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Abstract— We consider a scheduling problem for packet based
wireless systems with time-varying channel conditions. Designing
scheduling mechanisms that take advantage of time-varying
channel conditions, which are different for different users, is
necessary to improve the wireless system performance. Such
scheduling mechanisms are called opportunistic. In this paper we
formulate an opportunistic scheduling problem with short term
processor sharing fairness constraints as an optimization problem
where short term refers to the time window on which the fairness
is guaranteed. In its most general form, this problem cannot
be solved analytically. We £rst solve the above optimization
problem for three special cases. We consider the scheduling
problem with long term fairness constraints; then we consider the
scheduling problem for the shortest possible window under two
sets of assumptions namely, one in which users have identically
distributed channel conditions and another in which users have
independent channel conditions. Observing the form of the
corresponding optimal policies, we de£ne a heuristic policy for
our original opportunistic scheduling problem with short term
fairness constraints. We show via simulation that our heuristic
policy attains a good trade-off by guaranteeing short term
fairness while achieving high average system throughput. We
also illustrate that the optimal opportunistic scheduling policy
with long term fairness constraint is in fact unfair in practical
scenarios.

I. INTRODUCTION

Wireless channels have time varying characteristics. Dif-
ferent wireless users perceive different channel quality at the
same time because of user shadowing, path losses due to
changing environments, and user mobility. These variations in
the channel conditions can be exploited to increase the system
throughput. The basic idea behind exploiting the channel
variations is to schedule a user having the best channel
condition at a given time. Such scheduling mechanisms are
called Opportunistic Scheduling Mechanisms. If the service
requirements of all the users are ¤exible, such opportunistic
scheduling methods can result in increased system throughput.
CDMA-HDR (IS-856) is an example of High Data Rate
system for which opportunistic scheduling mechanisms can
take advantage of time varying channel conditions.

In this paper, we consider scheduling at the base station of a
packet based wireless cellular system (i.e, the downlink) with
£xed transmission power (please see Figure 1). The wireless
channel for each user differs depending on the location, the
surrounding environment, and mobility. We assume that each
user reports its downlink channel condition to the base station
in a periodic fashion. Thus at a given time, the base station

knows the channel condition and hence the data rate it can
offer to each user on the downlink. After £nishing a packet
transmission the scheduling mechanism at the base station
chooses the user to which it will send the next packet. The base
station uses the transmission rate as determined by the latest
reported channel condition of the selected user. Conceptually
one can imagine the base station as having one queue per user
and the scheduling mechanism is responsible to choose the
next queue to serve based on the QoS constraints and channel
condition.

The problem of exploiting channel state variations to in-
crease the throughput of wireless systems has been in focus in
recent years. An information theoretic analysis of the capacity
of a time-varying channel is presented in [1], [2].

In [3], [4] the authors present throughput optimal scheduling
rules. If there exists any scheduling rule which can guarantee
stable queues, then a throughput optimal scheduling rule also
guarantees stable queues. In [5], [6] the authors consider
different long term QoS constraints and provide an optimal
opportunistic scheduling policy. One way of achieving soft
short term fairness (without strict guarantees) is presented
in [5] and the authors compare it with the round robin and
optimal long term policies.

In [7], [8] the authors extend wireline scheduling policies to
wireless networks and present wireless fair scheduling policies
which give short term and long term fairness bounds. While
this approach provides fairness guarantees, it assumes that the
channel quality is either good or bad. Hence such approach is
not useful in practical systems like HDR where the possible
data rate could vary in a discrete set taking values from 38.4
to 2457.6 kbps. Clearly assuming that the wireless channel is
either good or bad is too restrictive.

In [9] the authors present techniques for optimizing packet
data protocols and other network and coding techniques for
CDMA-HDR system.

Wireless channels are correlated and non-stationary; users
in deep fades experience a bad channel for prolonged periods
of time. Hence long term policies may lead to starvation of
such users. A good scheduling policy must guarantee fair
share of the network resources to each user over some £nite
time window. There is a need for a policy which takes into
consideration the short term requirements of the users. The
approach of considering only long term constraints is not
suf£cient in practice because optimal long term opportunistic
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Fig. 1. Opportunistic Scheduling: A typical wireless base station downlink.

scheduling policies do not give any fairness guarantees in
any practical size time windows. We shall illustrate and
discuss this point later. Also note that usually networking
protocols have some timers associated with them. All these
timers at different protocol layers interact with each other
in an unpredictable manner. An expiration of a timer is a
bad event for an end-to-end connection. Such an event is
usually interpreted as an indication of congestion or loss of
connectivity. Thus we would like to give a strict guarantee
on the maximum starvation period, i.e., the maximum period
between two successive service offerings for a active user.
Usually this guarantee will be same for all the users. If the
minimum possible data rate for a user is strictly greater than
zero (or the data rate is constant) then a guarantee on the
maximum starvation period would automatically correspond
to a minimum data rate for that user.

The paper is organized as follows. In Section II, we de-
£ne a strict short term fairness constraint and formulate an
opportunistic scheduling problem with this constraint. As this
problem is very complex to solve under general conditions,
we consider some simple cases in Section III. We provide
optimal scheduling policies for these speci£c cases. Getting
insights from the optimal opportunistic scheduling policies
for these special cases we design a heuristic policy for the
general opportunistic scheduling problem in Section IV. We
then compare our heuristic policy with other policies via
simulation in Section V. We conclude in Section VI.

II. OPPORTUNISTIC SCHEDULING PROBLEM WITH SHORT

TERM FAIRNESS CONSTRAINTS

We make the following simplifying assumptions to formu-
late the opportunistic scheduling problem for a time-varying
channel with short term fairness constraints. We assume that
the system operates on a timeslot by timeslot basis. The
timeslot width is £xed and the channel conditions do not
vary during a timeslot. We assume that the physical frame
transmission size can be varied according to the transmission
rate so that transmissions begin and end exactly at timeslot
boundaries as assumed in [1]–[5]. Hence a new scheduling
decision has to be taken at the beginning of each timeslot.
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Fig. 2. A scheduling policy conforming to short term fairness consrtaints.

We also assume that all the transmissions are successful and
the base station knows the exact data rate with which it can
transmit to each user at the beginning of each timeslot. We
assume that all the users are greedy, i.e., each user always
has data to receive on the downlink. In this paper we only
consider the long term processor sharing constraints as de£ned
in [5] and the short term processor sharing constraints, though
our approach can be generalized for other types of QoS
constraints. We start by introducing the notation.

• N : This denotes the set of users, usually indexed by i.
The users will be indexed from 1 to N .

• µi(t): This denotes the data rate for user i in timeslot t.
Thus ~µ(t) = [µ1(t), · · · , µN (t)] denotes the vector of the
data rates for all the users at time t.

• Q(~µ(t)): This denotes a policy to select a user to serve
in timeslot t, given ~µ(t).

Let us assume that each user has an associated weight φi
(like in Generalized Processor Sharing) and

∑

i∈N φi ≤ 1. Let
us group the timeslots into successive non-overlapping frames
of M timeslots each (please see Figure 2. Then a scheduling
policy in which every user gets service for at least Mφi
timeslots in any such frame is said to follow the short term
fairness constraint with STF (short term fairness) window of
size M . Note that Weighted Round Robin which serves Mφi
consecutive timeslots to user i is an example of such a policy.
The maximum number of timeslots between two consecutive
service offering for a user is called the starvation period for
that user.

We denote the indicator function by the letter I , thus
IQ(~µ(t))=i is 1 if in timeslot t user i is selected for service,
0 otherwise. The objective of the opportunistic scheduling
problem is to maximize the system throughput. Hence the
opportunistic scheduling problem with short term fairness
constraint (with a STF window of size M ) can be formulated
as the following optimization problem.

max

M−1
∑

t=0,i∈N

E[µi(t)IQ(t)=i] (1)

s.t.∀i,
M−1
∑

t=0

IQ(t)=i ≥Mφi



Henceforth we shall assume that
∑

i∈N φi = 1 though the
case

∑

i∈N φi < 1 can be handled in a similar manner. Also
we assume that Mφi is an integer for all users. This limits
the values of M and the possible values of φi’s. In words, the
above optimization problem can be stated as follows. Among
all scheduling policies which select each user Mφi times in
M consecutive timeslots £nd the one which maximizes the
system throughput. A policy which satis£es the above short
term fairness constraints (with a STF window of size M )
guarantees that no user will experience a starvation period
greater than 2M − 1 and each user will get its fair share of
Mφi timeslots in successive non-overlapping frames of M
timeslots.

We are not imposing any structure on the channel char-
acteristics. The optimal scheduling policy in every timeslot
will depend on many parameters including the channel state
model, the current channel state for each user, the number of
users, the STF window size M , the current timeslot and the
state of the short term fairness constraints. In real systems it is
dif£cult to know (or estimate) many of the parameters involved
in the channel state model. Hence in general the solution of the
above opportunistic scheduling problem is dif£cult to obtain.
However we can simplify the above problem into some special
cases and study the optimal scheduling policy for these special
cases. We do that in the next section.

III. SPECIAL CASES

Let us consider the special case in which the STF window
(M ) is equal to ∞. This special case can be thought as a long
term processor sharing fairness constraint which is de£ned as
follows: On an average user i must get a time share of the
base station that is greater than or equal to φi. This obviously
does not guarantee anything over a £nite time period. Then the
opportunistic scheduling problem with this long term fairness
constraint can be de£ned as follows.

max
∑

i∈N

E{µi(t)IQ(~µ(t))=i} (2)

s.t. ∀i, E{IQ(~µ)=i} ≥ φi

It has been shown in [5] that the above problem has a solution
of the form Q∗(t) = argmaxi{µi(t) + λi} (with λi > 0 ⇒
E{IQ(~µ)=i} > φi). The λi’s are the non-negative Lagrange
Multipliers associated with the constraint of the each user. We
call this policy the Long-Term (LT) optimal scheduling policy.
We describe a method to estimate these constraints λi’s in a
real system in Section V.

The next special case to consider is the shortest possible
STF window. When all users have the same weight φi then
the smallest STF window size is equal to the number of users
N . Thus we consider a special case when M = N and
∀i, φi = 1/N . Thus our original optimization problem given

in (1) becomes,

max

N−1
∑

t=0,

∑

i∈N

E[µi(t)IQ(t)=i] (3)

s.t.∀i,
N−1
∑

t=0

IQ(t)=i = 1

In words the above optimization problem can be stated as
follows. Find a scheduling policy which selects each user
once in N consecutive timeslots and maximizes the system
throughput. We study this special case under two different
assumptions. First we assume that the data rates for all the
users are identically and independently distributed (i.i.d.) in
each timeslot. De£ne, A∗(t) as the set of unserved users at
time t.

A∗(0) = N A∗(t) = A∗(t− 1)−Q∗(t− 1)

where, A∗(t) − Q∗(t) denotes the relative complement of
Q∗(t) w.r.t. A∗(t). Then we claim,

Theorem 1: Let Q∗ be an optimal policy for the optimiza-
tion problem given in (3) when the data rates for all the
users are i.i.d. in each timeslot. Then ∀t = {0, · · · , N −
1}, Q∗(t) = argmaxi∈A∗(t){µi(t)} is the optimal oppor-
tunistic scheduling policy. We call this policy the Opportunistic
Round Robin policy.

Proof: Let Q = (Q(0), · · · , Q(N − 1)) be any other
feasible policy. Then, µQ∗(0)(0) ≥ µQ(0)(0) by the choice of
Q∗. Now Q∗(1) operates on A∗(1) = N − Q∗(0) and Q(1)
operates on A(1) = N − Q(0). But, A(1) and A∗(1) have
the same number of unserved users and hence are statistically
similar with the assumption of identical users. (To satisfy
the fairness constraint the served user cannot be served again
before the end of the window.) Thus E(µQ∗(1)) ≥ E(µQ(1)),
and so on ∀t.

Now we relax the assumption that all the users are identical.
But we assume that the user data rates are independent of each
other and also across time. We claim that there exist 2N − 2
constants and an associated argmax decision policy which is
an optimal opportunistic scheduling policy. For simplicity of
the arguments we consider some auxiliary notation as follows.

Let Q∗
A denote an optimal policy for a set of A users.

Speci£cally by this we mean that in the next |A| timeslots each
user from the set A gets service for one timeslot. Also denote
the throughput associated with this optimal policy by V ∗

A.
We show that there exists an optimal opportunistic scheduling
policy by constructing one such policy.

Theorem 2: If the data rate of all the users are independent
of each other and across the time then

Q∗(t) = Q∗
A∗(t)(t) = argmaxi{µi(t) + V ∗

A∗(t)−{i}} (4)

A∗(0) = N , A∗(t) = A∗(t− 1)−Q∗(t− 1)

is the optimal opportunistic scheduling policy for the optimiza-
tion problem given in (3).

As explained previously the constants V ∗
A∗(t)−{i} are the

throughput values of the optimum scheduling policy for the



set of A∗(t) − {i} users that satis£es the short term fairness
constraint. (Note that these constants are not similar to the
constants λi. Only one λi constant is associated with a user i
in the optimal long term policy, while VA∗(t)−{i} depend on
the user, the time index, and A∗(t). There are more than one
such constants associated with each user.)

Proof: Clearly if N = {i}, i.e., for a singleton set the
policy Q∗

i is trivially optimal. Thus V ∗
i = E(µi). Now the

optimality follows from an induction proof. Suppose for the
set of users N the policy Q∗ is optimal. If we add another
user then the optimal policy would be to choose a user in
time slot 0 optimally and then have an optimal policy for
the remaining N users in the next N timeslots. This claim is
valid because we assume the independence across the users
and time. The theorem follows directly after this claim as the
recursive de£nition of set A∗(t) holds. The constants are the
expected throughput values of the optimal policies for sets of
type A∗(t) − i. For specifying the optimal policy we need
2N − 2 constants, i.e., the number of (unordered) subsets of
N minus 2 (corresponding to the null set and the set N ).

This optimal policy is much more complex than the optimal
policy in the previous case (under the identical users assump-
tion). Theoretically it is possible to calculate the VA∗(t)−{i}

constants given the distribution of the data rate for each user.
Estimates of theses constants which asymptotically converge
to the true constants can be obtained along a sample path.

IV. HEURISTIC POLICY

Until now we have analyzed three special cases of the
opportunistic scheduling problem. The long term optimal
policy selects a user having maximum “µi(t)+λi(t)” in each
timeslot while the £rst (respectively second) special short-
term optimal policy selects a user with maximum “µi(t)”
(resp. “µi(t)+V ∗

A∗(t)−{i}”). The long term policy adds a bias
to the data rate values while the short-term policies remove
a user from the set of active users if it has got its fair
share in the current STF window. This motivates us to de£ne
the following heuristic policy for the general opportunistic
scheduling problem de£ned in (1). The Heuristic Policy (HP)
with a STF window of size M is de£ned as follows.

∀t = {0, · · · ,M − 1}, Q(t) = argmaxi∈A(t){µi + λi} (5)

Where, λi’s are the constants from the LT policy. And,

A(0) = N , Ni(0) = 0

And Ni(t), A(t) are de£ned recursively as follows.

Ni(t) = Ni(t− 1) + IQ(t−1)=i

A(t) = A(t− 1)−Q(t− 1)INi(t)=Mφi

The Heuristic Policy can be outlined in the following steps.

• (Step 1) Initialization at the beginning of a new STF
window: The set of initial active users is the set
A(0) = N . The fair share of user i is initialized to Mφi.

• (Step 2) User selection: In each timeslot the user from
the set of active users A(t), having the largest µi(t)+λi
value is selected for service.

• (Step 3) Book-keeping: A counter that keeps track of how
much service (i.e. number of timeslots) the selected user
has got in the current frame is incremented by one. If the
counter is equal to the fair share of that user then that
user is removed from the set of active users. Step 2 is
then repeated for the next timeslot.

At the end of the current STF window the Heuristic Policy
restarts from Step 1 with a new non-overlapping STF window.

V. SIMULATION RESULTS

In this section we compare the Long Term policy (LT)
and our Heuristic Policy (HP) in terms of average system
throughput and short term fairness. We simulate these policies
for HDR users. The data rate for each HDR user is determined
by the Signal to Noise Ratio (SNR) as shown in Table I taken
from [9].

TABLE I

DATA RATE VS SNR FOR AN HDR USER

SNR (db) -12.5 -9.5 -8.5 -6.5 -5.7 -4.0
Data rate (kbps) 38.4 76.8 102.6 153.6 204.8 307.2

SNR (db) -1.0 1.3 3.0 7.2 9.5
Data rate (kbps) 614.4 921.6 1228.8 1843.2 2457.6

We use a stochastic approximation method as outlined in
[5] to calculate the values of the constants λi’s. Speci£cally
we start with ∀i, λi = 0. Then in each timeslot we modify
the λi values as follows:

λi(t+ 1) = λ(t) + (IQLT (t)=i − φi)δ(t)

Where, δ(t) is a step-size function proportional to 1/t. (This
is a standard method to choose step-size in stochastic approx-
imation algorithms.) The implementation of HP simulates the
long term optimal policy to calculate the constants λi’s on the
¤y; however the actual decision to select a user for service in
every timeslot is done according to (5). (We have simulated a
heuristic similar to the HP but with ∀i, λi = 0 to understand
the importance of the λi’s. We observed that the throughput
of this heuristic is much lower than the throughput of the HP
which shows the importance of the λi’s.)

We £rst consider the case of i.i.d. HDR users with equal
φi’s. We assume that the SNR values for each user in each
timeslot are independent and identical normal random vari-
ables (rv) with mean 0 and standard deviation 5 (for more
details please refer to [5], [9]). The data rate for each user
is determined by the corresponding SNR value according to
Table I. The throughput versus STF window (M ) curves ob-
tained via simulation for 10 (and 20) users with equal φi’s over
10,000 timeslots are shown in Figure 3. The (weighted) Round
Robin has very low throughput (720 kbps in this scenario)
compared to other policies hence we shall not consider it
further. We make the following observations. The throughput
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of HP increases as the short-term fairness window increases
as expected. After a particular value of M , increasing the STF
window does not increase the throughput by a large value, i.e.,
the throughput reaches the saturation stage. But increasing the
window size beyond this value only increases the maximum
guaranteed starvation period which is equal to 2M−1. Hence
ideally the STF window should not be greater than this knee
value. As the number of the users in the system increases the
average system throughput also increases due to the multi-user
diversity (but the throughput per user decreases).

To understand the behavior of these policies in realistic
channel conditions, we consider a case when the users have
different channel distributions and different φi’s. There are 10
users (see Table II) in the system.

TABLE II

USER DETAILS FOR SECOND SIMULATION SCENARIO

user, φi 0, 0.05 2, 0.05 4, 0.05 6, 0.05 8, 0.05
(1, 0.15) (3, 0.15) (5, 0.15) (7, 0.15) (9, 0.15)

mean(ni) -4.0 -2.0 0.0 2.0 4.0

The channel SNR for each user is modeled as an autore-
gressive normally distributed channel. Speci£cally,

si(t+ 1) = γsi(t) + (1− γ)ni(t+ 1)

Where si(t) denotes the channel SNR in timeslot t for user i
and ni(t) denotes the channel variations (noise terms) which
are normally distributed independent rv’s. These ni(t) rv’s

0

200

400

600

800

0 100 150 200 250

Fr
eq

ue
nc

y

HP STF window = 50 timeslots

HP STF window = 10 timeslots

Long Term Policy

> 1000

Starvation Period
50

Fig. 5. Frequency distribution of starvation period for 10 HDR
users with different channel conditions and different φi’s, no. of
timeslots = 10,000.
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have a standard deviation of 15 and their mean values are
shown in Table II. Users 0, 1 have mean ni of -4, users
2, 3 have mean ni of -2, and so on. γ, the auto-regression
coef£cient is set to 0.7. The users with the same ni mean
have different φi of either 0.05 or 0.15. Thus user 0 has
a φ0 = 0.05 and user 1 has a φ1 = 0.15. The throughput
versus M is plotted in Figure 4. Figure 5 plots the empirical
frequency distribution of the starvation periods. For each
policy we calculate the number of times a particular value
of the starvation period is experienced by the users. Thus the
y axis value of 800 versus x axis value of 30 would mean that
all users cumulatively have experienced starvation period of 30
for 800 times in the course of the simulation. (We have plotted
this graph for starvation period values up to 250 only to show
the details clearly. However the tail for the LT policy goes up
to 400.) From Figure 5 we notice that HP is better than the LT
policy in terms of short-term fairness. The LT policy does not
give any guarantees on the maximum starvation period. HP
with M = 50 does guarantee a starvation period of less than
99 timeslots while with LT, users would experience starvation
periods of up to 400 timeslots or even more (up to 1000) if the
channels are highly correlated (γ = 0.9) or if the simulation
is run for a longer duration, or if there are more users.

From Figure 4, we observe that increasing the STF window
size increases the throughput of HP. But there is a large
difference between the average system throughput of the LT



policy (run for 10,000 timeslots) and the average system
throughput for HP even with large STF window sizes. This
may suggest that HP is not good in terms of maximizing the
average system throughput. Hence we look at the processor
share each user has received (i.e., the number of timeslots
each user has received) under the LT policy and HP (see
Figure 6). We notice that LT policy is biased towards users
with relatively low φi and better channel. Notice that the LT
policy offers more timeslots to users 4, 6, 8, 9 than their fair
share at the expense of users 0, 1. The reason behind this unfair
behavior of the LT policy is as follows. The simulation starts
with ∀i, λi = 0. Hence the LT policy selects a user having
a better channel and lower φi more often than its fair share
during the initial stages. Because the simulation is run only for
10,000 timeslots (instead of an in£nite number of timeslots)
this unfair behavior at the initial stage leads to unfair behavior
of the long term policy over a £nite number of timeslots.
This also explains the large difference between the throughput
of the HP and the long term optimal policy in Figure 4
even for large values of STF window M . Note that as the
duration of the simulation increases the throughput of the LT
policy decreases and there is not much difference between the
throughput for the LT policy with 10,000,000 timeslots and the
HP policy with relatively larger M . In real systems we expect
that the users have £nite activity periods (10,000 timeslots
would correspond to 17 seconds in a HDR system and 100,000
to approximately 3 minutes). Hence the long term policy is
not necessarily a fair policy on any reasonable £nite horizon.
We also note that the set of active users can change (rather
frequently in real systems) and that the channel conditions
may also change (non-stationarity); in such situations the LT
policy will be even more unfair.

VI. CONCLUSIONS

In this paper we studied an opportunistic scheduling prob-
lem with strict short-term fairness constraints. The short-term
fairness constraints require each user to be given its fair share
over a speci£ed short term fairness window. The opportunistic
scheduling problem with short term fairness constraints is a
complex optimization problem and the general optimal policy
is dif£cult to obtain. Hence we consider some special cases
of the opportunistic scheduling problem and present optimal
scheduling policies for these special cases. Motivated by the
argmax form of these optimal scheduling policies we then
present a heuristic scheduling policy for the opportunistic
scheduling problem with short term fairness constraints. We
showed that the heuristic policy gives better control over short
term fairness and the starvation period than the optimal long
term policy which may not be fair in practical systems. Hence
we conclude that our heuristic policy attains a good trade-
off by guaranteeing short term fairness while achieving high
average system throughput.
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