediction \(p_i\), based on \(PB_i'\).
When prediction belief doesn’t favor either oracle outcome (i.e., $PB_i(T) \approx PB_i(F)$)

- By definition of MPPO, T is MPPO when $\Pr(\text{vote for } T) > 0.5$

When there exists an MPPO, the expected score is higher for choosing MPPO
When prediction belief favors T (i.e., $PB_i(T) > PB_i(F)$)

- By definition of MPPO, T is MPPO when $Pr(\text{vote for T}) > 0.5$
- The expected break-even point shifts toward a higher probability of T

There exists an interval where the expected outcome disagrees with MPPO
When prediction belief favors F (i.e., $PB_i(F) > PB_i(T)$)

- By definition of MPPO, F is MPPO when $Pr(\text{vote for T}) < 0.5$
- The expected break-even point shifts toward a lower probability of T

There exists an interval where the expected outcome disagrees with MPPO
Why shifts expected outcome away from MPPO?

- incentivizes voters to vote honestly without yielding to popularity
 - *i.e.*, even if PO_i is not the majority opinion, honest $voter-i$ still expects a chance to receive higher score and hence reward
- If PB_i is biased toward outcome o, relax the required popularity of $\neg o$
- If PB_i is biased toward opinion $\neg o$, relax the required popularity of o
- Pair-question guarantees complementary outcomes of p and p'
Advantages:
• Incentivizes players with different incentive level to participate in the system

Disadvantages:
• Does not discourage lazy voting
• It is hard to analyze the incentive of the players
• Output only depends on the popularity
Comparison – Astraea II: Paired-question protocol

Advantages:
• Stronger guarantees and incentives for honesty than Astraea I
• Questions are balanced (approx. 50% True, 50% False)
 • Lazy equilibrium may be harder to reach
• Only powerful adversaries can manipulate the output

Disadvantages:
• Output only depends on the popularity
Advantages:
• Takes prediction belief as a measure to break-even
• Adversarial attack is more difficult in some cases considering prediction belief

Disadvantages:
• Requires voters to be knowledgeable of the popularity
• Attack may be easier in some cases considering prediction belief
Conclusion and Future Work

• Improve on staked voting-based decentralized oracle protocol
• Honest voting is Bayes-Nash Incentive Compatible
• Future work: implementation and deployment on blockchain
 • Verify whether empirical performance matches theoretical analysis
 • Introducing varying rewards for the Peer Prediction Model
 • Introduction of reputation systems
 • Introduction of multiple adjudication (dispute) rounds and randomization