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Engineering Wireless Mesh Networks: Joint
Scheduling, Routing, Power Control and Rate

Adaptation§

Jun Luo∗, Catherine Rosenberg† and André Girard‡

Abstract—We present a number of significant engineering
insights on what makes a good configuration for medium- to
large-size WMNs when the objective function is to maximize the
minimum throughput among all flows. For this, we first develop
efficient and exact computational tools using column generation
with greedy pricing that allow us to compute exact solutionsfor
networks significantly larger than what has been possible sofar.
We also develop very fast approximations that compute nearly
optimal solutions for even larger cases. Finally, we adapt our tools
to the case of proportional fairness and show that the engineering
insights are very similar.

Index Terms—Wireless mesh networks, routing, scheduling,
power control, rate adaptation, column generation.

I. I NTRODUCTION

Wireless mesh networks (WMNs) such as IEEE 802.16 [2]
are seen as a promising alternative to other (wired) broadband
access technologies. In order to offer high throughput, WMNs
will have to be tightly managed. Once an operator has placed
his mesh routers and his gateway to offer appropriate coverage
to a set of end users, he will need to engineer his WMN
to maximize the network performance. This means choos-
ing among a number of sometimes conflicting options with
complex interactions that can affect performance to various
degrees. The main objective of this paper is to produce
quantitativemeasures of the impact of these choices on the
performance of networks ofrealistic sizes.

We examine these issues in the centralized framework devel-
oped in [3] where we assume that the position of the nodes, the
flows, the interference and propagation models are known at a
central location where the optimal configuration is computed
and then passed along to each mesh router. Note that we are
not claiming that centralized solutions are necessarily the best
way to operate WMNs. The point is that this framework pro-
vides an upper bound on the performance that can be achieved
on WMNs using random access protocols or some form of
distributed scheduling [4], [5]. It can also provide joint routing,
scheduling, power control and rate adaptation in scheduled
networks whenever a centralized solution is deemed more
appropriate. Note that with an additive interference modelsuch
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as the one we use, finding a set of links that can be scheduled
at the same time requires information from potentially widely
separated areas in the network. In that context, implementing a
decentralized solution would be difficult at best if not outright
impossible due to the large information transfers that would
be needed.

The first contribution of this work is to provide deep
practical insights on the engineering of WMN networks when
the objective function is to maximize the minimum throughput
among all flows.

• First we examine the impact of power and rate selection
on the performance of WMNs. We show that while
multiple power levels improve the performance of the
network, a few power levels is enough as long as they are
selected correctly. On networks with multiple rates, we
show that an optimal configuration tends to trade spatial
reuse for high link rate.

• Another result is linked to the multi-hop capability of
WMNs. Multi-hop communication enables connectivity
at much lower transmit powers than single-hop commu-
nication and yields the maximum achievable throughput
at significantly lower transmit power at the gateway.

• We study routing in WMNs and show that multi-path
optimal routing is not much more efficient than single-
path optimal routing and that not all min-hop routings
are equally efficient. We also quantify how sub-optimal
is the “best” min-hop routing using realistic scenarios.

• A major advantage of WMNs is spatial reuse, the possi-
bility of using the same channel in different areas of the
network. We show that the relationship between spatial
reuse and network performance is not straightforward.

These results can be obtained only by solving a hard mixed
integer linear program. The tool developed in [3] used a
commercial solver to calculate a solution after reformulating
the problem into a standard linear program (LP). While it
is true that state of the art solvers can handle large LP
instances, that approach was still limited in the scope and
size of networks that could be solved and was clearly not
adequate for the task since the number of variables of the LP
formulation grows exponentially with the network size.

Some form of decomposition or column generation for-
mulation is then needed. While commercial solvers do not
provide column generation automatically, theycan be used
to solve the pricing sub-problems, which have a smaller size.
Nevertheless, this approach works only for relatively small
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network instances and in order to get quantitative results for
large networks, we had to develop new computation tools,
both exact and approximate, that are efficient enough to
study realistic WMN scenarios. These scenarios would have
several tens of mesh routers, many flows, several possible
modulation/coding schemes, and many possible power levels.
The development of these tools is thesecond contributionof
this work. To the best of our knowledge, no such tools have
been developed since all the results that have been reportedfor
this type of networks have been for at most 20 to 25 nodes [3],
[6]. More precisely, in our second contribution:

• We propose a column generation technique which allows
us to solveexactly medium-size problems. The difficulty
is to solve the NP-hard pricing sub-problem in an efficient
manner. This is especially important since it has to be
solved repeatedly. We do that by introducing a technique
that we call “greedy pricing” which uses an enumeration-
based algorithm on a restricted set of links.

• We show that this technique allows us to compute exact
solutions for problems much larger than what an im-
proved version of the original technique proposed in [3]
can do. For networks small enough for both techniques
to handle, our technique also turns out to be much faster.

• We also propose and compare two approximate algo-
rithms that are fast and very accurate. They can be used
to compute solutions for much larger networks.

Our third contribution is related to proportional fairness (PF).
We adapt our tools to this case, which is very challenging since
it yields a nonlinear problem. In our third contribution:

• We show how our technique blends smoothly with a
sequential linear programming approach.

• We show some numerical results that illustrate, in the
case of one power level and one rate, that the trends are
similar to the ones we had seen for the max-min case.

• We also compare the performance of a network config-
ured with a max-min versus a PF objective and show that
the gain in social welfare for the PF configuration is not
that great.

We provide in Section II some background on models and
computational tools developed in related work. Then we de-
scribe our network model and formally define our optimization
problem in Section III. In Section IV, we present our algorithm
based on column generation to solve it exactly. We compare
its computation times to a benchmark based on the simplex
algorithm using a smart technique to construct the coefficient
matrix. In Section V, we report on the engineering insights that
we obtained by using this tool on realistic WMN scenarios.
They are based on exact computations. In Section VI, we
propose and compare two fast and accurate approximate
methods. Section VII addresses the case of a PF objective.

II. RELATED WORK

Jain et al. [7] were among the first to formulate a joint
routing and scheduling problem for wireless networks valid
for all linear objective functions, including max-min. The
framework they proposed is rather comprehensive: it includes
both the protocol and the physical interference models, an

extension of which is used in our paper, and it can ac-
commodate physical technologies such as multiple radios
and non-overlapping channels. One limitation is that power
control and rate adaptation are not considered. Jain et al. only
provide upper bounds obtained by applying clique feasibility
conditions and lower bounds obtained by using subsets of all
schedulable link sets. The gap between the upper and lower
bounds is non-zero unless the conflict structure induces a
perfect graph [3]. The computation of these bounds is rather
cumbersome and hence the results presented in [7] are limited
to the protocol interference model.

There have been many attempts to extend this optimization
framework and to improve the algorithms that solve it. Zhang
et al. [8] apply column generation to solve a similar problem
in multi-radio and multi-channel networks. However, it is not
clear how their algorithm would scale since it is based on
an exact pricing. Both [9] and [10] take a staged approach.
They first solve a concurrent flow problem using the algorithm
of [11] followed by a packing-based heuristic to approximate
the optimal link channel assignment. Note that [8], [9], [10]
only consider the protocol (interference) model and non-
overlapping channels. The results of [12] clearly show the
importance of choosing an additive interference model. Their
approach does not involve power control and rate adaptation.
Karnik et al. [3] extend the framework of [7] to encompass
multi-power and multi-rate and focus only on the additive
interference model. They propose an exact enumeration-based
algorithm and derive an upper bound on the size of a schedula-
ble link set (see also Section IV-A for details). Another distinct
contribution of [3] is a characterization of the optimal max-
min throughput by routing and clique feasibility conditions. A
similar characterization is applied in [13] to construct a new
routing metric calledinterference clique transmission time,
though it is not clear how practical such a scheme can be.

There also exists another body of work applying on-line
dynamic control for throughput maximization, e.g., [14], [15],
[16] and the references therein. That approach considers the
cases where no information about the environment is available
a priori. However, the price paid for the lack ofa priori infor-
mation is the increased algorithmic complexity: NP-complete
sub-problems such as the maximum weight independent set
problem need to be solved on-line repeatedly [16]. Moreover,
any attempt at approximating the NP-complete sub-problems
may drastically reduce the performance [17].

On the algorithmic side, the column generation method has
been applied intensively to the cross-layer design of multi-
hop wireless networks. However, these studies either rely on
commercial solvers such as CPLEX [18] to deal with the NP-
complete/hard sub-problem that generates a column [19], [8],
[6], [20] or make use of a greedy heuristic to obtain suboptimal
solutions [21], [22]. While the first approach does not scale
with an increasing problem size, the second one almost always
fails to provide optimal solutions [20]. As described laterin
Section IV-B, our greedy pricing approach delivers both exact
and approximate solutions and scales well with the problem
size.
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III. N ETWORK MODEL AND PROBLEM FORMULATION

We model the network as a setN of nodes(the mesh routers
and the gateway) and a setL of directed links, with |N | = N
and |L| = L. Each nodei ∈ N has a location(xi, yi). We
denote byLi the set of links incident (inbound or outbound)
to a nodei. A link l ∈ L is identifiednot only by its origin-
destination pairbut also by its physical parameters which are
defined in Section III-A. LetF denote the set offlows and let
|F| = F . A flow f ∈ F is identified by its source-destination
pair (fs, fd) and has a rateλf . Let λ = [λ1, · · · , λF ] be the
flow rate allocation vector.

In the following subsections, we present models for the
physical, interference and network layers and formulate the
joint routing, scheduling, rate adaptation, and power control
problem whose solution can be used to configure the network.
Note that in all cases, we restrict ourselves to conflict-free
scheduling.

A. Physical Layer Model

Each link l ∈ L is identified by four physical parameters:
o(l), d(l):the origin and the destination nodes ofl. A link

is sometimes denoted(i, j) whenever the context is
clear, wherei = o(l) andj = d(l).

Pl: the transmit power used byo(l). It takes its value
from a finite setP . This represents thepower control
ability of a node. We assume a network-wide refer-
ence power level. All nodes use the same reference
power and a finite number of power levels that have
fixed offsets from the reference power.

cl: the link rate in bits per second. It takes its value from
a finite setC. This represents themulti-ratecapability
of a node. We assume that a particular rate can only
be obtained from one modulation/coding scheme.
Hence there are|C| modulation/coding schemes.

Let P = [P1, · · · , PL] ∈ PL and c = [c1, · · · , cL] ∈ CL

be the power and link rate vectors, respectively. Because of
the way we define a link, it is more alogical entity rather
than aphysical link since there are potentially multiple links
between two nodesi and j which differ from each other by
the power used byi and/or the link rate. Strictly speaking, a
link should be referred to by a set(o, d, P, c), but we use a
single indexl for ease of notation. There might be from zero
up to |P|×|C| links betweeni andj. Two links betweeni and
j with the same rate and different transmit power will differ
in their robustness against interference as discussed below.

We assume that a linkl characterized by(o(l), d(l), Pl, cl) is
feasible if itssignal to noise ratio(SNR) meets the following
condition:

SNRl =
GlPl

N0
≥ β(cl) (1)

whereGl denotes the channel gain onl, N0 is the average
thermal noise power in the operating frequency band, and
β(cl) is the threshold related to the modulation/coding scheme
that yieldscl. The channel gain between two points separated
by distanced is assumed to be given byFl(d/d0)

−η, where
d0 is the close-in reference distance,Fl is the shadowing and
fading gain andη is the path loss exponent. The size of the

link setL for a given set of powersP and a set of ratesC is
then given by the number of links such that Eq. (1) holds for
each quadruple(i, j, Pl, cl) and hence is a function of|P|, |C|
and|N |. There is an implicit assumption here that the channel
gain is quasi time invariant. This is a realistic assumptionin
urban/suburban areas with roof-top antennas [23].

B. Additive Interference Model

We now present the additive interference model we use
in this paper which extends thephysical interference model
of [24]. It is described using the concept of anindependent
set(ISet)1: A set of links that can all operate at the same time,
i.e., the interference they produce is not harmful to any of the
links in the set. We denote byI the set of all ISets and byIl

the set of ISets that contain linkl.
First note that a sets ⊆ L is an ISet only if no two links

in the set share a node, i.e.,

i 6= i′ ∧ i 6= j′ ∧ j 6= i′ ∧ j 6= j′ ∀l, l′ ∈ s. (2)

We also assume that the interference on a given link is the
cumulative interference from all the links that are active at
the same time. Hence, under this interference model, a set
s ⊆ L is an ISet iff it meets condition (2) and the following
condition:

γl =
GlPl

N0 +
∑

l′∈s:l′ 6=l Gl′lPl′
≥ β(cl) ∀ l ∈ s. (3)

Hereγl is the signal to interference plus noise ratio(SINR)
of link l and Gl′l is the channel gain fromo(l′) to d(l).
Recall that a linkl is in fact a logical link represented by
a tuple(o, d, Pl, cl). Consider an ISets containing some link
l. Assume also thatl′ is another feasible logical link betweeno
andd, i.e.,Pl 6= Pl′ and/orcl 6= cl′ . It should be clear that the
sets′ = {s\l}

⋃

{l′} is not necessarily an ISet, either because
it produces too much interference at some other receiving
nodes ofs or is receiving too much interference from the
transmitting nodes of the other links ins. These conditions are
automatically checked by the construction algorithm described
in section IV-A.

C. Network Model

The network model proposed here is based on the assump-
tion that the traffic is static or quasi-static. We believe that
it is reasonable since the traffic seen by the mesh routers is
aggregated.

We will consider both multi-path and single-path routing.
For multi-path routing, we denote byRf the set of all routes
that can be used by flowf and byRl

f the set of all routes that
can be used byf going through linkl. The amount of flow
f routed onr ∈ Rf is denoted byφr

f and
∑

r∈Rf
φr

f = λf .
Let φ = [φr

f ]r∈Rf ,f∈F be therouting vector.
A link scheduleis an |I|-dimensional vectorα = [αs]s∈I

such thatαs > 0 if ISet s ∈ I is scheduled andαs = 0
otherwise. We interpretαs as the fraction of time allocated to

1The term “independent set” is not the same as the notion of independent
sets as used in graph theory. However, we use it in order to be consistent with
the literature.
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an ISets. Obviously,
∑

s∈I αs ≤ 1. We only schedule ISets
since we are interested in conflict-free scheduling.

In summary, we want to compute the flow rate allocation
vector λ, the routing vectorφ and the scheduling vectorα,
using the following optimization framework.

D. Problem Formulation

The following joint routing, scheduling, rate adaptation,
and power control problem (JP) is based on the parameters
and variables defined above. The multi-path formulation given
in III-D1 comes from [3] while the single-path formulation
presented in III-D2 is new.

1) Multi-Path Formulation: We define the link-set inci-
dence matrixQ such thatql,s = 1 if l ∈ s ∈ I and 0 otherwise.
Note that each columnqs of Q is a vector that represents an
ISets and that the number of columns is|I| which is generally
very large. For a flowf ∈ F , we also define the standard node-
arc incidence matrixAf such thataf

i,l = +1 if i = o(l), −1
if i = d(l) and 0 otherwise. The dependence onf is useful to
prevent certain flows from using some links. Define also the
node-flow incidence vectordf wheredf

i = 1 if i = fs and
0 otherwise. Letxf

l =
∑

r∈Rl
f
φr

f be the amount of flowf

going over a linkl, and denote byxf = [xf
1 , · · · , xf

L] the link
flow vector associated withf . Finally, let x = [xf ]f∈F .

Given the network model and the definitions, we want
to maximize the minimum throughput of all the flows, i.e.,
max minf{λf}. In this form, the objective function is not
differentiable and the problem is transformed by the standard
technique of introducing a scalar variableλ = minf{λf} and
adding a set of constraints (5) to put a bound on the flows.
We can then formulate JP as (4)–(7).

max
λ,x,α

λ (4)

(µf
i ) Afxf ≥ λdf ∀f ∈ F (5)

(νl) cl

∑

s∈I

ql,sαs ≥
∑

f∈F

xf
l ∀ l ∈ L (6)

(ζ)
∑

s∈I

αs ≤ 1 (7)

x, α ≥ 0

where we have put the Lagrangian multipliers corresponding
to each constraint in parenthesis. In this formulation, we have
µf

i ≥ 0, νl ≥ 0 and ζ ≤ 0. The maximization is explicitly
taken with respect to the maximum flowλ, link load allocation
x, and link scheduling vectorα, but it is also implicitly taken
over the transmit power vectorP and link rate vectorc since
they are implied by the scheduling of ISets and the links that
make up these sets. We call this problem JP-Primal. It is a
standard but very large linear program (LP) and its difficulty
lies in the computation of the incidence matrixQ which grows
exponentially with the problem size.

Note that the solution of this problem does not yield full
information about the optimal configuration: the routing vector
φ is replaced by its aggregated formx. Nevertheless, there are
standard procedures to reconstruct a set of compatible path
flows from the arc flow formulation. Obviously, even though

we have chosen a max-min objective function, our tools could
be directly adapted for any other linear objective function.

2) Single-Path Formulation:To be able to take into account
single-path routing where a flow is constrained to use only one
path, we add a binary variableyf

l such thatyf
l = 1 if link l

is used to carry flowf , andyf
l = 0 otherwise. We also add

the following constraints to the JP problem (4)–(7).

xf
l ≤ cly

f
l ∀ l ∈ L, f ∈ F (8)

∑

j

yf

(i,j) ≤ 1 ∀ i ∈ N , f ∈ F (9)

where (i, j) denotes the links out of nodei. Constraint (8)
states that ifl is not used to carryf , i.e., if yf

l = 0, the load
xf

l imposed byf on l is zero. Equation (9) states that, for
a given nodei, at most one outgoing link is used to carry a
certain flowf . A similar formulation was used in [7]. Note
that this makes the problem much harder to solve since we
now have an integer problem due to the presence of the binary
variablesy.

IV. TOOLS FOREXACT SOLUTIONS

In order to get more engineering insights than those obtained
in [3], we are faced with the task of computing solutions for
relatively large networks with many mesh routers, flows, levels
of powers, and possible rates. This means solving a very large
LP with a coefficient matrix that grows exponentially with the
size of the network.

We now present two efficient algorithms that solve JP
exactly. The first one is a direct application of the simplex
algorithm, where we construct theQ matrix using an efficient
enumeration of the ISets. It will serve as a benchmark to
measure the gain in computation time of our second proposed
algorithm based on column generation. We will show in
Section V that the range of networks that can be solved exactly
by the algorithm based on column generation is quite extensive
and includes many realistic scenarios. We will propose and
compare in Section VI fast and accurate approximate algo-
rithms for even larger networks.

A. Solution by the Simplex Algorithm

The solution technique proposed in [3] was a straight-
forward use of the simplex algorithm. While this requires
a complete enumeration of all the ISets, there is a definite
advantage to this approach. Once we have built the setI, we
can easily solve different problem instances as long as theyall
have the same ISets, e.g., different objectives, flow patterns,
different gateway positions, etc. This might not be possible
with the column generation technique presented later, which
requires us to start anew for each change in the input set. It
is thus worth the effort of trying to design an efficient exact
method based on the simplex algorithm even if we know that
other exact methods can be more efficient in other situations
(see Section IV-B).

The difficulty with this approach is that there is a huge
number of ISets that have to be constructed beforehand. A
naive construction procedure is to enumerate all the2|L|
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elements of the power set ofL and to check whether each
of them forms an ISet. Karnik et al. [3] improved this brute
force algorithm by deriving an upper boundB ≪ L on the
maximum size of an ISet, such that onlyO(|L|B) elements
of I need to be enumerated. However, the bound is still too
loose to allow efficient enumeration.

We propose here an efficient algorithm that constructs all
possible ISets but no more. The complexity of this method
is only O(|L|M ) as opposed toO(|L|B) in [3] where
M is the maximum ISet size and typicallyM ≪ B. We
describe it using a recursive depth-first algorithm but we have
also implemented an iterative breadth-first version. Whilethe
recursive form is simpler to program and is well suited for
enumerating all ISets, the iterative form is better suited for
enumerating only themaximal ISets. The algorithm is based
on the following proposition that is trivial to prove.

Proposition 1: If s ∈ I is an independent set, then any
subset ofs is also an independent set.
The algorithm builds ISets of increasing sizes and stops when
this is no longer possible. This is done using an enumeration
tree as follows. The root node is at depth 0. A node at
depthk contains an ISets of k links and a list of linksΛ
that are candidate for addition to this ISet. We assume that
L is implemented as an ordered data structure indexed by
increasing link number. Consequently,l′ > l means thatl′

appears later thanl in L andmaxl∈s l returns the link whose
index number is the largest ins.

We define two functions. The first one isprune(s, Λ)
which returns a reduced candidate list of linksΛ′ constructed
as described in Fig. 1. The condition on line 5 for adding

Algorithm Prune The Candidate List
1. defineprune(s, Λ)
2. Λ′ ← ∅
3. l̄ ← maxl∈s l
4. for l ∈ Λ
5. if l > l̄ and{l} ∪ s is an ISet
6. Λ′ ← Λ′ ∪ {l}
7. return Λ′

Fig. 1. Pruning function

a link l to an ISet has two parts. The first is used to avoid
enumerating ISets more than once. and the second tests the
sets ∪ {l} against the appropriate interference model defined
in Section III-B. The first condition is due to the fact that the
ISets are built in a precise order. At a given depthk in the
tree, the tree nodes contain ISets ofk links and are built left
to right with the link numbers in an increasing lexicographic
order. Suppose thats = {. . . l̄} and thatl < l̄. Since there is
already a node to the left of the current node containing the
ISet s′ = {. . . l . . .}, there is no need to addl to s.

The other functionmakeSons (s, Λ, I) is a simple
recursive procedure that builds all the children of a nodes
for a given candidate listΛ. It should be clear that a child
of s is an ISet that differs froms by one link. The setI of
ISets is accumulated at each node until the whole collection
is built up. Finally, the algorithm is initialized with the root
node empty and the first candidate list is the set of all links.

B. Solution by Column Generation

Even with the most efficient enumeration technique, the
approach of Section IV-A will eventually become infeasible
due to the large size of setI. On the other hand, we know
that only a few ISets will be active in the optimal solution by
the following proposition.

Proposition 2: The number of non-zero elements ofα, i.e.,
the number of ISets that are effectively used, in a basic solution
of JP-Primal is at mostL + 1.

This follows directly from Carathéodory’s theorem. This
suggests that we use column generation [25] to solve the
problem, thus avoiding the explicit generations ofI.

If we write the constraints (4)–(7) in standard matrix form,
the column corresponding to constraints (6) and some variable
αs has the formq̃s = [c1q1,s, c2q2,s, . . . cLqL,s]

T . These are
used for pricing the ISets as follows.

1) Exact Pricing: Column generation is basically the re-
vised simplex algorithm with a particular pricing technique.
The technique uses only a subset of columnsq̃s, which is
called the Restricted Master Problem(RMP). At a given
iteration, we have, for the RMP, a basic feasible solutionx,
α andλ as well as the current estimate of the dual variables
µ, ν, andζ.

The first step of the next simplex iteration is to price the
off-basis columns. The reduced costrs of an off-basis column
qs is given by the standard formula

rs = 0 + ζ +
∑

l∈L

νlclql,s (10)

since the cost coefficient of the off-basis variableαs in the
objective function is zero. When the objective is to maximize,
the standard pivoting rule of the simplex is to choose the
column with the largest reduced cost. The stopping rule is also
simple: If there is no off-basis column with a strictly positive
reduced cost, the current solution is optimal. This means that
the pricing requires the solution of the followingMaximum
Weight ISet(MWIS) problem withclνl as the link weights:

max
s∈I

∑

l∈L

clνlql,s (11)

subject to constraints (2) and (3). It can be easily shown that
it is an NP-hard problem.

If we want an optimal solution, we must make sure that
there is no off-basis column with a strictly positive reduced
cost at the last simplex iteration. This in turn means that we
have to solve the MWIS pricing sub-problem to optimality. It
will then become very difficult to compute large networks by a
straightforward column generation technique. This is why we
propose another method calledgreedy pricingthat has been
proven to be very fast at delivering exact solutions.

2) Greedy Pricing:We can reduce the amount of compu-
tation if we use a greedy pricing rule at each iteration. Thisis
based on the fact that choosingany column with a positive
reduced cost may potentially produce a new solution with
a higher value of the objective. We can also speed up the
calculation by solving the pricing sub-problem over a set of
links L̃ ⊂ L with positive reduced costs only. The reason is
that if there exists a solution to the MWIS problem where some
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links with zero reduced costs appear in the solution, then there
is an optimal solution made up of only the links with strictly
positive reduced costs. This follows fromProposition 1.

The algorithm to find a new column for the RMP with a
positive reduced cost uses two functions, denoted asgreedy
and enuoracle. They take a link set̃L ⊆ L as the input
and return an ISet with a positive reduced cost, if such a set
exists, or an empty set.

In a basic implementation ofgreedy, the algorithm simply
orders the links in decreasing weights. The link with the largest
weight is first chosen, then the link with the largest possible
weight that is still independent of the first one is selected,
and so on until an ISet is constructed. Instead of naively
using theclνl of Eq. (11) as the weights, we use a more
sophisticated definition taking into account also some measure
of the interference; it usually works better than just theclνl.
We refer to the Appendix for more details on this.

If the ISet produced bygreedy has a positive reduced
cost, it is pivoted into the basis of the RMP and the next
iteration is started. If the reduced cost is not positive, wetry
to find a better ISet that might have a positive reduced cost
usingenuoracle. It is similar to the efficient enumeration
presented in Section IV-A, but it stops when either finding
an ISet with a positive reduced cost or failing to find such
a set upon enumerating all the possible ISets that can be
constructed from the current link setL̃. If we want to guarantee
the optimality of the final solution of the column generation
algorithm, a full enumeration of ISets is needed to solve the
MWIS exactly but this is required only in the last iteration
and on a smaller set of links.

In practice, our greedy pricing approach runs very fast
mainly due to the following three reasons:

• The number of iterations to terminate the algorithm is
often far less than|I|.

• The algorithmgreedy does find an off-basis column
with a positive reduced cost in most iterations.

• The size of the link set̃L is usually much smaller than
that of L thanks to the dual degeneracy that happens
frequently.

As we will now see, our algorithm based on column gen-
eration using greedy pricing is much faster than the simplex
algorithm with enumeration presented in IV-A.

C. Settings for Numerical Results

We now report the computation time of the LP benchmark
and the column generation algorithm. Both are programmed
in C++. We use GLPK [26] as the LP solver. All the compu-
tations have been done on a machine with a 3.2 GHz Pentium
4 CPU and 1 GB of RAM.

Because of space limitation we choose to present results
only for a subset of the many network scenarios we have
studied: one with 25 nodes (Grid25), two with 30 nodes
(Rand30a and Rand30b), one with 40 nodes (Rand40), two
with 50 nodes (Rand50a and Rand50b), and one with 80 nodes
(Rand80). Apart from Grid25, whose nodes are on a square
grid and the gateway is in the middle, all the others have
their nodes placed at random in a square with the gateway

Modulation coding rate cl β(cl) (dB)

BPSK 1/2 1 6.4
QPSK 1/2 2 9.4

3/4 3 11.2
16-QAM 1/2 4 16.4

3/4 6 18.2

TABLE I
L INK RATES AND CORRESPONDINGTHRESHOLDS.

in the center. Note that we scale the network dimension in
proportion to the number of nodes so that the node density is
always the same. For each network, we require every node to
send or receive a flow to or from the gateway. We call these
flow patternsconvergingand diverging. Since we have not
seen any significant differences between results obtained for
converging and diverging flow patterns, we will mostly focus
on converging flows.

For radio propagation, we assumeN0 = −100 dBm, d0 =
0.1 m, Fl = 1, ∀ l ∈ L and η = 3. The five normalized
link rates cl and their corresponding thresholds are listed in
Table I. They are taken from the IEEE 802.16 standard. For
power control, the finite power setP is represented by abase
powerP = max(P) and astep sizep. Therefore,P = {P −
(k − 1)p, . . . , P − 2p, P − p, P} if there arek power levels.
All our results are shown as a function of the base powerP .
The curves all start atPmin where a network first becomes
connected and stop atPSH that allows every node to have a
single-hop connection with the gateway.

D. The Computation Costs of Obtaining Exact Solutions

We show in Fig. 2 the computation times needed for
producing the throughput curves as a function ofP for
Grid25 and Rand30a with a single power and a single rate
using the enumeration and the column generation algorithms.
As expected, the computation times increase very fast using
the enumeration approach. This directly follows from the
exponential increase of the number of ISets as the transmit
power grows. The times for the column generation algorithm
increase much more slowly when power grows. Actually, the
time depends heavily on the fraction of “useful” ISets out of
all ISets. At an optimal solution, the algorithm produces a
basis with a scheduling vectorα whoseαs ≥ 0. We find that
these solutions are highly degenerate and that there are many
other optimal vectors with the same value of the objective
function. An ISet is said to beuseful if it belongs to this set
of potentially optimal solutions. If the optimal solution were
unique with respect toα, the fraction of useful ISets would
be very low, according to Proposition 2, which fortunately
turns out not to be the case. It can be rather high, though still
far lower than that of the enumeration algorithm. Note that we
were unable to compute an exact solution in a reasonable time
using the simplex algorithm for the random network with 30
nodes for power larger than−28 dBm, whereas we had no
problems doing it with our column generation algorithm.

Under the protocol interference model, both our algorithms
compute an optimal solution in the order of seconds and
actually less than one second in most cases; we omit the
numerical results due to space limitations. This is much faster
than the algorithm described in [7] where the CPU time is of
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Fig. 2. Computation times for the two exact algorithms for the case with
converging traffic

the order of minutes. Recall that no numerical results were
presented in [7] for an additive interference model which
incurs much longer computation times.

V. ENGINEERING INSIGHTS

We now report numerical results obtained with our compu-
tation tools with the engineering insights that they provide.

A. Summary of Previous Results

The main engineering insights that were reported in [3]
and [12] can be summarized as follows:

1) Assuming that each node in the network uses the same
transmitting powerP , the max-min throughput is a non-
decreasing function ofP .

2) The largest achievable max-min (per-flow) throughput
in a N node network isc∗/N if the flow pattern is
diverging or converging wherec∗ is the largest value
in C. This throughput can be achieved through single-
hop if the transmit power is larger than or equal to
PSH = β(c∗)N0(D/d0)

η where D is the largest dis-
tance between the gateway and a node. Note that the
throughput is limited by the fact that the gateway cannot
receive or transmit more than one packet at a time.

3) There are usually many optimal configurations. They are
generally so complex that no simple rule can be deduced
from them.

4) In a scenario with a fixed powerP0, if only a single
rate, among a given setC = {c1 < . . . < cmax}, can be
used for all nodes, it should be the highest rate allowing
connectivity atP0.

5) The choice of the interference model has a great impact
on the solution and the additive interference model
yield max-min rates and configuration parameters very
different from those obtained with simpler models.

B. Power Control

We first investigate the effect of power control on the
optimal throughput. While there is a common belief that many
power levels, or even a continuous tuning of the power, are
preferable, our results show that, at least for the converging
and diverging traffic patterns, only a small number of power
levels are needed if they are chosen carefully. All the nodes
may use a finite number of power levels which have fixed
offsets from the reference powerP .

Fig. 3 shows the max-min throughput as a function ofP for
Rand30a for differentP when the traffic pattern is converging
andcl = 1, i.e., there is only one modulation/coding scheme.
In Fig. 3(a), we assume two power levels and we show curves
for different step sizep. It can be easily seen that having access
to two power levels yields better performance results than if we
have access to only one power level and that the value of the
step size has a significant impact on the performance gain. In
the case illustrated in the figure, the step sizep = 7 dB offers
an overall performance that is always better than the others.
The improvement in throughput whenp = 7 dB is around 20%
as compared with a single power level throughout the whole
power range, whereas other step sizes may result in marginal
improvement. The results indicate the existence of an optimal
power step size, and we can determine this step size relatively
quickly with our tools.

In Fig. 3(b), we compare the case with five power levels
and a 1 dB step size with the best two power levels. The
fact that they are quite close to each other suggests that the
number of power levels has a less significant impact on the
throughput than the step size. We also show on that figure other
curves corresponding to three and four power levels with good
step sizes obtained by trial and errors. Again, we observed
that adding power levels does not significantly increase the
throughput. In other words, we still observe that the higherthe
reference power, the better the max-min throughput. Having
multiple power offsets does improve throughput but one or
two offsets are enough to bring most of the performance gain.

C. Rate Adaptation

We now study the benefit of rate adaptation assuming one
power level. It is known that, compared with a single high
rate, allowing multiple lower rates enables a network to be
connected at lower transmit powers. Our results, in addition to
confirming that, demonstrate an interesting trend: the relative
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Fig. 3. The impact of power step size and number of power levels on
max-min throughput for Rand30a with converging traffic.

gain obtained at high power by having multiple rates over one
single high rate is low.

We compare on Fig. 4 the optimal max-min throughput of
Rand30a with and without rate adaptation as a function of
P in the case of a single power with a converging traffic
pattern. Fig. 4(a) compares the max-min throughput as a
function ofP for the cases where two rates are available, either
(6, 4), (6, 3), (6, 2) or (6, 1). We see that if the power is above
−31 dB, the best pair of rates is almost always(6, 3). Similarly
to the power adaption discussed in the previous section, the
results indicate the existence of a “better” pair of rates, and
we can determine this pair relatively quickly with our tools.

Fig. 4(b) compares the max-min throughput as a function
of P when there is rate adaptation, e.g., 2, 3, 4, and 5 possible
rates, with the case where only the single highest rate is
available. As expected, rate adaptation enables connectivity
at lower powers than a single high rate. Rate adaptation with
3 rates yield almost the same max-min throughput than those
with 4 and 5 rates after the network becomes connected. This
seems to indicate that at an optimal configuration, only links
with relatively high rates are used. Since operating links with
high rates tends to reduce the spatial reuse because they are
more susceptible to interference, our results indicate that an
optimal configuration tends to trade spatial reuse for high link
rate. This will be confirmed later when we study the effect of
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Fig. 4. Multi-rate vs. single-rate for Rand30a, case of converging traffic.

spatial reuse in Section V-F.

D. The Multi-Hop Advantage

One obvious advantage of multi-hop communication is
that connectivity can be enabled at much lower transmit
powers than with single-hop. This section will show and
quantify another advantage of multi-hop over single-hop: In a
mesh network withdiverging flows, the maximum achievable
throughput can be obtained by using a much lower transmit
power at the gateway using multi-hop communication than
with single-hop communication. In anN -node network with
N diverging flows and a single power and a single rate, it can
be shown that the maximum achievable max-min throughput is
cl/N if there is only one power and one ratecl [3]. At PSH i.e.,
at the transmit power that allows every node to be connected
to the gateway through a single hop, we can easily achieve
this throughput by scheduling the links between the nodes and
the gateway one at a time. Let̄P be the minimum transmit
power for which the maximum achievable throughput can be
obtained via multi-hopping. We characterize what we call the
multi-hop advantageby PSH/P̄ (in dB). Table II shows the
multi-hop advantage for different networks, assumingcl = 1,
i.e., β(cl) = 6.4dB. We see that multi-hop communication
achieves the maximum achievable max-min throughput with a
transmit power at the gateway from 3.5 up to 6.7 times lower
than the power needed for single-hop communication. This is
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Network PSH (dBm) P̄ (dBm) PSH/P̄ (dB)
Grid25 -13.75 -18.74 5.00

Rand30a −22.50 −29.00 6.50
Rand30b −23.25 −28.75 5.50
Rand50a −18.25 −25.50 7.25
Rand50b −19.00 −27.25 8.25

TABLE II
MULTI -HOP ADVANTAGE: PSH, P̄ , AND PSH/P̄ , DIVERGING TRAFFIC.

made possible by allowing spatial reuse, i.e., the activation of
more than one link at a time. Of course, the energy saving
at the gateway is obtained by spending more energy at the
intermediate nodes.

Using multi-hop improves performance both by providing
connectivity at low power, something that we cannot do
with single-hop, and by offering the maximum achievable
throughput at much lower transmit power at the gateway.
These two advantages come at the cost of a more complex
network operation and more energy spending at intermediate
nodes. In addition, our results show that, for a particular
network, the multi-hop advantage as defined above is rather
sensitive to the value ofβ. This is not surprising since the
larger theβ, the lower the potential for spatial reuse. Similar
results have been obtained for multiple power levels and rates.

E. Does Multi-Path Have an Advantage and What about Min-
Hop Routing?

We now want to address the following two questions:

1) How much do we gain in throughput by allowing each
flow to be routed on as many routes as necessary?

2) Can a min-hop routing achieve good performance?

1) Single-Power and Single-Rate:To answer the first ques-
tion, we solved the single-path version of our JP problem
defined in Section III-D2. This is an integer program that
cannot be handled by our column generation approach which
works only for non integer LPs. Instead, we use the enumer-
ation technique of Section IV-A to produce all the ISets and
then use CPLEX [18] to solve the resulting integer program.
Fig. 5 shows the max-min throughput obtained for Rand30a
for both the single-path and the original multi-path problems.
Clearly, multi-path does not produce much of an increase in
throughput since the single-path max-min throughput is never
more than2% below the multi-path value. This is true for
all the scenarios that we have studied with converging and
diverging flow patterns. Note however that this result may be
due to the particular max-min objective that we are using.
Whether it remains so for other objectives such as proportional
fairness or total throughput is still an open question.

In order to answer the second question, we compare our
optimal joint routing and scheduling with a min-hop routingon
top of an optimal scheduling, i.e., we solve a pure scheduling
problem by fixing the routing in JP. Many networks use min-
hop routing because it is simple to compute and implement.
This can be done either without any consideration for lower
layers, for example by using a simple Dijkstra’s algorithm,or
by using some information about the lower layers to find a
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Fig. 5. Optimal multi-path and single-path routings vs. min-hop routings:
Rand30a with converging traffic.

“good” min-hop solution among the many available. We want
to compare these two options with our optimal solution.

We first compute the max-min throughput for a min-hop
routing obtained by using Dijkstra’s algorithm, This min-
hop is represented by the curve labeled “min-hop” in Fig. 5.
We have also formulated a “cross-layer” min-hop problem in
which we compute for eachP the best possible min-hop path
for each flow. This problem is computationally hard to solve
and this is why the corresponding curve in Fig. 5 is limited to
a small section of the power range. One can see that a simple
min-hop routing can be very inefficient while the “best” min-
hop routing, i.e., the cross-layer optimized one, is much better
but still somewhat far from the optimal.

2) Multi-Power or Multi-Rate: Min-hop routing has to be
carefully defined for multi-power or multi-rate scenarios.The
way we obtain a min-hop path for a given flow is as follows:
a min-hop path is first produced using Dijskstra’s algorithm
on all the physical links. We consider that there is a physical
link between 2 nodes if there exists at least one logical link
between them. Then, for each physical link that belongs to the
min-hop path, we select the logical link with the lowest power
(for multi-power) or the highest rate (for multi-rate) to form
the actual routing path. Fig. 6 compares our cross-layer design
with this min-hop routing. Clearly, a simple min-hop routing
can yield significantly lower throughput than our cross-design
approach especially in the case of a single rate.

F. Revisiting Spatial Reuse

As we explained in Section V-D, the advantage of multi-
hopping stems from spatial reuse. Therefore, it is natural to
think that in an optimal configuration, spatial reuse is high, i.e.,
ISets of large size are scheduled for a significant fraction of
the time. In this section, we want to verify if this conjecture is
true. Surprisingly, our results suggest that, for the largenumber
of randomly generated networks with diverging or converging
traffic patterns that we have studied, this conjecture isnot
really true: using only ISets of size≤ 3, and sometimes only
ISets of size≤ 2, yields a throughput that is almost optimal.
This is in spite of the fact that in the networks that we have
studied there exist many ISets of size larger than 6. This
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Fig. 6. Optimal multi-path routing vs. min-hop routing: Rand30a with
converging traffic.

indicates that spatial reuse is not a good metric to represent
the efficiency of a distributed algorithm.

1) Single-Power and Single-Rate:In Fig. 7, we show the
optimal max-min throughput curve as a function ofP without
any restrictions on the size of the ISets and the throughput
curves obtained by restricting the size of the ISets that canbe
use to be less or equal to1, 2, 3, and4 respectively for the
50-node network with a diverging flow pattern (we find the
same kind of results for the converging pattern).

Comparing the caseISet size ≤ 2, where at most2 links
can be scheduled at the same time, with the caseISet size = 1,
corresponding to no spatial reuse, it is obvious that there is a
big advantage to allow some level of spatial reuse. However,
the gain obtained by allowing more spatial reuse is decreasing
fast, e.g., the throughput obtained withISet size ≤ 3 is
not much higher than the one obtained withISet size ≤ 2.
Moreover,ISet size ≤ 4 yields a throughput that is almost the
same as that withISet size ≤ 3 or the optimal one. This is
rather surprising since it seems to indicate that even moderate
spatial reuse is enough to reach high throughput. We believe
that the reason is that our traffic pattern is very much gateway-
centric and hence as discussed in [3], the performance of the
network can only be improved by trying to schedule one link
to or from the gateway as much as possible. This result is very
important since computing the throughput by limiting the ISet
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Fig. 7. Optimal max-min throughput under constraints on themaximum size
of ISets: Rand50a with diverging traffic.

size to 2 or 3 makes the computation and possibly the network
operation much simpler. Finally, we note that the multi-hop
advantage (see Section V-D) is obtained withISet size ≤ 3
or evenISet size ≤ 2 in some cases.

2) Multi-Power or Multi-Rate:Fig. 8 extends the previous
results to multiple powers or multiple rates. In both cases,we

−36 −34 −32 −30 −28 −26 −24 −22

0.015

0.02

0.025

0.03

0.035

P (dBm)

λ*

 

 

ISet size = 1
ISet size ≤ 2
ISet size ≤ 3
ISet size unlimited

(a) 4 powers.

−35 −30 −25 −20 −15 −10
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

P (dBm)

λ*

 

 
ISet size = 1
ISet size ≤ 2
ISet size unlimited

(b) 5 rates.

Fig. 8. Optimal max-min throughput under constraints on themaximum size
of the ISets: Rand30a with converging traffic.

see the same effect as that observed with a single power and a
single rate. In particular, in the multi-rate case, the maximum



11

difference between the optimal value and the throughput ob-
tained withISet size ≤ 2 is just 6% and the average difference
is less than 3%. An important implication, which has also been
shown in Section V-C, is that when high rates are available
and can be used, an optimal configuration would rather have
higher rates and lower spatial reuse than higher spatial reuse
and lower rates. This can be intuitively explained by the
diminishing gain of spatial reuse and the relative constantgain
of increasing link rates.

VI. TOOLS FORAPPROXIMATE SOLUTIONS

Although our exact algorithms are very efficient, the pricing
sub-problem is still NP-hard so that the computation time
will eventually become impractical for large networks where
we can only expect good approximations within a reasonable
time. In this section, we propose and test two approximation
algorithms.

A. Approximation Tools

We have developed two approximation tools based on our
column-based algorithm. The first one has already been used
in Section V-F and is based on limiting the ISet size to
k, which clearly has an impact on the size of the problem
to solve. As a first approximation, we modify our column
generation algorithm to search for an entering column only
among ISets with size smaller thank, typically k = 1, 2 or 3.
Our second approximation, calledpartial pricing is based on
the following: Whenever algorithmgreedy fails to find an
off-basis column with a strictly positive reduced cost, we stop
the calculation and do not enter the enumeration algorithm
enuoracle. As we will show below, these approximations
produce objective values very close to the optimal ones.

B. Results

We now show that our two approximation techniques are
quite accurate in the sense that they produce almost optimal
solutions in a small computation time.

As discussed in Section V-F, we have already seen from
Fig. 7 and Fig. 8 that usingISet size ≤ k has an excellent
accuracy when compared with the exact solution even for
relatively smallk. The throughput computed forISet size ≤ 3
is always within 5% of the optimal value. We obtain similar
results for other networks for which the optimal solutions can
be computed in a reasonable time. This is an important result
in that we have now at our disposal afast and quasi-optimal
approximate tool that we can use to generate configurations
for very large networks. We can also see in the left-hand side
of Fig. 9(a) that the partial pricing algorithm also produces
very accurate solutions for a network with 50 nodes. Its
performance is very close toISet size ≤ 4, as can be seen by
comparing Fig. 9(a) with Fig. 7(b). However, the computation
time is much shorter than that needed by the optimal solution,
as shown in the right-hand side of Fig. 9(a).

Using the approximation tools, we can study larger prob-
lems for which optimal solutions are not available. The two
examples we show in Fig. 9(b) and (c) are for Rand40 with

three powers and three rates and for Rand80 with one power
and one rate. These cannot be solved exactly because they
have a very large number of logical links. Essentially, the
partial pricing andISet size ≤ 2 approximations have almost
the same computation time, but partial pricing usually yields
much better throughput. However, this does not mean that the
partial pricing approximation is always best. The configura-
tions produced withISet size ≤ 2 are much simpler since
at most two links need to be scheduled at a time. Therefore,
partial enumeration of levelk might turn out to be more useful
for practical network operation. It is also worth noting that the
approximationISet size ≤ 3, while quite accurate, is much too
slow and that is why the corresponding curve in Fig. 9(c) is
limited to a small power range. As for engineering insights,it
seems that we have confirmed our previous result to the effect
that in a mesh network where the flows are to or from the
gateway, a spatial reuse of 3 seems to be close to optimal.

VII. PROPORTIONAL FAIRNESS

In this section, we replace the max-min objective function
by proportional fairness (PF), i.e., in the problem JP given
in (4)–(7), we replace (4) by (12)

max
λ,x,α

∑

f

log λf (12)

and the original problem becomes a nonlinear program (NLP).
Note that if we can enumerate all the ISets, which of course
would restrict the size of the networks that we can handle, then
we can use a generic NLP solver such as MINOS [27]. In order
to solve larger problems, we have developed a computational
technique based on column generation that we summarize here
(for more details see [28]).

A. Nonlinear Column Generation

Our approach, sketched below, is based on thesequential
linear programming(SLP), also known as theFrank-Wolfe
method [29], which is designed for problems with a nonlinear
objectiveU(y) and linear constraintsAy = b:

1) Find an initial feasible solutiony0.
2) At iterationi, let yi be the current solution. A linearized

version of the problem with a linear objective function
<∇U(yi), (y − yi)> and the original constraints is
solved. This produces a vectory∗

i that is a vertex of
the domain and a directiondi = y∗

i − yi.
3) Find the step sizeτi ≥ 0 in the direction di

by solving the one-dimensional nonlinear optimization
maxτi

U(yi + τidi).

In general, both steps are calculated to optimality at each
iteration. In our case, this is not really needed and we can
use fast approximations. The line search is terminated when
a sufficient decrease has been obtained as determined by the
two following rules:

1) Armijo rule:
U(yi + τidi)− U(yi) ≥ c1τi<∇U(yi),di>.

2) Curvature condition:
|<∇U(yi + τidi),di>| ≤ c2|<∇U(yi),di>|
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(a) Rand50b, one power, one rate, converging traffic.
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(b) Rand40, three powers, three rates, converging traffic.
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(c) Rand80, one power, one rate, converging traffic.

Fig. 9. Comparisons of different approximation mechanismson different large scenarios.

with 0 < c1 < c2 < 1.
To compute the direction, we need to solve an LP and

we can use the greedy pricing algorithm where we do not
necessarily run the procedure to termination. The idea is that
the computation-intensive enumeration step is not invokedas
long as we can make a sufficiently large progress with only
the greedy pricing. This is equivalent to the two conditions

<∇U(yi),di>

‖∇U‖‖d‖
≥ δ > 0 (13)

‖yi − yi−1‖

‖yi‖
≥ θ > 0 (14)

for certain parametersδ andθ. If neither condition holds, the
enumeration-based column generator is used. This insures the
eventual convergence to optimality since no feasible direction
with an increasing value of the objective will be left out.

B. Numerical results

The model with proportional fairness provides some more
engineering insights. We have chosen to present the resultsin
terms of the average flow rate as opposed to the value of the
objective function since the fairness measure does not mean
too much practically.

Fig. 10 shows the average rate of a flow as a function of
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P in the case of network Rand30a optimally configured for
PF and in the case where a min-hop routing is used. The
general trend of the throughput curves for PF is similar to
what was found in Section V for the max-min objective both
for the average rate per flow and also for the difference in the
throughput produced by the optimal and min-hop routings.
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Fig. 10. Average flow rate for the case of PF for the Rand30a network.

Fig. 11 shows that the minimum throughput produced by
the PF model is much lower than the minimum throughput
produced by the max-min model. This is expected, but a
quantitative measure of this difference is possible only ifa
computation tool is available to solve the problems exactly.
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Fig. 11. Comparison of PF and max-min optimal configurationsfor the
Rand30a network.

A more unexpected result is provided by comparing on
Fig. 11 the average flow rate obtained with PF and the max-
min rate, where we see that the difference is never more than
12%. In practice, this difference could be even smaller since
the max-min value is a lower bound on the average flow rate
under the max-min model since there could be some flows with
values larger than this. Hence in a well-configured network,
we could expect that max-min is almost as good as PF in
terms of social welfare, i.e., the average flow rate.

VIII. C ONCLUSIONS

This paper proposes a detailed and extensive study of the
optimal configurations of fixed mesh networks using conflict-
free scheduling. In the case of a max-min objective function,
we confirm that power control is useful but that the number of
levels might be less important than the actual values that are
used. We also quantify the advantage of multi-hop over single-
hop, showing that multi-path optimal routing is not much more
efficient than single-path optimal routing and that not all min-
hop routing are equally efficient. Moreover, we find that the
relationship between spatial reuse and network performance is
not that straightforward.

These results are obtained by developing two computational
tools to solve exactly the joint routing, scheduling, power
control and rate adaptation problem. These tools allow us
to calculate solutions for networks significantly larger than
what is currently possible. The first one is based on linear
programming and is useful when solving a set of problems
with multiple input sets at the network layer. The second one
is based on column generation and is much faster than the LP
technique thanks to an efficient greedy pricing algorithm.

We also propose two approximation algorithms which are
very fast and are shown to be nearly optimal for networks
small enough that one can calculate an exact solution. They
have been tested on networks up to 80 nodes which shows that
the design of WMNs of realistic sizes is now entirely feasible.

We then adapt our tools to the case of proportional fairness
in the case of one power level and one rate and show some
interesting engineering insights.

Finally, one should keep in mind that is is very hard to do
routing, scheduling, power and rate control in a real network.
This requires that all the nodes be synchronized and must be
done quickly in the presence of changing channel conditions.
There is obviously a need for further work to check whether
the engineering insights provided by our model still hold ina
more dynamic situation.
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APPENDIX

L INK WEIGHT FORGREEDY PRICING

We rewrite the SINR-based constraints (2) and (3) as
follows:

∑

l∈Li
ql ≤ 1 ∀ i ∈ N (15)

∑

k∈L Wklqk ≤ 1 ∀ l ∈ L (16)

whereWkl represents the normalized interference from a link
k to l, for k 6= l, and it has the form

Wkl =























M

PlGl + M − βN0
k = l

0 k 6= l; ∃i ∈ N : l, k ∈ Li

βPkGkl

PlGl + M − βN0
otherwise.

where M is some large constant. For constraint (15), we
can construct the corresponding conflict graph as described
in [7]. As a result, a greedy pricing can use the vertex degree
∆l as a penalty factor in the link weight. For constraint
(16), there is no straightforward graph representation. We
instead use therow interference index

∑

k Wkl and/orcolumn
interference index

∑

l Wkl as penalty factors; they represent
the total interference to linkl and from link l (to other links),
respectively. It is analogous to the vertex degree in a conflict
graph. In summary, the link weight used in our greedy pricing
can be expressed asfw (clνl, ∆l,

∑

k Wkl,
∑

l Wkl), where
fw is increasing inclνl and decreasing in∆l,

∑

k Wkl, and
∑

l Wkl.
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Andr é Girard is honorary professor at INRS-EMT
and adjunct professor at Ecole Polytechnique of
Montreal. His research interests all have to do with
the optimization of telecommunication networks and
in particular with performance evaluation, routing,
dimensioning and reliability. He has made numer-
ous theoretical and algorithmic contributions to the
design of telephone, ATM and IP networks.


