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Abstract—We present a number of significant engineering as the one we use, finding a set of links that can be scheduled
insights on what makes a good configuration for medium- to at the same time requires information from potentially Wjde
large-size WMNs when the objective function is to maximizete separated areas in the network. In that context, implemgati

minimum throughput among all flows. For this, we first develop - . g . .
efficient and exact computational tools using column geneten decentralized solution would be difficult at best if not egiut

with greedy pricing that allow us to compute exact solutionsor ~ iImpossible due to the large information transfers that woul
networks significantly larger than what has been possible séar. be needed.

We also develop very fast approximations that compute neayl The first contribution of this work is to provide deep

optimal solutions for even larger cases. Finally, we adaptwr tools . o . .
to the case of proportional fairness and show that the engireing practical insights on the engineering of WMN networks when

insights are very similar. the objective function is to maximize the minimum throughpu

, . . among all flows.
Index Terms—Wireless mesh networks, routing, scheduling, 9

power control, rate adaptation, column generation. « First we examine the impact of power and rate selection
on the performance of WMNs. We show that while
|. INTRODUCTION multiple power levels improve the performance of the

network, a few power levels is enough as long as they are
selected correctly. On networks with multiple rates, we
show that an optimal configuration tends to trade spatial
reuse for high link rate.

Another result is linked to the multi-hop capability of
WMNs. Multi-hop communication enables connectivity
at much lower transmit powers than single-hop commu-
nication and yields the maximum achievable throughput
at significantly lower transmit power at the gateway.

We study routing in WMNs and show that multi-path
optimal routing is not much more efficient than single-
path optimal routing and that not all min-hop routings

. . . i are equally efficient. We also quantify how sub-optimal
We examine these issues in the centralized framework devel- quaty q fy P

din 131 wh that th i f1h des. th is the “best” min-hop routing using realistic scenarios.
oped in [3] where we assume that the pasition of the nodes, A major advantage of WMNSs is spatial reuse, the possi-

flows, the interference and propagation models are known at a bility of using the same channel in different areas of the
central location where the optimal configuration is comgute network. We show that the relationship between spatial

and thgn. passed along .to each meSh router. Note .that WE ar€ reuse and network performance is not straightforward.
not claiming that centralized solutions are necessarily tha be

way to operate WMNSs. The point is that this framework pro- These results can be obtained only by solving a hard mixed
vides an upper bound on the performance that can be achiel@gger linear program. The tool developed in [3] used a
on WMNSs using random access protoco|s or some form ﬁﬁmmerCial solver to calculate a solution after rEforngit

distributed scheduling [4], [5]. It can also provide joinuting, the problem into a standard linear program (LP). While it
scheduling, power control and rate adaptation in schedulédtrue that state of the art solvers can handle large LP
networks whenever a centralized solution is deemed mdpstances, that approach was still limited in the scope and

appropriate. Note that with an additive interference medeh size of networks that could be solved and was clearly not
adequate for the task since the number of variables of the LP
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Wireless mesh networks (WMNSs) such as IEEE 802.16 [2]
are seen as a promising alternative to other (wired) brazatiba
access technologies. In order to offer high throughput, VéMN
will have to be tightly managed. Once an operator has placed
his mesh routers and his gateway to offer appropriate cgeera *
to a set of end users, he will need to engineer his WMN
to maximize the network performance. This means choos-
ing among a number of sometimes conflicting options with
complex interactions that can affect performance to variou .
degrees. The main objective of this paper is to produce
guantitativemeasures of the impact of these choices on the
performance of networks agalistic sizes.



network instances and in order to get quantitative resolts fextension of which is used in our paper, and it can ac-
large networks, we had to develop new computation toolspmmodate physical technologies such as multiple radios
both exact and approximate, that are efficient enough @aod non-overlapping channels. One limitation is that power
study realistic WMN scenarios. These scenarios would hawentrol and rate adaptation are not considered. Jain ehbl. o
several tens of mesh routers, many flows, several possipl®vide upper bounds obtained by applying clique feasbili
modulation/coding schemes, and many possible power levalsnditions and lower bounds obtained by using subsets of all
The development of these tools is thecond contributionof  schedulable link sets. The gap between the upper and lower
this work. To the best of our knowledge, no such tools hawmunds is non-zero unless the conflict structure induces a
been developed since all the results that have been regdortedberfect graph [3]. The computation of these bounds is rather
this type of networks have been for at most 20 to 25 nodes [8ymbersome and hence the results presented in [7] aredimite
[6]. More precisely, in our second contribution: to the protocol interference model.

« We propose a column generation technique which allows
us to solveexactly medium-size problems. The dif'ficulty]c

is to solve the NP-hard pricing sub-problem in an efficien : -
L . . . . et al. [8] apply column generation to solve a similar problem

manner. This is especially important since it has to he . ; . .
In multi-radio and multi-channel networks. However, it igstn

solved repeatedly. We do that by introducing atechnlqu?ear how their algorithm would scale since it is based on

C
based algorithm on a restricted set of links. an exact pricing. Both [9] and [10] take a staged approach.

that we call “greedy pricing” which uses an enumeration-
o We show that this technique allows us to compute exa-<|; ey first solve a concurre_nt flow problem_u_smg the angnthm
of [11] followed by a packing-based heuristic to approxienat

solutions for problems much larger than what an imy e optimal link channel assignment. Note that [8], [9],][10

proved version of the original technique proposed in [ . 4
. nly consider the protocol (interference) model and non-
can do. For networks small enough for both techniques .
) overlapping channels. The results of [12] clearly show the
to handle, our technique also turns out to be much faster. ; e .
. Importance of choosing an additive interference model.iThe
« We also propose and compare two approximate algo- . ;
. approach does not involve power control and rate adaptation
rithms that are fast and very accurate. They can be u :
: arnik et al. [3] extend the framework of [7] to encompass
to compute solutions for much larger networks.

. o ) , multi-power and multi-rate and focus only on the additive
Ourthird contribution is related to proportlonal fa|rnes_s (PF)interference model. They propose an exact enumeratiogebas
We adapt our tools to this case, which is very challengingesingq orithm and derive an upper bound on the size of a schedula-

There have been many attempts to extend this optimization
{amework and to improve the algorithms that solve it. Zhang

it yields a nonlinear problem. In our third contribution: ~ blelink set (see also Section IV-A for details). Anothettidist
« We show how our technique blends smoothly with @ontribution of [3] is a characterization of the optimal max
sequential linear programming approach. min throughput by routing and clique feasibility conditeoi\

+ We show some numerical results that illustrate, in th@milar characterization is applied in [13] to constructewn
case of one power level and one rate, that the trends aé@ting metric calledinterference clique transmission time

similar to the ones we had seen for the max-min casethough it is not clear how practical such a scheme can be.
o We also compare the performance of a network config-

ured with a max-min versus a PF objective and show thatThere also exists another body of work applying on-line

the gain in social welfare for the PF configuration is ngdynamic control for throughput maximization, e.g., [1413],

that great. [16] and the references therein. That approach considers th
We provide in Section Il some background on models arf@Ses where no information about the environment is aveilab

computational tools developed in related work. Then we d@-Priori. However, the price paid for the lack afpriori infor-
scribe our network model and formally define our optimizatiomation is the increased algorithmic complexity: NP-corteole

problem in Section I11. In Section IV, we present our algomt SUP-problems such as the maximum weight independent set
based on column generation to solve it exactly. We compdtEblem need to be solved on-line repeatedly [16]. Morgover
its computation times to a benchmark based on the simpf@Ry attempt at approximating the NP-complete sub-problems
algorithm using a smart technique to construct the coefficign@y drastically reduce the performance [17].

matrix. In Section V, we report on the engineering insigh&t oy, the algorithmic side, the column generation method has
we obtained by using this tool on realistic WMN scenariogeen applied intensively to the cross-layer design of multi
They are based on exact computations. In Section VI, We,, yireless networks. However, these studies either mly o
propose and compare two fast and accurate approximgffy,mercial solvers such as CPLEX [18] to deal with the NP-
methods. Section VIl addresses the case of a PF ObJeCt'Vecomplete/hard sub-problem that generates a column [1B], [8
[6], [20] or make use of a greedy heuristic to obtain subogtim
Il. RELATED WORK solutions [21], [22]. While the first approach does not scale
Jain et al. [7] were among the first to formulate a joinvith an increasing problem size, the second one almost alway
routing and scheduling problem for wireless networks valifils to provide optimal solutions [20]. As described laber
for all linear objective functions, including max-min. TheSection IV-B, our greedy pricing approach delivers bothoexa
framework they proposed is rather comprehensive: it iretudand approximate solutions and scales well with the problem
both the protocol and the physical interference models, aize.



1. NETWORK MODEL AND PROBLEM FORMULATION link set £ for a given set of power® and a set of rate§ is

We model the network as a skt of nodes(the mesh routers then given by th.e.number of links su_ch that Eq. (1) holds for
and the gateway) and a sétof directed links, with || = N €&ch quadruplé;, j, Fi, ¢;) and hence is a function ¢P|, [C|
and|£| = L. Each nodei € A has a location(z;, y;). We and|\|. There is an implicit assumption here that the channel

denote byZ; the set of links incident (inbound or outboundP@in is quasi time invariant. This is a realistic assumption
to a nodei. A link I € £ is identifiednot only by its origin- Urban/suburban areas with roof-top antennas [23].
destination paibut also by its physical parameters which are

defined in Section IlI-A. LetF denote the set dfows and let B. Additive Interference Model

|| = F. Aflow f € Fis identified by its source-destination \we now present the additive interference model we use
pair (fs, fa) and has a ratés. Let A = [Ay,---, Ap] be the iy this paper which extends thehysical interference model
flow rate allocation vector. of [24]. It is described using the concept of amlependent

In the following subsections, we present models for thest(iSety: A set of links that can all operate at the same time,
physical, interference and network layers and formulate the ' the interference they produce is not harmful to anyhef t

joint routing, scheduling, rate adaptation, and power @t |inks in the set. We denote kg the set of all ISets and b,
problem whose solution can be used to configure the netwojke set of ISets that contain link

Note that in all cases, we restrict ourselves to conflict-fre Fjrst note that a set C £ is an 1Set only if no two links
scheduling. in the set share a node, i.e.,

. ./ . ./ . -/ . ./ /!
A. Physical Layer Model PFTNIEFNGFTNFT VLI Es. @

Each link! € £ is identified by four physical parameters: We also assume that the interference on a given link is the
o(l),d(1):the origin and the destination nodes bfA link cumulative _mterference from all t_he_ links that are actite a
the same time. Hence, under this interference model, a set

is sometimes denoted, j) whenever the context is ' g ' )
s C L is an ISet iff it meets condition (2) and the following

clear, where = o(l) andj = d(1). .
P the transmit power used by(l). It takes its value Ccondition:

from a finite setP. This represents thgower control | = GiP, > B(a) Vies. 3)

ability of a node. We assume a network-wide refer- No+ 2 peswpn Guibr —

ence power 'e_"?'- All nodes use the same referen’;f-‘ére v, is the signal to interference plus noise rati®INR)
power and a finite number of power levels that hav&c link 7 and G, is the channel gain from() to d(1).
f|xeq oﬁsets.frorn the reference power. Recall that a linkl is in fact a logical link represented by
€ th? I_|nk rate in t."ts per second. It ta_lkes Its vaIu_e_ frorg tuple(o, d, P, ¢;). Consider an ISet containing some link
afinite seC. This represents thault_l-ratecapabnny [. Assume also thdt is another feasible logical link between
ofa nod_e. We assume that a pa_rtlcular _rate can Orb(Y]dd, i.e., P, # P, and/ore; # ¢ . It should be clear that the
be obtained from one m(_)dulano_n/codmg schemgey o {s\{} U{!’} is not necessarily an ISet, either because
Hence there aréC| modulation/coding schemes. it produces too much interference at some other receiving
Let P = [P~ Pr] € Pt ande = [e1,-++,cL] € C¥ nodes ofs or is receiving too much interference from the
be the power and link rate vectors, respectively. Becausep{nsmitting nodes of the other links in These conditions are

the way we define a link, it is more lagical entity rather tomatically checked by the construction algorithm descr
than aphysicallink since there are potentially multiple links;, section IV-A.

between two nodes and j which differ from each other by
the power used by and/or the link rate. Strictly speaking, a
link should be referred to by a séb, d, P, c), but we use a C. Network Model )
single indexi for ease of notation. There might be from zero The network model proposed here is based on the assump-
up to|P| x |C| links between andj. Two links betweeri and tion that the traffic is static or quasi-static. We believatth
j with the same rate and different transmit power will diffeft iS reasonable since the traffic seen by the mesh routers is
in their robustness against interference as discussesvbelo aggregated. _ _ _

We assume that a linkcharacterized byo(1), d(1), P}, ¢;) is We W|_II c0n5|der. both multi-path and single-path routing.
feasible if itssignal to noise ratiqSNR) meets the following For multi-path routing, we denote by ; the set of all routes

condition: that can be used by flow and blef the set of all routes that
SNR = Giby > B(e) 1) can be used by going through linki. The amount of flow
No — [ routed onr € Ry is denoted bypy and}’ . ¢} = As.

where G; denotes the channel gain dn N, is the average Let @ = [¢}].er,,rer be therouting vector

thermal noise power in the operating frequency band, andA link scheduleis an|Z|-dimensional vectorx = [a;]sez
B(c;) is the threshold related to the modulation/coding scherfich thata, > 0 if ISet s € 7 is scheduled andv, = 0
that yieldsc;. The channel gain between two points separat@herwise. We interpret, as the fraction of time allocated to

by distanced is assumed to be given b (d/dy)~", where | _ _

d-is th | . f dist is th hadowi d The term “independent set” is not the same as the notion @&pieddent
0 I.S € (?OSG-In re erence distandeg, is the sha OW_mg and sets as used in graph theory. However, we use it in order tohgstent with

fading gain andy is the path loss exponent. The size of thee literature.



an ISets. Obviously,) .., as < 1. We only schedule ISets we have chosen a max-min objective function, our tools could
since we are interested in conflict-free scheduling. be directly adapted for any other linear objective function
In summary, we want to compute the flow rate allocation 2) Single-Path FormulationTo be able to take into account
vector A, the routing vectorp and the scheduling vectax, single-path routing where a flow is constrained to use oné/ on
using the following optimization framework. path, we add a binary variabLf,f such thatylf = 1if link [
is used to carry flowf, and ylf = 0 otherwise. We also add

D. Problem Formulation the following constraints to the JP problem (4)—(7).

The following joint routing, scheduling, rate adaptation, ol <eyl vierL fer (8)
and power control problem (JP) is based on the parameters fo<q Vi F 9
and variables defined above. The multi-path formulatioeigiv ZJ: Yig) = LEN. S € ©

in 111-D1 comes from [3] while the single-path formulation
presented in 111-D2 is new. where (i, j) denotes the links out of node Constraint (8)

1) Multi-Path Formulation: We define the link-set inci- States that if is not used to carry, i.e., if y/ = 0, the load
dence matrixQ such thay; ; = 1if [ € s € Z and 0 otherwise. af imposed byf on [ is zero. Equation (9) states that, for
Note that each columnq, of Q is a vector that represents arg given nodei, at most one outgoing link is used to carry a
ISets and that the number of columns|& which is generally certain flow f. A similar formulation was used in [7]. Note
very large. For a flowf € F, we also define the standard nodethat this makes the problem much harder to solve since we
arc incidence matrixA’ such thata/, = +1 if i = o(l), —1 now have an integer problem due to the presence of the binary
if i = d() and O otherwise. The dependenceois useful to Vvariablesy.
prevent certain flows from using some links. Define also the

node-flow incidence vectod” Wheredf =1ifi= fs, and IV. ToOLS FOREXACT SOLUTIONS

i I _ r
0 c_>therw5e. '_‘etxl - Zrele ¢} be the amoun'F of ﬂo_th In order to get more engineering insights than those obdaine
going over a link,, and denote b/ = [z],--- ,quL] the link in [3], we are faced with the task of computing solutions for
flow vector associated witlf. Finally, letx = [x/]c. relatively large networks with many mesh routers, flowselsv

Given the network model and the definitions, we wardf powers, and possible rates. This means solving a verg larg
to maximize the minimum throughput of all the flows, i.e.LP with a coefficient matrix that grows exponentially witreth
max ming{As}. In this form, the objective function is notsize of the network.
differentiable and the problem is transformed by the steshda We now present two efficient algorithms that solve JP
technique of introducing a scalar variable= miny{\;} and exactly. The first one is a direct application of the simplex
adding a set of constraints (5) to put a bound on the flowsigorithm, where we construct thig matrix using an efficient

We can then formulate JP as (4)—(7). enumeration of the ISets. It will serve as a benchmark to
measure the gain in computation time of our second proposed
max A (4) : : . ;
X, algorithm based on column generation. We will show in
(Mf) Afx! > ad’ VieF (5) Section V that the range of networks that can pe sqlved qxac_tl
f by the algorithm based on column generation is quite extensi
(v) Clzqhsas = Z Zp VieL (6) and includes many realistic scenarios. We will propose and
s€L fer compare in Section VI fast and accurate approximate algo-
€) ZO‘S <1 (7) rithms for even larger networks.
sel
x,a>0

A. Solution by the Simplex Algorithm

where we have put the Lagrangian multipliers correspondingThe solution technique proposed in [3] was a straight-
to each constraint in parenthesis. In this formulation, weeh forward use of the simplex algorithm. While this requires
M{ >0,y > 0 and¢ < 0. The maximization is explicity a complete enumeration of all the ISets, there is a definite
taken with respect to the maximum flow link load allocation advantage to this approach. Once we have built th€ sete
x, and link scheduling vectat, but it is also implicitly taken can easily solve different problem instances as long asdhey
over the transmit power vectd@ and link rate vector since have the same ISets, e.g., different objectives, flow patter
they are implied by the scheduling of ISets and the links thdifferent gateway positions, etc. This might not be possibl
make up these sets. We call this problem JP-Primal. It iswath the column generation technique presented later, lwhic
standard but very large linear program (LP) and its difficultrequires us to start anew for each change in the input set. It
lies in the computation of the incidence matéxwhich grows is thus worth the effort of trying to design an efficient exact
exponentially with the problem size. method based on the simplex algorithm even if we know that
Note that the solution of this problem does not yield fulbther exact methods can be more efficient in other situations
information about the optimal configuration: the routingteg (see Section IV-B).
¢ is replaced by its aggregated fosmNevertheless, there are The difficulty with this approach is that there is a huge
standard procedures to reconstruct a set of compatible patimber of ISets that have to be constructed beforehand. A
flows from the arc flow formulation. Obviously, even thougimaive construction procedure is to enumerate all e



elements of the power set & and to check whether eachB. Solution by Column Generation

of them forms an ISet. Karnik et al. [3] improved this brute Eyen with the most efficient enumeration technique, the
force algorithm by deriving an upper bourl §< L on the approach of Section IV-A will eventually become infeasible
maximum size of an ISet, such that ondy(|£|”) elements e to the large size of s@ On the other hand, we know

of 7 need to be enumerated. However, the bound is still t9Ra4t only a few ISets will be active in the optimal solution by
loose to allow efficient enumeration. the following proposition.

We propose here an efficient algorithm that constructs a”Proposition 2: The number of non-zero elementsa@fi.e.
possible ISetsMbut no more. The comglexllty of this methqfle number of ISets that are effectively used, in a basidisolu
is only O(|£]™) as opposed taO(|£[7) in [3] where f 3p_primal is at mosk + 1.

M is the maximum ISet size and typically/ < B. We s follows directly from Carathéodory’s theorem. This
describe it using a recursive depth-first algorithm but V"mhasuggests that we use column generation [25] to solve the
also implemented an iterative breadth-first version. Wtiike problem, thus avoiding the explicit generationsZof

recursive form is simpler to program and is well suited for |t \we write the constraints (4)—(7) in standard matrix form,

enumerating all ISets, the iterative form is better suited f e column corresponding to constraints (6) and some variab
enumerating only thenaximallSets. The algorithm is basedas has the formd, = [c1g1.s, c2gos, ... cLqr.s|T. These are

on the following proposition that is trivial to prove. used for pricing the 1Sets as follows.
Proposition 1:1f s € 7 is an independent set, then any 1) gxact Pricing: Column generation is basically the re-
subset ofs is also an independent set. vised simplex algorithm with a particular pricing technéqu

The_algorithm builds I_Sets of _inqreasing siz_es and stopsnwh?he technique uses only a subset of colungps which is
this is no longer possible. This is _done using an enumeratigjied the Restricted Master ProblenfRMP). At a given
tree as follows. The root node is at depth 0. A node &bration, we have, for the RMP, a basic feasible solution
depth & contains an ISet of k links and a list of linksA  , 504\ as well as the current estimate of the dual variables

that are candidate for addition to this 1Set. We assume tr}gty and¢.

L is implemented as an ordered data structure indexed byrpe first step of the next simplex iteration is to price the

increasing link number. Consequently,> I means that’ ¢ hasis columns. The reduced costof an off-basis column
appears later thahin £ andmax;c [ returns the link whose q is given by the standard formula

index number is the largest in
We define two functions. The first one s une(s,A) rs=0+C+ ZVZCZQZ,S (10)
which returns a reduced candidate list of linksconstructed leL

as described in Fig. 1. The condition on line 5 for addingince the cost coefficient of the off-basis variablg in the
Algorithm Prune The Candidate List ohbjectlvedfur:jctl(_)n is zero.I thenhthe _objelctlv_e is to rr?axmah
definepr une(s, A) the standard pivoting rule of the simplex is to choose the

1. . ) :

2. A0 cplumn with the_largest reduged cost. Th_e stopping rulgsg al

3. | — maxe,! simple: If there is no off-basis c_:olumn w!th a stnptly p Ot

4. forlcA reducgd_ cost, th_e current squ_t|on is optimal. T_h|s meaats th

5 if 1>7and{l}Us is an ISet the_ pricing requires the solutl_on of the follo_wmga>_<|mum

6. N — NU{l} Weight 1ISefMWIS) problem with¢;v; as the link weights:

7. return A’ max > g s 11
nax ; g, (11)

Fig. 1. Pruning function
subject to constraints (2) and (3). It can be easily showh tha

a link [ to an ISet has two parts. The first is used to avoitlis an NP-hard problem.
enumerating 1Sets more than once. and the second tests thHé we want an optimal solution, we must make sure that
sets U {l} against the appropriate interference model definéldere is no off-basis column with a strictly positive reddice
in Section IlI-B. The first condition is due to the fact thaeth cost at the last simplex iteration. This in turn means that we
ISets are built in a precise order. At a given deptlin the have to solve the MWIS pricing sub-problem to optimality. It
tree, the tree nodes contain ISetskolinks and are built left will then become very difficult to compute large networks by a
to right with the link numbers in an increasing lexicographistraightforward column generation technique. This is whey w
order. Suppose that= {...I} and that/ < I. Since there is propose another method callegeedy pricingthat has been
already a node to the left of the current node containing tipgoven to be very fast at delivering exact solutions.
ISets’ = {...l...}, there is no need to addto s. 2) Greedy Pricing: We can reduce the amount of compu-
The other functionmakeSons (s, A, Z) is a simple tation if we use a greedy pricing rule at each iteration. This
recursive procedure that builds all the children of a nedebased on the fact that choosiagy column with a positive
for a given candidate list\. It should be clear that a child reduced cost may potentially produce a new solution with
of s is an ISet that differs frony by one link. The sefZ of a higher value of the objective. We can also speed up the
ISets is accumulated at each node until the whole collectioalculation by solving the pricing sub-problem over a set of
is built up. Finally, the algorithm is initialized with theoot links £ c £ with positive reduced costs only. The reason is
node empty and the first candidate list is the set of all linkghat if there exists a solution to the MWIS problem where some
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links with zero reduced costs appear in the solution, thereth

is an optimal solution made up of only the links with strictly giiﬁ ig % S:i
positive reduced costs. This follows froRroposition 1 374 3 11.2
The algorithm to find a new column for the RMP with a 16-QAM 172 4 16.4
positive reduced cost uses two functions, denotegrasedy s/ 6 182
and enuor acl e. They take a link sef’ C £ as the input TABLE |
and return an ISet with a positive reduced cost, if such a set LINK RATES AND CORRESPONDINGTHRESHOLDS
exists, or an empty set. in the center. Note that we scale the network dimension in

In a basic implementation @fr eedy, the algorithm simply proportion to the number of nodes so that the node density is
orders the links in decreasing weights. The link with thgést always the same. For each network, we require every node to
weight is first chosen, then the link with the largest possibsend or receive a flow to or from the gateway. We call these
weight that is still independent of the first one is selectefipw patternsconvergingand diverging Since we have not
and so on until an ISet is constructed. Instead of naivedgen any significant differences between results obtaioed f
using thecv; of Eq. (11) as the weights, we use a moreonverging and diverging flow patterns, we will mostly focus
sophisticated definition taking into account also some m@as on converging flows.
of the interference; it usually works better than just the. For radio propagation, we assumg& = —100 dBm, dy =
We refer to the Appendix for more details on this. 0.1m, F, =1,vI1 € £ andn = 3. The five normalized

If the 1Set produced bygr eedy has a positive reducedlink ratesc¢; and their corresponding thresholds are listed in
cost, it is pivoted into the basis of the RMP and the nediable I. They are taken from the IEEE 802.16 standard. For
iteration is started. If the reduced cost is not positive,teye power control, the finite power s@t is represented by base
to find a better ISet that might have a positive reduced cgmwer P = max(P) and astep sizep. Therefore,P = {P —
usingenuor acl e. It is similar to the efficient enumeration(k — 1)p, ..., P — 2p, P — p, P} if there arek power levels.
presented in Section IV-A, but it stops when either findingll our results are shown as a function of the base poRer
an ISet with a positive reduced cost or failing to find suclhe curves all start aP,,;, where a network first becomes
a set upon enumerating all the possible I1Sets that can dmnected and stop &y that allows every node to have a
constructed from the current link sét If we want to guarantee single-hop connection with the gateway.
the optimality of the final solution of the column generation
algorithm, a full enumeration of 1Sets is needed to solve the

MWIS exactly but this is required only in the last iteration The Computation Costs of Obtaining Exact Solutions

and on a smaller set of links. We show in Fig. 2 the computation times needed for
In practice, our greedy pricing approach runs very fagroducing the throughput curves as a function Bf for
mainly due to the following three reasons: Grid25 and Rand30a with a single power and a single rate
« The number of iterations to terminate the algorithm igsing the enumeration and the column generation algorithms
often far less thanZ|. As expected, the computation times increase very fast using
« The algorithmgr eedy does find an off-basis columnthe enumeration approach. This directly follows from the
with a positive reduced cost in most iterations. exponential increase of the number of I1Sets as the transmit

« The size of the link sef is usually much smaller than POwer grows. The times for the column generation algorithm

that of £ thanks to the dual degeneracy that happefficrease much more slowly when power grows. Actually, the
frequently. time depends heavily on the fraction of “useful” ISets out of

Il 1Sets. At an optimal solution, the algorithm produces a

sis with a scheduling vecter whosea > 0. We find that
these solutions are highly degenerate and that there arg man
other optimal vectors with the same value of the objective
) ) function. An ISet is said to besefulif it belongs to this set
C. Settings for Numerical Results of potentially optimal solutions. If the optimal solutioneve

We now report the computation time of the LP benchmatknique with respect tex, the fraction of useful 1Sets would
and the column generation algorithm. Both are programmbéd very low, according to Proposition 2, which fortunately
in C++. We use GLPK [26] as the LP solver. All the computurns out not to be the case. It can be rather high, thoudh stil
tations have been done on a machine with a 3.2 GHz Pentifan lower than that of the enumeration algorithm. Note that w
4 CPU and 1 GB of RAM. were unable to compute an exact solution in a reasonable time

Because of space limitation we choose to present resulging the simplex algorithm for the random network with 30
only for a subset of the many network scenarios we hawedes for power larger thanr28 dBm, whereas we had no
studied: one with 25 nodes (Grid25), two with 30 nodegroblems doing it with our column generation algorithm.
(Rand30a and Rand30b), one with 40 nodes (Rand40), twdJnder the protocol interference model, both our algorithms
with 50 nodes (Rand50a and Rand50b), and one with 80 nodesnpute an optimal solution in the order of seconds and
(Rand80). Apart from Grid25, whose nodes are on a squaetually less than one second in most cases; we omit the
grid and the gateway is in the middle, all the others hawaimerical results due to space limitations. This is muctefas
their nodes placed at random in a square with the gatewtan the algorithm described in [7] where the CPU time is of

As we will now see, our algorithm based on column ge
eration using greedy pricing is much faster than the simpl
algorithm with enumeration presented in IV-A.



20 ’ T goumn Seneration 3) There are usually many optimal configurations. They are

generally so complex that no simple rule can be deduced
from them.

4) In a scenario with a fixed poweF,, if only a single
rate, among a given s€t= {¢; < ... < ¢maz }, CaN be
used for all nodes, it should be the highest rate allowing
connectivity atP,.

5) The choice of the interference model has a great impact
on the solution and the additive interference model
yield max-min rates and configuration parameters very
different from those obtained with simpler models.
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(a) Grid25. B. Power Control

We first investigate the effect of power control on the
optimal throughput. While there is a common belief that many
: ﬁ ‘ power levels, or even a continuous tuning of the power, are
] preferable, our results show that, at least for the conmgrgi
and diverging traffic patterns, only a small number of power
levels are needed if they are chosen carefully. All the nodes
may use a finite number of power levels which have fixed
offsets from the reference powé.

Fig. 3 shows the max-min throughput as a functiorPafor
Rand30a for differenP when the traffic pattern is converging
and¢; = 1, i.e., there is only one modulation/coding scheme.

i j « In Fig. 3(a), we assume two power levels and we show curves

i
-36 -34 -32 -30 -28 -26 -24 -22

Computation Time (second)

P (dBm) for different step size. It can be easily seen that having access
(b) Rand30a. to two power levels yields better performance results theei
have access to only one power level and that the value of the

Fig. 2. Computation times for the two exact algorithms foe ttase with . LT . .
converging traffic step size has a significant impact on the performance gain. In

the case illustrated in the figure, the step gize 7 dB offers
an overall performance that is always better than the others
i _ The improvement in throughput when= 7 dB is around 2%
the order qf minutes. Recall _tlhat no numerical results werg compared with a single power level throughout the whole
presented in [7] for an additive interference model whiclj,yer range, whereas other step sizes may result in marginal
incurs much longer computation times. improvement. The results indicate the existence of an @tim
power step size, and we can determine this step size rdjative
V. ENGINEERING INSIGHTS quickly with our tools.
) , ) In Fig. 3(b), we compare the case with five power levels
We now report numerical results obtained with our COMpYyy 5 1 4B step size with the best two power levels. The
tation tools with the engineering insights that they previd ;.4 that they are quite close to each other suggests that the
number of power levels has a less significant impact on the
A. Summary of Previous Results throughput than the_ step size. We also show on that figl_Jre othe
) ) S __curves corresponding to three and four power levels withldgoo
The main engineering insights that were reported in [3}ep sizes obtained by trial and errors. Again, we observed
and [12] can be summarized as follows: that adding power levels does not significantly increase the
1) Assuming that each node in the network uses the satheoughput. In other words, we still observe that the higher
transmitting power”, the max-min throughput is a non-reference power, the better the max-min throughput. Having
decreasing function oP. multiple power offsets does improve throughput but one or
2) The largest achievable max-min (per-flow) throughptivo offsets are enough to bring most of the performance gain.
in a N node network isc*/N if the flow pattern is
diverging or converging where* is the largest value i
in C. This throughput can be achieved through singlé—:' Rate Adaptation
hop if the transmit power is larger than or equal to We now study the benefit of rate adaptation assuming one
Psy = B(c*)No(D/dp)" where D is the largest dis- power level. It is known that, compared with a single high
tance between the gateway and a node. Note that tila¢e, allowing multiple lower rates enables a network to be
throughput is limited by the fact that the gateway cannabnnected at lower transmit powers. Our results, in addito
receive or transmit more than one packet at a time. confirming that, demonstrate an interesting trend: thetivela
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Fig. 3. The impact of power step size and number of power deveel

max-min throughput for Rand30a with converging traffic. Fig. 4. Multi-rate vs. single-rate for Rand30a, case of eoging traffic.

spatial reuse in Section V-F.

gain obtained at high power by having multiple rates over one
single high rate is low. D. The Multi-Hop Advantage

We compare on Fig. 4 the optimal max-min throughput of One obvious advantage of multi-hop communication is
Rand30a with and without rate adaptation as a function @fat connectivity can be enabled at much lower transmit
P in the case of a single power with a converging traffigowers than with single-hop. This section will show and
pattern. Fig. 4(a) compares the max-min throughput asqggantify another advantage of multi-hop over single-hopa |
function of P for the cases where two rates are available, eithﬁfesh network Wit[‘diverging flows, the maximum achievable
(6,4),(6,3),(6,2) or (6,1). We see that if the power is abovethroughput can be obtained by using a much lower transmit
—31 dB, the best pair of rates is almost alwdgs3). Similarly  power at the gateway using multi-hop communication than
to the power adaption discussed in the previous section, {jgh single-hop communication. In aiv-node network with
results indicate the existence of a “better” pair of rate®] a x diverging flows and a single power and a single rate, it can
we can determine this pair relatively quickly with our taols pe shown that the maximum achievable max-min throughput is

Fig. 4(b) compares the max-min throughput as a functien/N if there is only one power and one raig3]. At Psy i.e.,
of P when there is rate adaptation, e.g., 2, 3, 4, and 5 possiblethe transmit power that allows every node to be connected
rates, with the case where only the single highest rate tes the gateway through a single hop, we can easily achieve
available. As expected, rate adaptation enables conitgctithis throughput by scheduling the links between the nodds an
at lower powers than a single high rate. Rate adaptation witie gateway one at a time. L&t be the minimum transmit
3 rates yield almost the same max-min throughput than thgsewer for which the maximum achievable throughput can be
with 4 and 5 rates after the network becomes connected. Thistained via multi-hopping. We characterize what we cal th
seems to indicate that at an optimal configuration, onlysinknulti-hop advantagéy Psy/P (in dB). Table Il shows the
with relatively high rates are used. Since operating linkh w multi-hop advantage for different networks, assuming- 1,
high rates tends to reduce the spatial reuse because theyi.ate[(¢;) = 6.4dB. We see that multi-hop communication
more susceptible to interference, our results indicaté dna achieves the maximum achievable max-min throughput with a
optimal configuration tends to trade spatial reuse for higk | transmit power at the gateway from 3.5 up to 6.7 times lower
rate. This will be confirmed later when we study the effect dhan the power needed for single-hop communication. This is



[ Network [[ Psu (dBm) [ P (dBm) [ Psu/P (dB) |

0.034

Grid25 -13.75 -18.74 5.00

Rand30a —22.50 —29.00 6.50 0082

Rand30b|| —23.25 | —28.75 5.50 -

Rand50a —18.25 —25.50 7.25

Rand50b —19.00 —27.25 8.25 0028
TABLE 1| = 0.026-
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— Optimal single—path routing | |
—— Min-hop routing (1)
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made possible by allowing spatial reuse, i.e., the activaif

0.018

more than one link at a time. Of course, the energy saving R TR p— P(dééz;) 26 2 2
. . . m
at the gateway is obtained by spending more energy at the
intermediate nodes. Fig. 5. Optimal multi-path and single-path routings vs. +hop routings:

Using multi-hop improves performance both by providingand30a with converging traffic.
connectivity at low power, something that we cannot do
with single-hop, and by offering the maximum achievable

throughput at much lower transmit power at the gatewayyood” min-hop solution among the many available. We want
These two advantages come at the cost of a more complgXcompare these two options with our optimal solution.
network operation and more energy spending at intermediateye first compute the max-min throughput for a min-hop
nodes. In addition, our results show that, for a particul%uting obtained by using Dijkstra’s algorithm, This min-
network, the multi-hop advantage as defined above is ratrp@p is represented by the curve labeled “min-hop” in Fig. 5.
sensitive to the value ofi. This is not surprising since thee have also formulated a “cross-layer” min-hop problem in
larger theg, the lower the potential for spatial reuse. Similagynich we compute for eack the best possible min-hop path
results have been obtained for multiple power levels arebratfor each flow. This problem is computationally hard to solve
and this is why the corresponding curve in Fig. 5 is limited to
E. Does Multi-Path Have an Advantage and What about Mi@ small section of the power range. One can see that a simple
Hop Routing? min-hop routing can be very inefficient while the “best” min-

We now want to address the following two questions: hop rqutlng, l.e., the cross-layer op_t|m|zed one, is mudtebe
but still somewhat far from the optimal.

1) How much do we gain in throughput by allowing each 2) Multi-Power or Multi-Rate: Min-hop routing has to be

2) 2:0;:/1 t; rl;?nEﬁgtefozgnasaﬁﬁgléomez as r;ecessary;? carefully defined for multi-power or multi-rate scenaridfie

i P ) 9 good per ormance. way we obtain a min-hop path for a given flow is as follows:
~ 1) Single-Power and Single-Rat&o answer the first ques- 3 min-hop path is first produced using Dijskstra’s algorithm
tion, we solved the single-path version of our JP problegy, )| the physical links. We consider that there is a physica
defined in Section I1I-D2. This is an integer program thafnk petween 2 nodes if there exists at least one logical link
cannot be handled by our column generation approach whiggyeen them. Then, for each physical link that belongséo th
works only for non integer LPs. Instead, we use the enumefiin_hop path, we select the logical link with the lowest powe
ation technique of Section IV-A to produ.ce z?\ll the ISets an@lor multi-power) or the highest rate (for multi-rate) torfio
then use CPLEX [18] to solve the resulting integer prograithe actual routing path. Fig. 6 compares our cross-laydgdes
Fig. 5 shows the max-min throughput obtained for Rand3Qgih this min-hop routing. Clearly, a simple min-hop rowgin
for both the single-path and the original multi-path protée .5, yield significantly lower throughput than our crossigies

Clearly, multi-path does not produce much of an increase dpproach especially in the case of a single rate.
throughput since the single-path max-min throughput isenev

more than2% below the multi-path value. This is true for o ]
all the scenarios that we have studied with converging afd Revisiting Spatial Reuse
diverging flow patterns. Note however that this result may be As we explained in Section V-D, the advantage of multi-
due to the particular max-min objective that we are usingopping stems from spatial reuse. Therefore, it is natwral t
Whether it remains so for other objectives such as propmatio think that in an optimal configuration, spatial reuse is high,
fairness or total throughput is still an open question. ISets of large size are scheduled for a significant fractibn o
In order to answer the second question, we compare dhe time. In this section, we want to verify if this conjecis
optimal joint routing and scheduling with a min-hop routimg  true. Surprisingly, our results suggest that, for the lamgaber
top of an optimal scheduling, i.e., we solve a pure schedulinf randomly generated networks with diverging or conveggin
problem by fixing the routing in JP. Many networks use mirtraffic patterns that we have studied, this conjectur@as
hop routing because it is simple to compute and implemengally true: using only ISets of size 3, and sometimes only
This can be done either without any consideration for lowé¢ets of size< 2, yields a throughput that is almost optimal.
layers, for example by using a simple Dijkstra’s algoritron, This is in spite of the fact that in the networks that we have
by using some information about the lower layers to find studied there exist many ISets of size larger than 6. This
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Fig. 7. Optimal max-min throughput under constraints onrtteximum size
of ISets: Rand50a with diverging traffic.

size to 2 or 3 makes the computation and possibly the network
operation much simpler. Finally, we note that the multi-hop
advantage (see Section V-D) is obtained wiffet size < 3
or evenlSet size < 2 in some cases.

2) Multi-Power or Multi-Rate: Fig. 8 extends the previous
results to multiple powers or multiple rates. In both cases,

P (dBm)
(b) 5 rates and 1 power level.

Fig. 6. Optimal multi-path routing vs. min-hop routing: RE®a with
converging traffic.

indicates that spatial reuse is not a good metric to reptesen
the efficiency of a distributed algorithm.

1) Single-Power and Single-Ratén Fig. 7, we show the
optimal max-min throughput curve as a functionffwithout
any restrictions on the size of the I1Sets and the throughput
curves obtained by restricting the size of the ISets thatbesan
use to be less or equal g 2, 3, and4 respectively for the
50-node network with a diverging flow pattern (we find the
same kind of results for the converging pattern).

Comparing the cas&Set size < 2, where at mos® links
can be scheduled at the same time, with the Easesize = 1,
corresponding to no spatial reuse, it is obvious that thee i
big advantage to allow some level of spatial reuse. However,
the gain obtained by allowing more spatial reuse is deangasi
fast, e.g., the throughput obtained wiiSet size < 3 is
not much higher than the one obtained wiffet size < 2.
Moreover ISet size < 4 yields a throughput that is almost the
same as that withSet size < 3 or the optimal one. This is
rather surprising since it seems to indicate that even nadeler
spatial reuse is enough to reach high throughput. We believe
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that the reason is that our traffic pattern is very much gatewdig- 8. Optimal max-min throughput under constraints onrtfzximum size

centric and hence as discussed in [3], the performance of #
network can only be improved by trying to schedule one link

éhe ISets: Rand30a with converging traffic.

to or from the gateway as much as possible. This result is vesge the same effect as that observed with a single power and a
important since computing the throughput by limiting thetlS single rate. In particular, in the multi-rate case, the nmaxin
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difference between the optimal value and the throughput diwee powers and three rates and for Rand80 with one power
tained withISet size < 2 is just 8% and the average differenceand one rate. These cannot be solved exactly because they
is less than %. An important implication, which has also beerhave a very large number of logical links. Essentially, the
shown in Section V-C, is that when high rates are availabfmrtial pricing andiSet size < 2 approximations have almost
and can be used, an optimal configuration would rather have same computation time, but partial pricing usually dsel
higher rates and lower spatial reuse than higher spatigleremuch better throughput. However, this does not mean that the
and lower rates. This can be intuitively explained by theartial pricing approximation is always best. The configura
diminishing gain of spatial reuse and the relative consgaint tions produced withlSet size < 2 are much simpler since

of increasing link rates. at most two links need to be scheduled at a time. Therefore,
partial enumeration of levél might turn out to be more useful
VI. TOOLS FORAPPROXIMATE SOLUTIONS for practical network operation. It is also worth notingtttize

Althoudh ¢ aloorith ficient. the prici approximatioriSet size < 3, while quite accurate, is much too
ough our exact algorithms are very efficient, tn€ pieing, ., o4 that is why the corresponding curve in Fig. 9(c) is

sub-problem is still NP-hard so that the computation tImlﬁﬂited to a small power range. As for engineering insigiits,

will eventually become |mpract|cz_:1I fo_r Iarge_ n(_atworks wher eems that we have confirmed our previous result to the effect
we can only expect good approximations within a reasonal? e

. . ) X .that in a mesh network where the flows are to or from the
time. In this section, we propose and test two apprOX|mat|%%teway a spatial reuse of 3 seems to be close to optimal.
algorithms. '

VIl. PROPORTIONAL FAIRNESS

A. Approximation Tools . . . . .
In this section, we replace the max-min objective function

We have developed two approximation tools based on oW, nroportional faimess (PF), i.e., in the problem JP given
column-based algorithm. The first one has already been u§ﬁq4)_(7) we replace (4) by (12)

in Section V-F and is based on limiting the ISet size to
k, which clearly has an impact on the size of the problem max Zlog Ag (12)
to solve. As a first approximation, we modify our column Ao f

generation alg(.)”thm to search for an entering column only, ; e original problem becomes a nonlinear program (NLP).
among ISets with siz€ s.maller tha:ntyplcqlly k - 1,20r3. Note that if we can enumerate all the ISets, which of course
Our secor_1d approximation, ca_IIthrtlaI pricing 1s ba_sed ON \vould restrict the size of the networks that we can hand&) th

the follpwmg: Whe_never a_lgorlthrg_r_ eedy fails to find an 0 can yse a generic NLP solver such as MINOS [27]. In order
off-basis column with a strictly positive reduced cost, waps to solve larger problems, we have developed a computational

the calculation and dq not enter the enumeratlon.algqntl’y&hmque based on column generation that we summarize here
enuor acl e. As we will show below, these apprOX|mat|ons(for more details see [28])

produce objective values very close to the optimal ones.

A. Nonlinear Column Generation
B. Results

We now show that our two approximation techniques are
quite accurate in the sense that they produce almost opt thod [29], which is designed for problems with a nonlinear

solutions in a small computation time. L : .
. . . objectiveU (y) and linear constraintsly = b:
As discussed in Section V-F, we have already seen from] . (y)_ . _ . Y
1) Find an initial feasible solutiog.

Fig. 7 and Fig. 8 that usingSet size < k has an excellent _ ioni. | be th wuti i ed
accuracy when compared with the exact solution even forz) At |t§rat|om, ety; bet e_current SO utlo_n. A inearize
version of the problem with a linear objective function

relatively smallk. The throughput computed f@Bet size < 3 d th inal ) )
is always within 5% of the optimal value. We obtain similar <V (¥i),(y —¥:)> and the original constraints is
solved. This produces a vectgr that is a vertex of

results for other networks for which the optimal solutioa® ¢ . == .
be computed in a reasonable time. This is an important result th_e domain and a_d'reCt'Odi =Yi = Yie
in that we have now at our disposaffast and quasi-optimal 3) Find the step Slzer; = _ 0 in th_e dlrect|(_)n_d1- _
approximate tool that we can use to generate configurations by solving the one-dimensional nonlinear optimization
for very large networks. We can also see in the left-hand side  ™&%w Ulyi + midi).
of Fig. 9(a) that the partial pricing algorithm also prodsiceln general, both steps are calculated to optimality at each
very accurate solutions for a network with 50 nodes. liferation. In our case, this is not really needed and we can
performance is very close et size < 4, as can be seen byuse fast approximations. The line search is terminated when
comparing Fig. 9(a) with Fig. 7(b). However, the computatiod sufficient decrease has been obtained as determined by the
time is much shorter than that needed by the optimal solutid®o following rules:
as shown in the right-hand side of Fig. 9(a). 1) Armijo rule:

Using the approximation tools, we can study larger prob-  U(y; + nd;) — U(y:) > eii<VU(ys), di>
lems for which optimal solutions are not available. The two 2) Curvature condition
examples we show in Fig. 9(b) and (c) are for Rand40 with  |<VU(y; + 7:d;),d;>| < e2|<VU(y;),d;>|

Our approach, sketched below, is based ongbguential
ar programming(SLP), also known as th&rank-Wolfe
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Comparisons of different approximation mechaniemdifferent large scenarios.

for certain parameter& andé. If neither condition holds, the

To compute the direction, we need to solve an LP ar@humeration-based column generator is used. This insees t
we can use the greedy pricing algorithm where we do ngéyentual convergence to optimality since no feasible doac

necessarily run the procedure to termination. The ideads thvith an increasing value of the objective will be left out.

the computation-intensive enumeration step is not invaded
long as we can make a sufficiently large progress with only Numerical results
the greedy pricing. This is equivalent to the two conditions

<VU(yi), d;>
IVU[Id]]
lyi = yi-1ll
llyill

>6>0

>60>0

The model with proportional fairness provides some more
engineering insights. We have chosen to present the rasults

(13) terms of the average flow rate as opposed to the value of the
objective function since the fairness measure does not mean
(14) too much practically.

Fig. 10 shows the average rate of a flow as a function of
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P in the case of network Rand30a optimally configured for VIIl. CONCLUSIONS

PF and in the case where a min-hop routing is used. Therpis naner proposes a detailed and extensive study of the
general trend of the throughput curves for PF is similar 1,ima| configurations of fixed mesh networks using conflict-
what was found in Section V for the max-min objective bothee scheduling. In the case of a max-min objective function

for the average rate per flow and also for the difference in thg, confirm that power control is useful but that the number of
throughput produced by the optimal and min-hop routings. e\e|s might be less important than the actual values thet ar

used. We also quantify the advantage of multi-hop over singl
0036 \ \ \ \ \ \ \ hop, showing that multi-path optimal routing is not much mor
efficient than single-path optimal routing and that not aithm
hop routing are equally efficient. Moreover, we find that the
0032 1 relationship between spatial reuse and network performanc
not that straightforward.

These results are obtained by developing two computational
00281 1 tools to solve exactly the joint routing, scheduling, power
control and rate adaptation problem. These tools allow us
to calculate solutions for networks significantly largearh
what is currently possible. The first one is based on linear

0.034 q

0.03 4

0.026 - 4

Average throughput &

0.024 - q

0022) | programming and is useful when solving a set of problems
e e 040 with multiple input sets at the network layer. The second one
B ) -fg 6 24 22 20 is based on column generation and is much faster than the LP
P N . N .
feem technique thanks to an efficient greedy pricing algorithm.
Fig. 10. Average flow rate for the case of PF for the Rand30war&t We also propose two approximation algorithms which are

very fast and are shown to be nearly optimal for networks
small enough that one can calculate an exact solution. They
fave been tested on networks up to 80 nodes which shows that

the PF model is much lower than the minimum throughpft€ design of WMNSs of realistic sizes is now entirely feasibl
produced by the max-min model. This is expected, but a We then adapt our tools to the case of proportional fairness
quantitative measure of this difference is possible only if N the case of one power level and one rate and show some

computation tool is available to solve the problems exactly Nteresting engineering insights. o
Finally, one should keep in mind that is is very hard to do

routing, scheduling, power and rate control in a real nekwor
This requires that all the nodes be synchronized and must be
done quickly in the presence of changing channel conditions
1 There is obviously a need for further work to check whether
the engineering insights provided by our model still holdin
more dynamic situation.

Fig. 11 shows that the minimum throughput produced

0.035 T T T " " "

0.03

0.025
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APPENDIX
LINK WEIGHT FORGREEDY PRICING

André Girard is honorary professor at INRS-EMT
and adjunct professor at Ecole Polytechnique of
Montreal. His research interests all have to do with

We rewrite the SINR-based constraints (2) and (3) as the optimization of telecommunication networks and
follows: PLACE in particular with performance evaluation, routing,
PHOTO dimensioning and reliability. He has made numer-

HERE ous theoretical and algorithmic contributions to the

design of telephone, ATM and IP networks.
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