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Abstract—The support of delay-sensitive applications like VoIP,
video conferencing, video streaming, etc. on scheduled mesh
networks requires careful configuration of routing and schedul-
ing. We formulate a delay-optimal joint routing and scheduling
optimization problem that minimizes the maximum average delay
perceived by any flow under the physical interference model.

Due to the non-convex nature of this proposed problem, we
cannot find the globally optimal joint routing and scheduling that
minimizes the maximum per flow average delay. We overcome
this issue by fixing the routing which makes the problem
convex and then compute the optimal scheduling that results in
minimum delay. We investigate several different routing strategies
and compare the per flow average min-max delay when the
scheduling is computed optimally. Based on these results, we
provide engineering insights on configuring a wireless network
for delay-sensitive applications.

Index Terms—Wireless mesh networks, scheduling, delay,
throughput, non-linear optimization.

I. INTRODUCTION

The deployment of wireless mesh networks is envisioned

to provide anywhere and anytime low-cost connectivity in

both developed and underdeveloped areas [1]. As the wireless

medium is shared and scarce, there is a need to optimally

design the network so as to extract the maximum performance

from it. In other words, for a static wireless network supporting

quasi-static traffic, the routing and scheduling have to be

carefully configured.
Several delay-sensitive applications like VoIP, video con-

ferencing, video streaming, etc. require that the network is

optimized not just for throughput but also for delay. A signif-

icant part of the current literature is devoted to finding the

optimal configuration (i.e., the routing and the scheduling)

for extracting the maximum throughput from the network.

In this paper, we show the need for optimizing for delay

by showing that the naive approach based on optimizing for

throughput does not necessarily result in solutions which also

simultaneously have acceptable delay.
For a given static wireless mesh network and a given set

of flows, assuming a simple delay model and the physical

interference model, we propose a non-linear problem, that in

principle computes the optimal joint routing and scheduling.

The key difference between this model and the ones considered

by Ramamurthi et al. [2] and by Birmiwal et al. [3] is the

objective function. We consider minimizing the maximum

delay perceived by any flow while they consider minimizing

the average delay of all the flows taken together. The drawback

of their approach is that some of the flows might unfairly

receive large delays, even though the average delay of all

the flows together is within acceptable limits. Another key

difference is that, unlike those works, we investigate this

problem from both the throughput and the delay perspectives

and study configurations (routing and scheduling) that aim not

only maximizing the throughput but also minimizing the delay.

Unfortunately, due to the non-convex nature of the model we

propose, we cannot obtain the globally optimal joint routing

and scheduling that minimizes the maximum delay. A similar

non-convexity issue exists even in the models proposed in

[2] and [3]. In our model, if the routing is fixed then our

optimizing problem becomes convex. Thus, we can find the

optimal scheduling that minimizes the maximum delay for

a given routing. It is interesting to note that if we fix the

scheduling, the model remains non-convex.

In this paper, we explore four different routing strategies.

For each of these strategies, we configure the scheduling

optimally in terms of min-max delay. The first one is the

routing that gives the optimal max-min throughput obtained

by solving the joint routing and scheduling throughput optimal

(JRS-TO) linear program proposed by Karnik et al. [4]. This

throughput-optimal routing combined with a delay-optimal

scheduling performs well in terms of both the throughput and

the delay. The second routing we consider is the single path

(SP) routing that gives the largest max-min throughput and the

third routing is the minimum hop routing (OMH) that gives

the largest max-min throughput. The final routing we consider

is obtained using the Dijkstra’s algorithm for minimum hop

paths (DMH). Depending upon the order in which different

nodes are considered, we get different DMH routings. By

design, the JRS-TO routing supports the maximum possible

throughput for a given network at a given transmission power.

The maximum throughput supported by each of the other

three routings is in general much less than this global optimal

throughput. This has a significant impact on the delay obtained

with these routings at high loads as will be seen later.

We present numerical results comparing the average delay

performance of all the four different routings for 100 random

realizations of 16-nodes networks and 20 random realizations

of 25-nodes networks on a 20m × 20m field and provide978-1-4673-5494-3/13/$31.00 c© 2013 IEEE



engineering insights into the design of delay-optimal networks.

In summary, our main contributions through this paper are

as follows.

1) A non-linear program to compute the joint routing and

scheduling that minimizes the maximum delay perceived

by any flow.

2) A comparison of the delay performance of several heuris-

tic methods to obtain good routings when the scheduling

is computed optimally.

3) Engineering insights into the design of delay-optimal net-

works and how useful throughput optimal configurations

are when delay is the performance criteria.

The rest of the paper is organized as follows. We give

a review of the related work in Section II. In Section III,

we define the problem and formulate the non-linear program

that computes the optimal joint routing and scheduling that

minimizes the maximum average delay. We then present

several methods to select the routing strategies and find the

corresponding delay optimal schedulings in Section IV and

give several engineering insights on configuring a wireless net-

work for delay-sensitive applications. We conclude in Section

V with directions for future work.

II. RELATED WORK

The capacity or the maximum sustainable throughput of a

wireless network has been a subject of considerable interest

in the literature. For a sample of these studies, see [4]–[8],

etc. Each of these works has different goals, for instance,

Gupta et al. [5] are interested in the asymptotic capacity

of the network while Karnik et al. [4] are interested in

explicitly finding the maximum sustainable throughput. They

use different fairness criteria and different interference models.

Some like [8] assume multiple channels of communication

while [4], [5], [7] assume a single channel. Almost all the

works have an underlying assumption of a quasi stationary

traffic. Similarly, the optimization of delay has been considered

in several works [2], [3], [9], [10]. While Florens et al. [9] and

Gargano et al. [10] are interested in minimizing the number

of time-slots required to collect a single packet of data from

every node in the network at the gateway, Ramamurthi et al.

[2] and Birmiwal et al. [3] are interested in minimizing the

overall average delay when the arrival traffic follows a Poisson

process.

The network and interference models assumed in this paper

are similar to the ones used in [4] and [7]. We use a simple

delay model for our FIFO queues which is akin to the one

used in [2] which is based on the Kleinrock independence

approximation [11] for a network of M/M/1 queues. While

the delay model is simplistic, the results we obtain are very

insightful. To the best of our knowledge, this is the first study

that uses this delay model with min-max fairness criteria under

the physical interference model. This is also the first work in

the literature that combines a throughput optimal routing with

a delay-optimal scheduling.

In the next section, we state our assumptions more precisely,

describe the network and the interference models, and present

the problem formulation.

III. PROBLEM FORMULATION

A. Network Model

We consider a static wireless mesh network with quasi

stationary channel gains. Assume that there are n nodes in

this network, labeled as 1, 2, . . . n and a set of flows, F with

cardinality F . Every flow f ∈ F is defined as a triplet

(fs, fd, λf ), where fs is the source of the flow, fd is the

destination and λf is the required throughput of the flow f .
We model the delay on the links using a simple function based

on the average delay expression for a M/M/1 queue and use

the Kleinrock independence assumption [11] to compute the

delay over a path composed of multiple links. It should be

noted that there is a feasibility issue for any given F as it

is possible that the network may not be able to support the

required throughputs for the given set of flows.

We assume that there is no power control and every node

transmits with the same power p. We also assume that there is a

single channel of communication. We model the wireless inter-

ference using the physical model which is based on the Signal

to Interference and Noise Ratio (SINR) [4], [5]. Experimental

results [12] show that this models wireless interference more

accurately than any other simpler model. Also, Iyer et al. [13]

showed that the results obtained from using simpler models

may be qualitatively different from those obtained from the

physical model.

A directed wireless link from node i to node j is said to

exist if

pi,j
N0

≥ β (1)

where pi,j is the total power received from node i at node
j, N0 is the thermal noise power and β is the minimum

Signal to Noise Ratio (SNR) required for successful decoding

of the message. If a link (i, j) is feasible, let c be the rate

supported by it. This means that we assume a single rate model

but extending it to a multi-rate model is straightforward by

defining a link as a logical entity like in [7], instead of as a

physical entity. Given a channel propagation model for pi,j ,
we can compute the set of all feasible directed links L in the

network using the SNR threshold condition given in (1). We

make no restricting assumptions on the channel propagation

model.

In a wireless network, even though all the links use the same

channel, we can typically schedule a group of links to transmit

at the same time without causing excessive interference to

any intended receivers. We call such a subset of links an

independent set (Iset). The interference model dictates which

subset of links can be successfully activated at the same time.

In the physical interference model, when two or more links

are active on the same channel, every receiver considers the

power from the transmitters other than its own as interference.

Under the physical interference model, a subset of feasible

links, I , is an Iset only if they form a matching i.e.,



i 6= i′ ∧ i 6= j′ ∧ j 6= i′ ∧ j 6= j′ ∀(i, j), (i′, j′) ∈ I (2)

and all the corresponding receivers have an SINR greater

than or equal to β, i.e., for all the links (i, j) in the Iset I ,

pi,j ≥ β



N0 +
∑

(i′,j′)∈I\{(i,j)}

pi′,j



 . (3)

The sum in (3) is the total interference received by the

destination node j of link (i, j) due to the transmissions on all

the other links (i′, j′) in I . We compute all the Isets compatible

with constraints (2) and (3). Let this set of Isets be I. Next,
we state the problem we consider in this paper.

Problem Statement: Given a network with n nodes, a

transmission power p and a set of F flows with a required

throughput of λf for flow f , find the optimal joint routing

and scheduling that minimizes the average delay perceived by

any flow (assuming a simple delay function), if the network

can support the given throughputs of all the flows.

This problem statement can be readily translated into a non-

linear program which we present in the next sub-section.

B. The Non-Linear Program

Recall that we model the delay on the links using a simple

function based on the average delay expression for a M/M/1

queue and use the Kleinrock independence assumption [11]

to compute the delay over a path composed of multiple links.

We know that for a M/M/1 queue with an arrival rate of λ and

a mean service time of 1/µ, the average delay in the queue is

given by

δ =
1

µ− λ
(4)

The mean service time is typically inversely proportional to

the link capacity. In a wireless network, the capacity of a link

is not straightforward. In a scheduled network, it depends on

the amount of time the link is scheduled. Thus, if xf
i,j is the

amount of traffic of flow f on link (i, j) and αk is the fraction

of time the Iset Ik is active for, then using equation (4), the

average delay experienced by any flow on link (i, j) is given
by

1

c
∑

(i,j)∈Ik

αk −
∑

f∈F

xf
i,j

(5)

Thus, the contribution to the average delay of a flow f due

to xf
i,j amount of flow on link (i, j) is given by

xf
i,j/λf

c
∑

(i,j)∈Ik

αk −
∑

f∈F

xf
i,j

(6)

Summing the contributions given in equation (6) over all

the links gives the average delay experienced by the flow f ,
i.e.,

δf =
∑

(i,j)∈L

xf
i,j/λf

c
∑

(i,j)∈Ik

αk −
∑

f∈F

xf
i,j

(7)

Using this closed form expression for delay and given the

set of nodes, the set of flows F , the set of links L and the set

of Isets I, the non-linear program to compute the optimal joint

routing and scheduling that minimizes the maximum average

delay perceived by any flow, is formulated as follows.

P : Minimize
x,α

δ

subject to

δ ≥
1

λf

∑

(i,j)∈L

xf
i,j

c
∑

(i,j)∈Ik

αk −
∑

f∈F

xf
i,j

∀f (8)

∑

(i,j)∈L

xf
i,j −

∑

(j,i)∈L

xf
j,i =











λf if i = fs

−λf if i = fd

0 otherwise

∀i, ∀f (9)

∑

f

xf
i,j ≤ c

∑

(i,j)∈Ik

αk ∀(i, j) (10)

∑

Ik∈I

αk ≤ 1 (11)

Constraint (8) represents the min-max objective for the

delay. Flow conservation at all the nodes leads to constraint

(9) while the link capacity constraint results in (10). Constraint

(11) ensures that the sum of the fractions of time all Isets are

activated for is less than or equal to 1.
It is not difficult to verify using the Hessian matrix that

constraint (8) is non-convex if both xf
i,j and αk are variables.

We can also see that it is convex in αk if we assume xf
i,j to be

given but still non-convex in xf
i,j if we assume αk to be given.

In other words, this implies that if the routing is given, i.e.,

the xf
i,j’s are given, then we can compute the globally optimal

schedule that results in min-max delay. This is the approach

we take, i.e., we will fix the routing strategy and compute the

delay optimal scheduling for that routing. Hence, we need to

find effective methods to fix the routing.

In the next sub-section, we discuss the throughput-optimal

problem posed by Karnik et al. [4] which is the key to the

methods we propose to select the routing strategy.

C. The Throughput-optimal Problem

Recall that in the delay-optimal problem P , a set of flows

along with the required throughputs are given. This given set

of flows may or may not be feasible in the given network

at the given transmission power. On the other hand, in the

throughput-optimal problem (call it PT ), the objective is to

greedily maximize the minimum throughput for a given set of

flows, F ′ given without any throughput requirement. Thus,

unlike in the delay-optimal problem, there is no issue of

feasibility for the given set of flows, F ′ in the throughput

optimal problem. In a useful variation of this problem PT ,



we can a priori assign different weights to different flows

in F ′. Using this idea, we can relate the set of flows F
and their required throughputs in P with the set of flows F ′

and their corresponding weights in PT . In F , let λmin be the

required throughput of the flow with the minimum throughput

requirement. Using this quantity, we compute the weight of

every flow f in F as wf = λf/λmin and define the set of

flows F ′ as all the flows in F with these weights.
Since computing the global optimal solution to the non-

linear program P is not possible, we use PT to infer the

feasibility of the given flow set F using the set F ′ with

the corresponding weights. We also hope that the routing it

produces is effective in achieving low delays. Given the set of

nodes, the transmit power p, the set of links L, the set of flows
F ′, the corresponding weights wf ’s and the set of Isets I, the
throughput-optimal problem PT (given in [4]) is as follows.

PT : Maximize
α,y

λ (12)

∑

j

xf
i,j −

∑

j

xf
j,i =











wfλ if i = fs

−wfλ if i = fd

0 otherwise

(13)

n
∑

f=1

xf
i,j ≤c

∑

(i,j)∈Ik

αk ∀(i, j) ∈ L (14)

∑

Ik∈I

αk ≤ 1 (15)

Let λp
to be the optimal solution to PT for a given transmit

power p. The given set of flows F is feasible if and only if

λp
to ≥ λmin. PT not only determines the feasibility of the given

set of flow throughputs for P but also provides a method to

choose a routing strategy (we discuss this in detail in the next

subsection). We call this the JRS-TO routing.
In the next sub-section, we discuss all the four different

methods (including JRS-TO) we have explored to select the

routing strategies and how we determine the routing variables

xf
i,j’s for each of them.

D. The Different Routing Strategies

The goal of fixing the routing is to determine the xf
i,j’s so

that we can solve the delay-optimal problem P and find the

delay-optimal scheduling for the given routing including the

min-max delay for that routing. In the following, we assume

that the set of flows F ′ and their corresponding weights wf ’s

for PT , are calculated from the given set of flows F and their

required throughputs λf ’s using the technique given in the

previous sub-section.
Our simplest method to select the routing strategy is based

on the Dijkstra’s algorithm for finding the minimum hop

routing for a given transmit power p (short form, DMH

routing). It results in a randomly chosen min-hop routing

depending on the order in which the nodes are considered

in the Dijkstra’s algorithm. Obtaining the DMH routing is

the least computational intensive of all the routing strategies

considered.

Once we obtain the DMH routing which is a single path

routing, we solve PT using only the links in this routing.

Let λp
dmh be the optimal solution of this problem at the given

transmit power p. Then, the given required throughputs for

the set of flows F are feasible on this routing if and only if

λp
dmh ≥ λmin. However, the resultant xf

i,j’s correspond to the

max-min throughput of λp
dmh and need to be scaled according

to the required throughputs. Thus, the xf
i,j’s for P can be

determined by scaling the xf
i,j’s obtained to achieve λp

dmh by

multiplying them by λmin/λ
p
dmh.

The second strategy is the JRS-TO routing described in

the previous sub-section. Let λp
to be the optimal solution to

PT for the given transmit power p. This is the global optimal

achievable throughput for the given weights which means that

if λp
to < λmin, then there exists no routing for which the given

flow throughputs are feasible. On the other hand, if λp
to ≥

λmin, then it implies that the given set of flows F and their

required throughputs are feasible. However, the resultant xf
i,j’s

correspond to the max-min throughput of λp
to and need to be

scaled according to the required throughputs. Thus, the xf
i,j’s

for P are determined by scaling the xf
i,j’s in the solution to

PT by multiplying them by λmin/λ
p
to. The next two strategies

are based on solving variants of PT .

The third strategy involves imposing a single path routing

(short form, SP routing) on PT . To obtain this routing, we

have to define a new set of binary variables wi,j that indicate

whether the link (i, j) is used or not and add the following

new constraints to PT .

xf
i,j ≤ wi,j ∀(i, j) ∀f (16)

∑

j

wi,j ≤ 1 ∀i, wi,j ∈ {0, 1} (17)

The solution to this new problem which is a binary program

gives the SP routing. Let λp
sp be the optimal solution to this

problem. In general, this value is as good as the global optimal

solution λp
to as discussed in [7]. The given required throughputs

are feasible on this routing if and only if λp
sp ≥ λmin. And if it

is feasible, then the xf
i,j’s for P are determined by re-scaling

the xf
i,j’s in the solution to this new problem by multiplying

them by λmin/λ
p
sp.

The fourth and the final strategy is based on a minimum hop

variation of the SP routing, i.e., we are looking for a min-hop

routing that yields the largest max-min throughput. We call

this the OMH routing. Let df be the minimum number of

hops from the source fs to the destination fd for the flow

f (this can be computed using the Dijkstra’s algorithm). We

define a new problem by adding the following constraint, in

addition to the constraints for SP routing (constraints (16) and

(17)), to PT .

∑

i,j

xf
i,j ≤ λfdf (18)

Let λp
omh be the optimal solution to this problem. This is the

largest possible throughput for any minimum hop routing. In



general, this throughput is much less than the global optimal

solution λp
to [7]. Again, the given required throughputs are

feasible on this routing if and only if λp
omh ≥ λmin and if

feasible, the xf
i,j’s for P are determined by scaling the xf

i,j’s

in the solution to this new problem by multiplying them by

λmin/λ
p
omh.

Note that all the routing strategies considered, except the

JRS-TO routing are single-path. Also note that, because we

have

λp
to ≥ λp

sp ≥ λp
omh ≥ λp

dmh (19)

a given set of flows and throughput requirements, i.e., F
may not be feasible on all the routings.

For each of the routings at the given transmit power p, using
the scaled xf

i,j’s determined for the required throughputs, we

compute the scheduling (αk’s) that minimizes the maximum

average delay for that given routing by solving P . Note that

the flow constraint (9) in P is redundant when the routing

(xf
i,j’s) is given. In this case, the solution to P gives a delay

optimal scheduling along with the selected routing.

In the next section, we present numerical results for 100

random realizations of 16-nodes networks and 20 random

realizations of 25-nodes networks, and provide engineering

insights into the design of delay-optimal networks.

IV. NUMERICAL RESULTS AND ENGINEERING INSIGHTS

We have generated 100 random realizations of 16-nodes

networks and 20 random realizations of 25-nodes networks

on a 20× 20 field. The network in Figure 1, labelled as netA

is one of the realizations of a 16-nodes network. For the sake

of numerical results, we have assumed that there is a traffic

pattern converging towards the special node at the center of the

field called the sink or the gateway. More specifically, we have

assumed that there is a flow from every node to the sink and

that all the flows have the same throughput requirement, i.e.,

λf = constant ∀f and hence all the corresponding flows in PT

have the same weights. We have also assumed a unit rate on all

the feasible links, i.e., c = 1 and used the network parameters

given in Table I with the following channel propagation model.

Pi,j =
Gi,jP

(
di,j

d0

)η

SNR =
Pi,j

N0

where di,j is the physical distance between nodes i and j, Gi,j

is the channel gain on link (i, j) that accounts for channel

fading and shadowing, d0 is the near-field cross over distance,

η is the path-loss exponent and N0 is the thermal noise power

in the frequency band of operation. Recall that we assume the

channel gains to be quasi time-invariant. For simplicity in the

numerical calculations, we have assumed the same constant G
on all the links. However, this should not be construed as a

limitation as computations with different G on different links

are not more complex.

sink

Fig. 1: A Random 16 Nodes Network: netA

β 6.4 dB
N0 -100 dBm
η 3
d0 0.1 m
Gl 1

TABLE I: Network parameters used for obtaining numerical

results

Let λp
∗ be the solution to the linear program PT for a given

transmit power p. If λ is the required throughput for every

flow and λ ≤ λp
∗, then the load (ρ) on the network is defined

as

ρ =
λ

λp
∗

Note that ρ is also a function of p and a given λ could

correspond to different ρ’s at different powers. In addition

to the JRS-TO routing, the optimal solution to PT also has

a scheduling, which we call the throughput optimal (TO)

scheduling. Using this scheduling, we can compute the default

delay for a given load ρ as follows. First scale the optimal

routing values xf
i,j by multiplying them by ρ. Next, use these

scaled xf
i,j’s and the TO scheduling αk’s to compute the

default delay using equation (7).

If λp
r is the maximum throughput supported by the routing r

at the given transmit power p (which is ≤ λp
∗), then for a given

load ρ, we scale the routing variables xf
i,j’s by multiplying

them with ρλp
∗/λ

p
r . Thus, for a given network at a given

transmission power, the load factor ρ is computed with respect

to λp
∗ while the xi,j’s are scaled with respect to λp

r . To

determine the min-max delay at a given load ρ for a given

routing r at the given transmit power p, we recompute the

scheduling by solving P with the scaled xi,j’s.

For a given network at the given transmit power, we

compared the default delay obtained by using the throughput

optimal routing and scheduling with the delay obtained by

using each of the routing strategies (JRS-TO, SP, OMH and

DMH) with their associated delay optimal scheduling. For the

random 16-nodes network, netA given in Figure 1, we have

plotted a comparison of these various delays versus the load
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Fig. 3: Comparison of delays due of different routing strategies

versus load at p = −37.23 dBm for netA

at a power of −31.41 dBm in Figure 2 and at a power of

−37.23 dBm in Figure 3. From these plots, we note that there

is a significant difference (in the range of two to four times)

between the default delay of JRS-TO and the lowest of the

min-max delay obtained with optimal scheduling. This means

that optimizing the scheduling of a network for delay certainly

makes a large improvement in the performance of delay-

sensitive applications. We also note that the delay in DMH

routing increases exponentially when the load approaches 0.8.
This is because the maximum throughput achievable by using

DMH routing is only around 0.8 times the global optimal

throughput. We also observe that, when the load gets close

to 1, the other three routings also experience large absolute

delays. The reason for this is that when the network is operated

close to its maximum capacity, the utilization of one or more

links gets close to 1 as well, leading to large delays.

The plots in Figures 2 and 3 also suggest that there are three

different regimes of operation, viz., low load, medium load and

high load. When ρ < 0.5, we are in the low load regime while

ρ ≥ 0.8 is considered the high load regime. The one between

these two is the medium load regime. At low loads, we observe

that almost all the routing strategies we have considered, have

similar delay performances. However, in the high load regime,

we clearly cannot rely on a minimum hop routing as this

routing fails to even support these high throughputs. Thus,

at high loads, we have to first find a throughput optimal

routing and then optimize the scheduling for the best delay

performance. In the medium load regime, we observe that

the delay performance of the minimum hop routing degrades

very fast, mandating again the use of a throughput optimal

routing. The reason for this is that as the load on the network

approaches the maximum throughput supported by a minimum

hop routing (which is significantly lower than the optimal

throughput), the utilization of one or more links approaches

1 which leads to a rapid degradation of the overall delay

performance.

For each of the 100 random realizations of 16-nodes net-

works and the 20 random realizations of 25-nodes networks,

we see plots similar to the ones in Figures 2 and 3. As

different loads in different networks correspond to different

throughputs, it is not meaningful to average the delay of all

the 100 networks at a given load. We, instead, average their

delay at a given throughput and in Figures 4, 5 and 6, we plot

the average delay versus a given throughput for 100 random

realizations of 16-nodes networks at three different powers. In

each of these figures, the first sub-figure gives a plot of delay

vs throughput while the second sub-figure plots the number

of networks supporting the given throughput. Similarly, in

Figures 7 and 8, we plot the average delay versus throughput

for 20 random realizations of 25-nodes networks for JRS-TO

and DMH routing strategies at two different powers. For 25-

nodes networks, we do not compute for the SP and the OMH

routing strategies, as it involves solving large mixed integer

programs which require large computations times.

As throughput gets high, the number of networks that are

able to support such throughputs decreases. The abrupt jumps

in the delays at higher throughputs occur because some of the

networks are no longer able to support the higher throughput

and were responsible for a high delay just before the jump.

These plots (in Figures 4-8) confirm our earlier claims, that

there is a need to optimize the scheduling for JRS-TO routing

(because the min-max delay is significantly lower than the

default delay), the adequacy of the DMH routing at low

throughputs or equivalently at low loads (because all the

routing strategies have a similar delay performance in this load

regime) and the need for using the JRS-TO routing to support

a high throughput and a low delay (notice the decrease in

number of networks supporting high throughputs for different

routing strategies).

Focusing on the low load case, in Figure 9, we have plotted

the average delay vs the transmit power for all the four routing

strategies for 100 random 16-nodes networks at a very low

throughput of λ = 0.001. As expected, we note an overall

decreasing trend in the average delay as the transmission
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Fig. 4: Comparison of average delays for various routing strategies at p = −31.41 dBm for 100 random 16-nodes networks
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Fig. 5: Comparison of average delays for various routing strategies at p = −33.74 dBm for 100 random 16-nodes networks

power increases. We also observe that this plot suggests that

on an average the OMH routing is better than all the other

routing strategies considered. However, in general, for a given

network, we found that no routing strategy is clearly better

than all the other routing strategies at all the transmission

powers. At low loads, if a random access protocol is used, we

expect the average delay to be proportional to the diameter (the

number of hops in the longest min-hop path) of the network

(which is a function of the transmit power). But, because we

use fixed scheduling, even at low loads, the average delay is

quite high, in the range of n to 2n, where n is the number of

nodes in the network.

In summary, we learn three important lessons from these

numerical results. They are

1) There is a need to optimize the scheduling for obtaining

better delay performance.

2) We cannot rely on a minimum hop routing if we require

a high throughput and low delay for an application.

3) At low loads, a min-hop routing achieves an acceptable

delay performance.

V. CONCLUSION AND FUTURE WORK

In conclusion, this study shows that there is a need to

optimize the scheduling for minimizing delay because the

default delay due to the joint routing and scheduling computed

for maximum throughput can be quite large. We also observed

that we cannot rely on a simple routing like minimum hop if

a high throughput and low delay network performance are

required.

Exploration of other routing strategies and different flow

patterns remains part of our future work.
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Fig. 6: Comparison of average delays for various routing strategies at p = −37.23 dBm for 100 random 16-nodes networks
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