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INTRODUCTION

Network coding (NC) has evolved greatly since
its formalization in [1], and has been steadily
moving from mathematical concepts to imple-
mentations with different network technologies
and architectures. However, in both analysis and
implementation, the goals of network coding
remain the same: enable the efficient transporta-
tion of information, using the full capabilities of
the network layers and judiciously exploiting
available storage and processing. This move is
driven by the requirement to alleviate the strain
on wireless resources at the edge. Indeed, the
emphasis on content dissemination, the increas-
ing heterogeneity of the network, and the need
to enable efficient control of data in core and
edge networks demands that we rethink radically
and revisit the way networks are designed. NC is
rapidly emerging as an important enabler for
these new paradigms.

The basic principle of NC is to consider data
in the network not as immutable bits, but as
information that can be combined algebraically.
Essentially, instead of storing and forwarding
strings of zeroes and ones in the network, NC
allows these strings to undergo algebraic opera-
tions [2]. While this progression may appear
incremental, its consequences are drastic. In par-
ticular, the type of flow conservation principles,
embodied for instance in Kirchhoff’s Law, hold
not in a physical sense, but rather in an algebraic
domain in which degrees of freedom replace
physical flows. There are several references that
provide a good overview of NC from a theoreti-
cal and practical perspective, and we shall not
attempt in this paper to provide a detailed
overview, but simply address the aspects of NC
that have sometimes led to confusion and its
attendant construction of myths. We do not pro-
vide here an overview of where these myths can
be found. Some of them, particularly Myths #1,

#6, and #7, appear widely in the literature,
sometimes as central themes of papers, more
often as assumptions. Maybe more importantly,
these myths have recurred in conversations with
hundreds of students, in our classes and in tuto-
rials, and with a great number of colleagues who
have some acquaintance with network coding,
have not yet had the opportunity to study it at
length, and seek to obtain some helpful context
to guide their exploration of the subject. It is to
this latter audience that this paper is addressed.

MYTH #1: NETWORK CODING
REQUIRES “BUTTERFLY” TOPOLOGIES
The original paper of Ahlswede et al. [1] provid-
ed a small useful example of its operation over a
topology that has become affectionately known
as “the butterfly.” Figure 1 shows that example.
In there, two units of information, b1 and b2,
which may be mere bits or entire packets, are to
be sent from the topmost node S to the bottom
two nodes Y and Z in a multicast fashion.
Assume, for the sake of simplicity (and we shall
see in the course of this paper that this assump-
tion is not at all necessary) that each link pro-
vides an erasure and error-free link that carries
a single unit. The first step to be taken is fairly
simple: b1 can be sent down to node T, which
sends it on its two outgoing links, and b2 can be
sent down to node U, which also sends it on its
two outgoing links.

The question is then: what should be done at
node W? If it transmits b1 first then b2, Z will
receive b1 before Y receives b2. Hence it can be
seen that the multicast rate to Y and Z is 1.5
when W is not allowed any processing on the
data. The solution provided by network coding is
to use the algebraic nature of the data to resolve
the competition for resources between Y and Z
at W. By allowing W to send a combination of b1
and b2 to X (in this case, just a simple sum), in
the absence of other data flows, Y or Z would be
able to obtain the full rate of two by “decoding,”
that is, recovering from this combination, the
information that they do not have. We do not
detail here what processing the intermediate
node would do in a general network: this could
be an addition (in fact a linear combination of
possibly more than two packets) over some large
finite field, or could be bit-wise XORs over
entire packets. While the original paper on alge-
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braic NC [2] certainly assumes knowledge of
finite algebra, many practical solutions are
applying codes which, compared to channel
codes implemented over noisy links, are actually
quite trivial.

The simplicity and clarity of the above exam-
ple is very compelling but it has, unfortunately,
prompted some shallow interpretations of NC.
NC is not about finding butterflies in a network
or re-engineering networks to create butterflies.
Indeed, the problem of optimizing the use of
resources for network-coded multicast [3] has
nothing to do with looking for butterflies. The
main reason for looking at butterflies seems to
be the desire to apply the simple additive code
shown above for academic illustration. As will be
seen in the remainder of this paper, general
topology networks (not just multicast) can bene-
fit from NC that has been implemented in net-
work services like storage and streaming. In
essence, NC can be described as follows: if any
receiver of a multicast session could, in the
absence of other receivers of the same session,
receive a certain rate, then it can do it in the
presence of any other number of receivers. NC
removes the competition among users for finite
resources.

MYTH #2: NETWORK CODING
REQUIRES COMPLICATED CODES

AND WAITING FOR PACKETS

NC does not need to be constructed determinis-
tically at all as in Fig. 1 for a multicast topology.
Instead, it can be constructed completely ran-
domly in a distributed fashion using random
number generators and resulting in what is now
known as a “random linear network code
(RLNC)” [4]. But a misconception associated
with RLNC is that it requires large finite fields
to be efficient, hence reducing its usefulness.
This “Myth” comes from a perfunctory reading
of the mathematical proof in [4]; it shows that
the probability that a random code will fail to
operate properly decreases with the field size.

But it is also shown in this proof that the
decrease is very steep, indeed exponential, in the
number of bits used in the code. This means
that, in practice, codes of the order of eight bits
or so have been found to be quite satisfactory.
However, under conditions other than multicast,
it has also been shown theoretically that random
codes may not be adequate and that linear codes
may not be sufficient [5]. However, even then,
fairly simple ad-hoc approaches can outperform
uncoded approaches. We shall present one such
example when we consider Myth #5.

A related misconception to the code con-
struction presented above is in the encoding pro-
cess itself: people have considered using NC in a
way that requires coding to process packets
together synchronously, hence holding packets in
a queue until there are enough packets to satisfy
the code’s algebraic equation. This puzzling
myth seems to be a holdover from physical-layer
block codes, where all the symbols associated
with a block must be received before encoding
and decoding can occur.

In channel codes, block codes are often used
to average out erasure errors over a certain
number of symbols. Such an approach is not nec-
essary in packet networks with NC. Indeed, each
packet can easily bear in its header the coeffi-
cients of the packets from which it is formed. A
late packet can simply be modeled as having a
null coefficient associated with it. Thus, there is
no need for a preassigned code and for waiting
for packets to complete a block. In general, even
in networks with erasures, packets may be com-
bined without having a fixed coding rate (rate-
lessly) to achieve maximum throughput, without
any need for coordination or knowledge of the
erasures that occurred in the network [6]. There
is also no need to keep in memory a large num-
ber of packets to maintain randomness, but
rather very little memory suffices.

To further illustrate this, take Fig. 1 as an
example. Consider a system in which a single
packet can be transmitted in a time slot. If pack-
et b1 arrives before packet b2, say at discrete
time slot 1, it can be forwarded in the absence of
packet b2. If instead we implement coding in a
way that waits for packet b2, the latter may arrive
at time 2 together with some packet a. If packet
b1 was held back until time 2, it could be com-
bined with packet b2 when b2 arrives in time 2,
but packet a cannot be sent in time 2 and has to
wait until time 3. If packet b1 had been sent in
time 1, then another packet, say a, and b2 could
have been coded together in time 2, achieving a
higher total throughput and a lower average
delay.

MYTH #3: THE MAXIMUM
THROUGHPUT GAIN OF

NETWORK CODING IS TWO IN
WIRELESS NETWORKS

While a throughput gain of a factor two would
be very good, in fact the actual throughput of
network coding in a wireless network can be
much larger. This very common and stubborn
myth of the seemingly hard limit at two, comes

Figure 1. Butterfly example.
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from a misunderstanding or misreading of the
work of [7]. This work showed that for undirect-
ed networks, the NC gain is at most two. The
reasoning is that it must be the case that the
maximum expected gain of NC in wireless net-
works is also two since they are undirected. But
we are talking about different types of undirect-
ed networks. Li and Li [7] refer to networks that
are “graph-theoretically undirected,” which
means that links can operate in two directions in
a time-shared fashion per link. Wireless net-
works are not undirected in that sense, they sim-
ply have links that can operate in two directions
in a time-shared fashion per node. This is a
major difference. In a graph-theoretically undi-
rected network, a node, say node 1, can be talk-
ing to node 2 for 30 percent of the time and
receiving from node 2 for 70 percent of the time
(the link [1, 2] is used for 30 percent of the time
in the direction 1 to 2), while talking simultane-
ously to node 3 for 80 percent of the time and
receiving from node 3 for 20 percent of the time
(the link [1,3] is used 80 percent of the time in
the direction 1 to 3). In a wireless network, this
is not possible: a node cannot use several direct-
ed links simultaneously (except for broadcast,
but this is then unidirectional).

NC gains can easily exceed a factor of two in
wireless. For illustration, let us consider the
COPE system [8] as an example. Consider Fig. 2,
reproduced with slight changes by permission of
Dina Katabi and Sachin Katti. Node D needs to
undertake, in an uncoded system, three trans-
missions, with next hops shown with dashed lines
in the colors of the packets to be forwarded in
Fig. 2 (top). Because of the broadcast nature of
the wireless medium, some packets have been
already overheard and stored: those overheard
packets are shown in the queues of nodes A
through C. By coding together three packets, we
are able to reduce the three transmissions from
D to just one, as shown in Fig. 2 (bottom) as the
coded packet contains enough information
(degrees of freedom) to reconstitute all packets
at their destination. The gains that have been
shown on 802.11 systems through application of
COPE, which considerably reduce congestion at
certain nodes (such as node D), can be of more
than one order of magnitude.

MYTH #4: NC IS ONLY FOR
WIRELESS NETWORKS

The existence of this myth may seen to be very
odd given Myth #3, since the latter myth would
seem to indicate that network coding has limited
applicability in wireless systems. NC’s gains are
not limited to wireless settings. Considerable
gains have been shown in network coded overlay
networks and for peer-to-peer (P2P) and dis-
tributed storage applications [9, 10]. Moreover,
other types of coding, such as Fountain codes,
which will be discussed in Myth # 6, have already
been shown to be useful in settings other than
wireless.

Let us consider the case of distributed stor-
age in further detail. If NC is used, reconstruc-
tion of a file consists of recovering algebraic
equations that will eventually lead to a full rank

matrix that can be inverted; this is the principle
of network coding. Random coding, as well as
certain structured codes, will naturally provide
equations that are, with very high probability,
not redundant and will lead to successful decod-
ing. However, when collecting uncoded pieces of
information, the probability that a node may
bear a piece that the receiver has already collect-
ed increases naturally with the number of pieces
at the receiver. This problem is the classical
coupon collector, well known to anyone who has
ever started a collection. When starting a collec-
tion of stamps, sports cards or others, one begins
easily accumulating new elements without get-
ting doubles. As the collection increases, the
time to obtain a missing element increases
steeply. NC removes that dependence on the
accumulated elements [11]. Scaling benefits can
be seen in settings where many nodes seek to
disseminate information to some portion of the
network’s nodes. In that case, the use of dis-
tributed random coding without a scheduler can
match the O(n) disseminations time perfor-
mance of a perfect centralized scheduler [11],
whereas O(n log (n)) dissemination time is need-
ed in the absence of a scheduler and coding. In
addition, NC results in a much more resilient
and stateless implementation: the loss of

Figure 2. COPE example (a) top and (b) bottom.
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scheduling information (or pointers) can lead to
catastrophic failures to recover the information;
with NC none of this information is required.

MYTH #5: PERFORMANCE
CAN WORSEN WITH NC

The fact that NC can reduce performance is not,
strictly speaking, a myth, since people have done
implementations of NC that are not successful.
The myth here is that coding is intrinsically
worsening performance, whereas the problem
lies in incorrect implementation.

We shall not cite instances of unfortunate
approaches to coding, but simply show some
representative examples. Many start from COPE
and misapply it; for example, attempting to cre-
ate congestion in order to lead to coding oppor-
tunities. Imagine, for instance, burdening
artificially node D in Fig. 2 in order to allow
combinations of many packets. This is akin to
causing injury to illustrate the benefits of a new
remedy. COPE can help alleviate congestion,
but that is no reason for causing it in the first
place. Another example involves using COPE in
wireline settings, mimicking wireless through
many extraneous transmissions intended to pro-
vide overhearing. Again, COPE makes use of
overhearing on a broadcast channel, but that
does not mean that we should seek to create
broadcast channels when they are not there nat-
urally.

Another common mistake is to negate the
gains of NC in peer-to-peer or distributed stor-
age by first selecting the preferred nodes from
which to download and then coding over those
nodes only. In fact, the gain that network coding
provides, as sketched in our discussion of Myth #4,
is that they avoid the coupon collector problem
by ensuring that the requisite degrees of free-
dom are, with high probability, available at any
minimum number of peers. Obviating the need
to seek specific pieces of content is the core of
the benefit that NC brings to such systems.
Applying coding after the choice of peers or
storage nodes has occurred fails to make use of
that benefit, since a priori it is not known that
the information in these nodes will be sufficient
to recreate the files unless we use pointers or
other extraneous information.

Another misconception, which relates to
Myth #2, is to force encoding and re-encoding
at every node on a path. Since network codes
are linear packets, they can be recombined in
the network without first decoding them (net-
work codes are composable). This leads to effi-
cient P2P implementation. Forcing the decoding
at each node may reduce throughput, in some
cases significantly, as will be illustrated in Myth #7.
Even in cases where no loss of throughput
occurs, it may lead to needless computational
complexity and added delay.

While the above examples could be dismissed
as simply poor network design, predictable from
a sound understanding of the theory, there also
exist non-trivial technical difficulties that can
stymie implementation even when the design is
well thought out. Some of these issues do not
become apparent until implementation and

require careful consideration. We provide below
a brief list of pitfalls in the implementation pro-
cess (we humbly note that we encountered them all):

•Random linear network coding (RLNC) is
based on random numbers. Hence, implementa-
tions on some operating systems like Windows
can fail because they use a standard library that
does not provide sufficient randomness. This
phenomenon, which does not affect all applica-
tions, is known to implementers of security
mechanisms and does affect network coding gen-
erally. However, care must be taken to ensure
sufficient randomness in RLNC. 

•In implementations of RLNC with unneces-
sarily large Galois field, coding becomes too
slow and overall performance degrades. In most
applications, small fields, often even binary, suf-
fice. There is a trade-off between the theoretical
gain that is obtained by growing the field size
and the practical drawbacks of working over
larger fields or lengthy bit vectors in terms of
complexity and delay, which in turn affect poten-
tial coding gains, as we discuss in the next point.
In general, the complexity of the code should be
controlled and linked to the expected behavior
of the targeted service or application.

•Coding potential needs to be present. We
have argued that we should not create coding
possibilities at all costs. Designers must decide
judiciously when and at which nodes to code.
For example, transmission energy is taken into
account, there may be a reason for holding back
a packet in order to code it with later packets
even if, as discussed in Myth #2, this is not a
necessary condition for NC to work. 

•Coding requires eventual decoding. Some
implementations might code locally at intermedi-
ate nodes without ensuring that receivers can
decode. This poses a particular challenge since
coded packets that have not been decoded bear
very little useful information about the original
payload and, indeed, can be thought of as a very
effectively encrypted version thereof (and be
exploited as such). 

MYTH #6: NETWORK CODING IS
LIKE A FOUNTAIN CODE

A Fountain code is a rateless end-to-end erasure
code. As such, packets at intermediate nodes
inside the network cannot be combined. Thus,
Fountain codes are not composable. On the
other hand, network codes are indefinitely com-
posable over any portions of the data path.
While one could envisage constructing network
codes that have a structure akin to Fountain
codes in a networked setting, such codes would
generally require accurate foreknowledge of the
network and its current operating states. This
distinction is of great importance operationally,
but also in terms of performance. Consider, for
instance, a system of two erasure channels in
series. In the absence of erasures, each channel
can transmit a single packet per time slot. How-
ever, each channel suffers from independent era-
sures which occur with 0.5 probability. If the
source node and middle node perform a RLNC,
the throughput is 0.5 packets per time slot. With
an end-to-end code, the throughput is 0.25. If we
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increase the number of such channels to n, the
throughput with RLNC remains at 0.5, whereas
that of an end-to-end code decreases exponen-
tially with the number of channels to (0.5)n. Fig-
ure 3 illustrates such a network composed of
relays in tandem.

One could of course argue in the above case
that erasure-correcting block codes on each link
could also have achieved the optimal through-
put, with each intermediate node coding and
decoding. While this approach would eventually
be poor in terms of average delay, particularly as
the number of nodes increases, it would indeed
perform as well as RLNC in terms of through-
put. However, the weakness of requiring inter-
mediate decoding can readily be seen, if we
consider a system such as that shown in Fig. 4a,
(reproduced by permission of Katti et al. with
slight modifications). The numbers indicated on
the wireless links represent the probability of
losses. If we assume a single route, an end-to-
end code would achieve a throughput of 0.25, as
shown in Fig. 4a. We could of course exploit the
broadcast nature of the wireless medium. In this
case the relays would receive the packets by the
source and forward those successfully received
before. This approach, in the absence of coding,
will transmit duplicate information from relay
nodes Ri. One would need careful coordination
among nodes, relying on consistent knowledge of
their topology, interactions and, possibly, memo-
ry contents, in order to reduce duplication. But
interaction among the relays is costly and hard
to realize in commercial platforms as the IEEE
802.11.

If on the other side RLNC is used, all relays
are able to receive the packets from the source as
given in Fig. 4b. In order to avoid duplicates each
relay will recode the incoming packets before for-
warding them to the sink node. Doing so, no
overwhelming coordination among the relays is
needed. The only scheduling policy for the relays
is to check whether they have something mean-
ingful to say, for example, if the rank of the relay
information matrix is larger than the sink’s rank.

MYTH #7: NETWORK CODING
YIELDS NO GAINS IN
LARGE NETWORKS

The results for gossip network of [11], presented
in the context of Myth #4, as well as the exam-
ples for networks scaling in depth or breadth dis-
cussed in Myth #6, illustrate the fact that the
gains from NC can increase with the number of
nodes in a network. Paradoxically, scaling results
have been invoked to state that NC cannot
improve network performance. These results
generally consider the way in which the through-
put point-to-point connections evolves in lossless
large random networks as the number of nodes
increases. Such scaling results are, at their core,
arguments around bottlenecks and NC can alle-
viate bottlenecks (but not remove them), thus
providing gains that may not be reflected in
coarse order arguments. Moreover, scaling bene-
fits may sometimes grow with parameters other
than the number of nodes. The authors in [12]

showed that NC may provide a gain in download
delay which scales with file size but not in the
number of nodes.

MYTH #8: ACKNOWLEDGMENTS
OBVIATE THE NEED FOR NC

The example in Fig. 4 also helps to illustrate
another persistent myth, namely that Acknowl-
edgments obviate the need for coding. This myth
probably originates from a simple and sensible
remark. In the case of a point-to-point link with
x percent erasures, the throughput is 100 – x per-
cent, and it can be achieved either by coding
using a traditional erasure-correcting code, or by
repeating packets using a retransmission scheme.
However, this remark does not provide the cor-
rect intuition in networks.

In the case of end-to-end acknowledgments,
the first example given in Myth #6 immediately
demonstrates that end-to-end acknowledgments
will not, by themselves, lead to the same through-
put as network coding. Indeed, end-to-end
acknowledgments and fountain codes both con-
sider the entire network operating as a single
link per receiver and, by ignoring the capabilities
of intermediate nodes, do not permit full usage
of network capacity.

A more subtle point emerges when we con-
sider perfect acknowledgments on a link by link
basis. Let us revisit the first example invoked in
Myth #6, that of a series of erasure channels in
a daisy chain. If acknowledgments consumed no
resources, such as time or bandwidth, and expe-
rienced no erasures (unlike the forward links),
and if nodes were perfectly coordinated, then we
could rely uniquely on such acknowledgments
and we would not need coding. Moreover, the
issue we raised at the end of our discussion of
Myth #7, that of excessive use of resources in
some links when we use end-to-end codes, does
not arise. For the example of a perfect link fol-
lowed by a link with probability of erasure 0.5,
the first link would not need to carry redundant
packets. However, the situation changes if we
consider the network represented in Fig. 4.
Acknowledgments might be useful but in general
would not allow us to solve the ornery issues
around relay node coordination that we men-
tioned in the context of Myth #7. Thus, they
would not lead to maximum throughput. In any
case, idealization of acknowledgments as requir-
ing no network resources and having no erasures
of their own do not generally hold, unless the
forward channels are themselves free of era-
sures. It is now known that in some wireless net-
works, such as cellular telephony systems, the
acknowledgment channels themselves become

Figure 3. RLNC with nodes in tandem.
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bottlenecks, exasperating efforts to improve
throughput in times of congestion.

MYTH #9: THERE ARE NO
PRACTICAL APPLICATIONS OF NC

The last myth deals with the practical applica-
tion of network coding or whether it can be real-
ized on embedded systems at all and is the
introduction to the second paper in this series.
Indeed, until very recently NC was in the realm
of advanced mathematics and theoretical net-
working. However, even in its early days it had
shown considerable value for file transfer [13]
and peer to peer networking [14]. More recently,
a number of startups such as Steinwurf in Den-
mark and Streambolico in Portugal have also
been launched to exploit the advantages of NC
in commercially deployed devices and networks.

Network coding is also compatible with exist-
ing transport protocols. Recently, TCP/NC has
been shown to be compatible with TCP [15] but
improves its performance greatly over wireless
links. This work inserts a NC layer between the
TCP layer and the IP layer. Hence, the approach
is independent of the underlying network tech-
nology. This creates a way for TCP to resist

channel impairments over any network with low
SNR be it cellular, WiFi, or wired technologies
like powerline. With the current video explosion
over the Internet, further applications of TCP/NC
are emerging. One of the most interesting is web
and TCP acceleration [15] where TCP/NC
enhances the performance of video-rich applica-
tions by close to one order of magnitude in con-
gested conditions and to extend the range of
WiFi and broadband wireless cells.

To bust this myth further, we refer to the
implementation of network coding on commer-
cial mobile smart phone platforms, as presented
in [16]. In this work NC was implemented for
iOS. The scenario focuses on proximity sharing
of video streaming [16] among mobile phones.
The content to share is stored on a single mobile
phone but should be displayed simultaneously
on several neighboring devices using IEEE
802.11 ad hoc mode. The advantage of using NC
in such a scenario is threefold. First, it helps to
solve the coupon collector problem. Further-
more, the sharing among mobile phones, real-
ized without any overlay network, can be
extended to devices that only can be reached by
multi-hop. Another benefit of using network
coding is that each device that participates in the
sharing is enabled to help the user community
after receiving the first coded information, thus,
reducing the burden on the original source.

CONCLUSION
We have intentionally kept the number of myths
that we addressed very small and we hope the
reader by now will be able to bust his or her own
favorite myth. A partial list of debunkable myths
that go beyond the scope and length of this arti-
cle include: the need for excessive overhead; the
need to coordinate NC with physical layer codes;
that NC is only for multicast; that NC suffers
from pollution attacks; that one can replace NC
with storage at nodes, etc. We hope that after
reading this paper network architects and engi-
neers will be encouraged to invest in NC to meet
the challenges from the rapid growth of multi-
media traffic, and the need to accommodate new
applications in a highly mobile and heteroge-
neous eco-system.
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