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ABSTRACT
Loads on the electrical grid are multiplexed at distribution
transformers in the same way that traffic from data sources
is multiplexed at a router. This motivates the use of tele-
traffic theory to size power distribution networks just as it is
used to size telecommunication access networks. Specifically,
we prove the equivalence between a model of a distribution
branch comprised of a transformer and storage that we want
to size for a given underflow probability ε, and a queuing
model that we want to size for a given overflow probability
ε. Based on this equivalence, we show how existing teletraf-
fic analysis can be applied to size transformers when there
is no storage. We compute such sizings using load models
obtained from our measurement testbed and load models
derived from an electricity demand simulator. We show not
only that teletraffic theory agrees well with numerical sim-
ulations but also that it closely matches with the heuristics
used in current practice by electric utilities, thus validating
the use of teletraffic theory.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Queueing theory; I.6.4
[Simulation and Modeling]: Model Validation and Anal-
ysis

General Terms
Theory, Verification

Keywords
Electrical grid, Distribution transformer sizing, Teletraffic
theory

1. INTRODUCTION
The electrical grid is similar to the Internet in many as-

pects [23]. Both networks have a similar topology; the grid
consists of transmission and distribution networks that are
analogous to core and access networks in the Internet. The
grid serves multiplexed electricity demands of end-customers
just as a communication network carries multiplexed traffic
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from data sources. Similar to Internet traffic, the demand
for electricity is variable and exhibits burstiness over multi-
ple time scales. However, unlike the Internet which provides
best-effort service, the grid is designed to provide a certain
level of reliability at all times. This complicates the problem
of sizing lines and transformers in the grid as overestimating
their sizes would lead to costly underutilized assets, and, on
the other hand, underestimating them would put the reliable
operation of the grid at risk. Fortunately, because demand
uncertainty is not too high and the physics of transformers
permits temporary thermal overloading, grid operators have
developed simple sizing guidelines which rely on peak load
estimation and forecasting [31, 9].

However, significant changes are underway in the electric
power industry including the incorporation of intermittent
renewable energy sources, electric vehicles, and storage into
the grid. Renewable energy sources will introduce a high
level of uncertainty to the supply side [32] and uncontrolled
charging of electric vehicles will increase the uncertainty in
the demand side [29]. Existing sizing guidelines cannot deal
with highly stochastic load and supply let alone storage.
Therefore, there is a need to develop new sizing guidelines
which simultaneously take into account capacities of lines,
transformers, storage, and renewable energy sources.

During the 1990’s, a rich body of work in the area of
teletraffic theory was developed to model, analyze, and size
telecommunication networks such as Asynchronous Trans-
fer Mode (ATM) networks which guarantee certain levels of
quality of service [26]. In our work we adapt these techniques
to size assets in the electrical grid. We state and prove the
Equivalence Theorem that allows us to model a branch of
a distribution network as a simple queueing system. The
Equivalence Theorem allows us to jointly size transformers,
and stochastic sources using teletraffic theory.

In this paper, we demonstrate that a specific area of tele-
traffic theory, i.e., the large deviations theory developed in
the context of ATM networks [17] can be used to size dis-
tribution transformers when storage is not available1. We
make three specific contributions:

• We show that a branch of the distribution network
can be modelled as a fluid queuing system which can
be analyzed using an equivalent constant service rate
fluid queuing model.
• We use large deviations theory to study the behaviour

of multiplexed loads in the grid and to size distribution

1In [7], based on the Equivalence Theorem proved in this
paper, we study more complex sizing problems that include
storage.



transformers.
• We validate the analytical approach to sizing trans-

formers by both comparing it to industry practice and
the result of numerical simulation.

The rest of the paper is organized as follows. We present
an overview of the electrical grid and specify our assump-
tions in Section 2. The queueing model for a distribution
branch in the grid is derived in Section 3. We study multi-
plexed loads using teletraffic theory in Section 4. For com-
pleteness, we summarize the main points of our previous
work [6] in Section 5. Specifically, we discuss our measure-
ment testbed, introduce a classification scheme for the home
loads, and explain how we use measurements from our testbed
to construct Markovian reference models of electrical loads.
We perform the teletraffic-based sizing using these models in
Section 6. In Section 7, we present our validation approach.
The results of this work are presented in Section 8. We sur-
vey related work in Section 9. We discuss our contributions
in more detail in Section 10 and conclude in Section 11.

2. BACKGROUND AND ASSUMPTIONS
This section presents a high-level overview of the electri-

cal grid as it relates to our work. The electrical grid consists
of three subsystems: generation, transmission, and distribu-
tion [27]. Electrical power generators use energy from prime
movers such as coal, natural gas, or falling water to generate
alternating currents. These currents flow into a transmission
system that moves electric power to distribution networks.
The transmission network, like the Internet core, has a mesh
structure to meet reliability requirements of the grid. To
minimize resistive losses, it operates at very high voltages of
150-500kV. Power from the transmission network is stepped
down using transformers before entering the tree-like dis-
tribution network, which delivers power from distribution
substations to end customers.

Step-down transformers are necessary for distribution net-
works to interface with the long-distance transmission sys-
tem. A transformer’s capacity or ‘size’ is the sustained power
that it can deliver at rated voltage and frequency, measured
in kilo Volt Amperes or kVA. Although this rating can be
exceeded on rare occasions, grid design rules require that
no transformer exceeds its rating for more than short time
intervals.

Transformers can be expensive. A small pole-top 100kVA
single-phase distribution transformer that serves about 20
homes in North America costs around $3,000 [3]. A typi-
cal small utility serving a customer base of 30,000 homes
would therefore need to spend $4,500,000 on poletop dis-
tribution transformers alone. High-voltage transformers at
substations, which serve thousands of customers, can cost up
to $1,500,000. Therefore, electrical utilities size their trans-
formers to be large enough to meet expected peak loads, but
not so large as to be too expensive [16].

Sizing a transformer is a critical design decision. A utility
could potentially save millions of dollars by choosing smaller
transformer sizes. On the other hand, underestimating the
size of a transformer might lead to transformer overheating
which accelerates transformer aging and increases the risk of
failure [1]. Thus, transformer sizing must be done such that
the grid reliability requirement is met. The grid reliability
is typically expressed in terms of the loss-of-load probability
(LOLP) [27], which is the probability that the system-wide

generation resources fall short of demand. The “one-day-in-
ten-years” criterion (LOLP = 2.74 × 10−4) is a benchmark
value widely used among utilities in North America. To com-
ply with this reliability criterion, the transformer should be
sized such that the loss of load event occurs less than one-
day-in-ten-years. A loss of load might happen whenever the
aggregate demand exceeds the transformer capacity2. We as-
sume, conservatively, that a loss of load will happen when-
ever this condition is met.

Our study focuses on a single distribution branch of the
electrical grid associated with a distribution transformer with
a nameplate rating of S Volt Amperes capable of supplying
C Watts when loaded at its nameplate rating (Figure 1a)3.
Note that C = Sf where f is the power factor computed for
the load supplied by the transformer and is known a priori.
The transformer is shared by a set of n homes in a residen-
tial neighbourhood, indexed by i. Each home places a load
of Li(t) Watts on the system at time t4. We call the sum
of the home loads at any time as the aggregate load at that
time. We assume that all homes are located in a small geo-
graphical area so that distribution losses can be neglected.

3. A QUEUEING MODEL FOR THE DIS-
TRIBUTION NETWORK

Observe that a branch of the distribution network can be
modelled as a fluid queue in which storage can be viewed as
a finite buffer with capacity B, the power supplied by the
transformer at time t can be viewed as a fluid arrival bring-
ing work to the system with a given peak rate C, and the
load of home i can be viewed as a fluid service which con-
sumes infinitesimal units of energy (i.e., electrons) at time t
at rate Li(t) so that the aggregate load of all homes at time
t drains the buffer at rate

∑n
i=1 Li(t)

5. We refer to this
queueing system as M1. The critical aspect of this queue-
ing system that we want to quantify is its underflow prob-
ability, i.e., the probability that a service finds the buffer
empty; this corresponds to the loss of load probability in a
distribution network equipped with storage. Unfortunately,
teletraffic analysis does not deal with this question. How-
ever, teletraffic analysis can be used to analyze the buffer
overflow probability of standard work-preserving constant
service rate fluid queue with arbitrary arrivals [22]. Thus,
we construct a work-preserving constant service rate fluid
queue (Figure 1b), referred to as M2, such that its buffer
size is B, its service rate is C, and the fluid arrival rate of
source i at time t is Li(t) so that fluid arrivals of all sources
at time t fill the buffer at rate

∑n
i=1 Li(t). Based on the

2In case that storage is connected to the distribution feeder
(Figure 1a), a loss of load might happen whenever storage is
depleted and the aggregate demand exceeds the transformer
capacity.
3For generality, the figure shows a transformer that is associ-
ated with storage of capacity B Watt-hours and a power con-
version system, marked ‘PCS’, that charges storage when-
ever the aggregate load is smaller than C at rate C−

∑
i Li(t)

and meets demand from storage whenever the aggregate load
exceeds C at rate

∑
i Li(t)− C.

4Li(t) represents the total power available to a resistive load.
In a three-phase electric power system it is equal to the
instantaneous total power consumed by a three phase load.
5Note that, if λ = E(

∑
i Li) is the average service rate then

typically, for this queueing system, C > λ, i.e., we have a
finite queue with a utilization factor ρ > 1.
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Figure 1: The storage system and a small network.

above intuition, our plan of attack is to show that we can
replace the study of M1 with the study of M2, permitting
the use of teletraffic analysis.

We denote the amount of work buffered in the M1 sys-
tem (i.e., its workload) at time t by W (t) and similarly the
amount of work buffered in the M2 system at time t by W (t).
The workload trajectory is defined as a specific realization of
the workload process. Our main theoretical result is the fol-
lowing Equivalence Theorem:

Equivalence Theorem Every workload trajectory in the
M1 queuing system corresponds to an equivalent trajectory
in the M2 queuing system such that ∀t,W (t) +W (t) = B.

To prove the theorem, we start with the following lemma.

Lemma 1 For any fixed t∗, we have dW (t)
dt
|t=t∗ = − dW (t)

dt
|t=t∗

if W (t∗)+W (t∗) = B, and W and W are both differentiable
at t∗.

Proof: First consider the rate of change of the workload
of M1 at time t. The buffer is filled/drained at the rate
C −

∑
i Li(t), until it becomes full/empty. We write this as:

dW (t)/dt =


0 if W (t) = B and C >

∑
i Li(t),

0 if W (t) = 0 and C <
∑
i Li(t),

C −
∑
i Li(t) otherwise

(1)
Similarly, consider the rate of change of the workload of M2

at time t. The buffer is filled/drained at the rate
∑
i Li(t)−

C, until it becomes full/empty. We write this as:

dW (t)/dt =


0 if W (t) = B and C <

∑
i Li(t),

0 if W (t) = 0 and C >
∑
i Li(t),∑

i Li(t)− C otherwise

(2)
Comparing equations (1) and (2), it can be concluded that
dW (t)
dt
|t=t∗ = − dW (t)

dt
|t=t∗ given that W (t∗) + W (t∗) = B,

and W and W are both differentiable at t∗. We note that W
and W may be merely right- or left-differentiable at count-
ably many points; however, the lemma holds for the right-

Y-Axis

tt3 t4t1 t2

B

W

t*t0

Figure 2: Workload of M1 and M2 systems. The
dashed line and the solid line represent W (t) and
W (t) respectively.

or left-derivatives of W and W at these points. 2

Let the initial workload state in M1 be W (t0). Then,
in M2, we set the corresponding initial state to W (t0) =
B −W (t0). In the following lemma we show that the evolu-
tion of the workload in M1 and M2 is such that we always
have W (t) +W (t) = B.

Lemma 2 If W (t0) +W (t0) = B, then we have W (t∗) +
W (t∗) = B for all t∗ > t0.

Proof: Let t2i−1, i = 1, 2, · · · , be the ith time in the
interval [t0, t

∗] that storage becomes either full or empty and
stays persistently in this state until t2i (Figure 2). Similarly,
we define t2i−1 to be the ith time that the buffer in the model
becomes either full or empty and persistently in this state
until t2i.

Since W (t) and W (t) admit a derivative at all but count-
ably many points on [t0, t

∗] (this is because W and W might
not be differentiable at ti and ti for i = 1, 2, · · · respectively),
a generalized version of the Fundamental Theorem of Cal-
culus allows us to write:

W (t∗)−W (t0) =

∫ t∗

t0

dW (t)

W (t∗)−W (t0) =

∫ t∗

t0

dW (t)



Using Lemma 1, we obtain dW (t)/dt = −dW (t)/dt at any
fixed point t that the derivative can be defined since it is
assumed that W (t0) + W (t0) = B. Thus, it can be readily
seen that W (t∗)−W (t0) = −(W (t∗)−W (t0)). Since we have
W (t0)+W (t0) = B, we can conclude that W (t∗)+W (t∗) =
B and the proof is complete. 2

Proof of the Equivalence Theorem
It follows from Lemma 2 that there is a one-to-one mapping
from trajectories of the M1 queuing system to trajectories
of the M2 queuing system and that ∀t,W (t) +W (t) = B. 2

In light of the Equivalence Theorem, we postulate that
the stationary buffer underflow probability in M1 can be
approximated by the stationary overflow probability in the
equivalent fluid queue, M2. The latter probability has been
thoroughly investigated in teletraffic theory.

In the following section, due to lack of space, we only focus
on the bufferless case, i.e., we assume that the distribution
branch has no storage. Specifically, we investigate ways to
compute the overflow probability which corresponds to the
transformer overloading probability.

4. TELETRAFFIC ANALYSIS
This section briefly states standard results from the theory

of large deviations that enables us to study the asymptotic
behaviour of a tail probability of the sum of independent ran-
dom variables. Specifically, we want to compute approxima-
tions for the overflow probability (i.e., the probability that
the aggregate load is larger than the transformer capacity,
C) under the assumption that the arrivals are Markovian.
We validate our use of teletraffic theory in Section 7.

We make the technical assumption that each individual
load Li(t) is stationary and Markovian. Let Yi be this sta-
tionary distribution. Let Y be the stationary distribution
of the aggregate load. Without storage, C has to be dimen-
sioned so as to allow for large variations in the aggregate load
(i.e., peaks). Typically, our requirement is that the overflow
probability in the original system is less than a desired small
value ε, which corresponds to the LOLP target of 2.7×10−4.

We can write our requirement as:

logP (Y ≥ C) ≤ −β = log ε (3)

Following Kelly [22], we use Chernoff’s bound to obtain an
upper bound on (and an approximation for) the overflow
probability:

logP (Y ≥ C) ≤ logE[esY ]− sC

≤ inf
s
{logE[esY ]− sC}

where s ≥ 0 is a free parameter and logE[esY ] is the loga-
rithm of the moment-generating function of Y . The effective
bandwidth [22] of a source with the stationary fluid genera-
tion rate Y is defined as:

α(s) =
1

s
logE[esY ] (4)

An improved approximation for the loss probability can
be derived using the approach of El Walid et al [17]:

P (Y ≥ C) ∼ es
∗(α(s∗)−C)

s∗(2πσ2(s∗))
1
2

as C →∞ (5)

where s∗ is a point where s(α(s) − C) attains its infimum,
and σ2(s) is defined as follows:

σ2(s) =
∂2

∂s2
(sα(s))

Hence, given the aggregate load Y , C can be computed so
that the overflow probability is less than ε.

We are also interested in understanding how a mix of loads
can impact the sizing of the transformer. Assume that loads
belong to N classes where all loads in a class are i.i.d. and
loads from different classes are mutually independent. Then,
if αi(s) is the effective bandwidth of a home in class i and
ni is the number of homes in class i, the aggregate effective
bandwidth is

α(s) =

N∑
i=1

niαi(s) (6)

Therefore, if we approximate logP (Y ≥ C) by infs{s(α(s)− C)},
the capacity region; i.e., the values of C that satisfy (3), will
be:

Capacity region = {C| inf
s
{s(

N∑
i=1

niαi(s)− C)} ≤ −β}

(7)
This is an asymptotic formula, i.e., the formula is valid un-
der the assumption that the total number of sources is large
and we are interested in the tail of the distribution. In the
following sections, we size distribution transformers by us-
ing this formula and validate our sizing approach using our
measurements.

5. MEASUREMENT AND CLASSIFICATION
OF HOME LOADS [6]

Obtaining an accurate model for electricity demand of a
house is essential in estimating the overflow probability and
sizing transformers consequently. In this section we present
our testbed and explain how we obtain load measurements.
These measurements are used in Sections 6 and 7 to con-
struct load models and perform numerical simulations re-
spectively. We also introduce a home classification scheme
developed by an electric utility. This classification allows us
to construct different models for different types of houses.

5.1 Obtaining Real Demand Workloads
Our first step is to obtain real measurements of electrical

load. In this paper, we focus on residential loads rather than
commercial or industrial loads.

Detailed models for residential loads have been presented
in the power engineering, environmental studies, and civil
engineering literature [30, 8, 10, 28]. However, these models
suffer from two problems. First, the data sets on which these
models are based are not publicly available. Second, to the
best of our knowledge, existing models group all homes into
a single class. Our measurements show significant differences
in demand behaviour at different homes. Therefore, it would
be better to model each class of home differently, which is
the approach that we follow in our analysis. This is also the
approach followed by electric utilities.

To obtain our own load data set, we built a testbed to mea-
sure aggregate loads at 20 homes. We deployed measurement
nodes at 19 houses and one home-based small business cov-
ering a range of living area sizes, number of occupants, ap-
pliances, and energy consumption patterns. For the purpose
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Figure 3: Load measurements from houses in three classes for one week with busy hours marked by vertical
lines.

of our small pilot study, we used a convenience sample rather
than a stratified random sample. Our methodology general-
izes to samples chosen using standard population sampling
techniques [13].

Each measurement node consists of a Current Cost Envi
device [2] and a netbook. The Envi device measures the
power consumption of a house every six seconds and stores
it locally in flash memory6. A script on the netbook queries
the device every six seconds to obtain an XML file that it
stores on disk. This is uploaded using a secure SSL connec-
tion to a server in our lab once a day. To preserve privacy
of the participants in our study, logs are anonymized before
being stored in a secure directory on the file server.

Typical loads from three of four types of houses for one
week are shown in Figure 3, with the busy hours (defined in
Section 6.1) marked with vertical lines.

5.2 Classifying Home Loads
Home electricity loads are highly variable and depend on

factors such as the number of occupants, the time of day,
the season, mean household income, and the types of appli-
ances commonly in use in the geographical area. Given this
variability, choosing a classification for home loads is a chal-
lenging task. Fortunately, standard rules based on decades of
field experience allow an electric utility to both predict and
classify a home load based on a few simple parameters. We
obtained such a parametrization, specifically used for trans-
former sizing, from a major utility in our area (Table 1). The
key sizing parameters are the house size and the nature of
the heating and cooling systems, which constitute the major
loads in our geographical area. These are used to compute
a ‘unit value’ that represents the load expected from that
home. To minimally impact participant privacy, we asked
each participant to tell us their home’s unit value computed
using this table. We then placed homes with the same unit
value in the same class. Table 2 shows the four classes so
obtained.

6. LOAD MODELLING AND TELETRAFFIC-
BASED SIZING

This section describes our approach to sizing transform-
ers using teletraffic theory. Our overall approach is to con-
struct Markovian reference models of electrical loads (one

6Consequently, the device does not capture load transients
that last shorter than this time.

Type of Heating
House Size

100m2 200m2 300m2 400m2

Baseboard electric heat 3.0 4.0 5.0 6.0
Central electric heat 4.0 5.0 6.0 7.0
Gas/oil heat, no central A/C 1.0 1.5 2.0 2.5
Gas/oil heat, central A/C 1.5 2.5 3.5 4.5

For town or row houses, multiply the unit value by 0.8.

Table 1: ‘Unit values’ assigned to customer homes
by a major utility.

Class Unit value Number of houses
1 1.2 8
2 2.5 7
3 3.5 3
4 4.5 2

Table 2: Number of homes in our experiment within
each class.

per class) from the real measurements of the loads. We then
compute the effective bandwidth of each Markovian model
so obtained and use it in the teletraffic-based sizing of trans-
formers.

An overview of our approach is shown in Figure 4. We
explain the details of this approach in the remainder of this
section.

6.1 Assumptions for Teletraffic-based Sizing
Using teletraffic theory to size transformers has several

advantages over an empirical approach based on numeri-
cal simulations. Applying the theory allows us to readily
compute the effect of varying the number of homes, or the
proportion of the homes in each class, without having to re-
compute or re-measure the aggregate load and run onerous
numerical simulations.

To gain these advantages, however, we need to make some
assumptions about our classification scheme and the nature
of electrical demands. These are:

1. Household energy demands can be categorized into a
few distinct classes corresponding to sampling strata,
where demands within a class are homogeneous and
the classes are mutually exclusive.

2. The homes selected for measurement in our study are
a representative random sample of their assigned class.

3. The electrical demand during the busy hour (defined
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Figure 4: An overview of our teletraffic-based sizing approach.

below) at each home is a conservative upper bound on
its demand.

4. The cumulative busy hour trace (CBHT) of a home
(defined below) represents the typical busy hour de-
mand of a home.

5. CBHTs from different homes in the same class can be
concatenated to represent the aggregate demand from
the class. We call the concatenated cumulative busy
hour traces the CCBHTs.

6. CCBHTs are independent.
7. CCBHTs are adequately represented by a k-state con-

tinuous time Markov model, where the value of k is
not necessarily the same for all classes. This implicitly
assumes that busy hour behaviour is stationary and
ergodic.

8. Asymptotic limits can be used even for the fairly small
number of homes and CCBHTs in our study.

We note that using the busy hour to size the system is
the standard approach used in telecommunication systems.
This is the one-hour period during which a home uses the
most energy (it may or may not include the daily peak power
point). It is generally accepted that a sizing that is based on
the busy hour alone is more conservative than that using
the entire day and therefore provides a sufficient cushion
against measurement bias and lack of complete measurement
data7. Note that it is also a common practice among electric
utilities to perform statistical analysis of the load demand
using the half-hourly or hourly electrical demand with the
highest energy consumption [20].

Our methodology for the teletraffic-based sizing is as fol-
lows. First, based on Assumption 3, we find the busy hour

7Note that using busy hour traces instead of entire 24-hour
traces results in smaller pairwise correlations between CCB-
HTs, in line with Assumption 6.

for each home for each day. This is the one-hour period with
the maximum area under the power consumption profile.
Usually, the busy hour happens during the peak hours, i.e.,
7am-11am and 5pm-9pm during the winter8. We call the
load during the busy hour for a home as its ‘Busy Hour
Trace’ or BHT. Second, we concatenate the BHTs of each
home for a specific number of days to obtain the cumulative
busy hour trace (CBHT) for that period9. This represents
the typical peak demand of the home according to Assump-
tion 4. Third, based on Assumption 5, we concatenate CB-
HTs of homes in the same class to get the concatenated
CBHT (CCBHT) of that class, which represents its busy
hour behavior. We use concatenation to make sure that a
CCBHT reproduces the loads of all homes within that class.
Figure 5 shows the typical CCBHT of three of four classes in
our measurement study. Fourth, as described in Section 6.2
we use Assumption 7 to extract a Markov model for each
class. These Markov models are building blocks of the tele-
traffic sizing algorithm described in Section 6.3.

We jointly validate Assumptions 4-8 by comparing the loss
duration predicted by teletraffic analysis to the one com-
puted by numerical simulation in Section 8. Note that the
last three assumptions are technical assumptions needed for
teletraffic analysis.

6.2 A Markovian Model for the Load Demand
Home loads arise from the superposition of loads from dif-

ferent electrical appliances [30]. Both the literature and our
observations suggest that each appliance can be modelled
as a multi-level ON-OFF source. An appliance i consumes

8All our measurements have been obtained during the win-
ter.
9Note that the length of this period is not necessarily equal
to the length of load traces used in numerical simulation.
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Figure 5: CCBHTs for three classes for one week.

Pi
k watts when in the kth ON state, and 0 when it is OFF.

Therefore, it is reasonable to model the power consumption
of a home (i.e., a random superposition of different appli-
ances) as a k-state continuous-time Markov process. How-
ever, this still leaves the assignment of power levels to the
Markov states and choosing the value of k open.

To address these issues, we use the k-means clustering
algorithm to cluster the CCBHT for each class into k lev-
els. Using these levels, we construct a modified CCBHT by
substituting a measured power consumption value with the
value of the center point of the cluster that it belongs to.
Since k is an unknown, to determine the appropriate value
of k for each class, we run the clustering algorithm with dif-
ferent values of k. Then we use the goodness-of-fit metric
introduced in [6] to find the minimum number of states nec-
essary for representing the home load of a class in a period.

6.3 The Teletraffic-based Sizing Algorithm
Given the set of Markov models, one for each class, using

teletraffic theory to compute sizing (i.e., the value of C for a
given ε) requires four additional steps. First, we compute the
power consumption rate matrix, R, and the intensity matrix,
Q, of each class from its modified CCBHT as follows. The
rate matrix represents the amount of power consumed by
houses in each state. Values of the center points of the clus-
ters (in the clustered CCBHTs) that are found for a given
value of k are elements of the power consumption rate ma-
trix, R. The intensity matrix specifies how fast the amount
of power consumption is changed. We construct the inten-
sity matrix of the Markov models by finding the average
time that it takes to transition from state i to state j, which
gives us 1/qij (qijs are elements of the intensity matrix, Q).

Second, from the Q matrix we compute the stationary
probability distribution of the continuous-time Markov pro-
cess. Suppose that πi is the stationary probability of being
in state i, the moment generating function of the stationary
power consumption of a Markovian source is then

M(s) =
∑
i

πie
sri (8)

where ri is the power consumption in state i.
Third, using the moment generating function of a Marko-

vian source we can derive a formula for the effective band-
width (see Equation 4). El Walid et al prove that the effec-
tive bandwidth of a Markovian source is the maximal real
eigenvalue of the matrix Rd− 1

z
Q, where Rd = diag(R) [18].

Finally, in the fourth step, using Equation (6) we compute
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Figure 6: An overview of our validation approach.

the aggregate effective bandwidth of a given load mix10 and
we use the approximation in (5), to find the minimum value
of C such that for this load mix, the loss probability is less
than a specific value.

To sum up, once we have constructed the Markov models
(one per class), we can use these models in teletraffic-based
sizing of distribution transformers for any residential neigh-
bourhood in our geographical area. The only thing we need
to know about this neighbourhood is its load mix.

7. VALIDATION
We have already described our assumptions about the na-

ture of the electricity demand (including stationarity and
pairwise independence) needed to use teletraffic theory. Are
the results of teletraffic analysis really applicable to the elec-
trical grid? This section describes our approach to answering

10A load mix specifies the number of houses in each class.
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this critical question. An overview of our approach is shown
in Figure 6.

Our general approach is to use our load measurements
as well as synthetic load traces generated by the simulator
developed at the University of Loughborough [30] (described
in Section 8) in a numerical simulation to determine the
duration of load disruption corresponding to a transformer
sizing obtained using teletraffic theory. We then validate our
use of teletraffic theory by checking that this duration is
indeed lower than the LOLP target.

To find the duration of load disruption we use the fol-
lowing methodology. First, we sum the load traces over a
period of time (preferably different from the period used for
creating the load models) to find the aggregate power con-
sumption. A typical aggregate load is shown in Figure 7.
Second, given the aggregate load, a straightforward numer-
ical simulation suffices to determine the aggregate duration
of power outage corresponding to a particular transformer
sizing. This simulation compares the aggregated load with
the transformer size and records the transformer overload-
ing durations, allowing us to empirically estimate the loss
of load probability. The result of this numerical simulation
is compared with the LOLP target used in teletraffic-based
sizing in Section 8.

8. RESULTS
We present our results in two parts. First, we validate our

use of teletraffic theory by comparing the aggregate dura-
tion of power outage, for a particular sizing, obtained using
numerical simulations and teletraffic analysis. Second, we
compare the sizing obtained from our model with what is
obtained by using the guideline of a major electricity utility
in our geographical area.

8.1 Comparing Results from Numerical Sim-
ulation and Teletraffic Theory

We use both teletraffic theory and numerical simulations
to compare the expected aggregate duration of power out-
age for the set of 20 homes in our measurement study. Our

LOLP Transformer size
Teletraffic
theory

Numerical
simula-
tion

(kVA) (Seconds) (Seconds)

10−3 103.25 1209.6 0
2.74× 10−4 107.27 331.4 0
10−5 116.03 12.1 0
10−7 125.75 0.1 0

Table 3: Loss duration for 14 days of measurements
conducted in 20 houses. Teletraffic analysis is based
on busy hour traces.

teletraffic-based sizing results are from the concatenation of
the busy hour traces extracted from a week of measurement.

For particular values of LOLP and the load mix of Ta-
ble 2, we compute the value of C, as shown in Table 3. We
convert the transformer size obtained from teletraffic anal-
ysis from Watt to Volt-Ampere (VA) by dividing it by the
power factor; following convention we set the power factor
to 0.9 for this residential neighbourhood [27].

Given the value of C, we use numerical simulation to com-
pute the actual duration of load disruption. The length of
load traces used in the numerical simulation is 14 days. This
is a fair evaluation because these days do not overlap the
days used to extract the model parameters. Table 3 com-
pares the loss of load duration predicted using the two tech-
niques for different values of LOLP. We see that the pre-
dictions from theory are an upper bound on the simulation
results.

To compensate for the limited duration of our trace and
to additionally validate our approach when the number of
homes is relatively large, we synthetically generate the elec-
tricity demand for 100 homes for 100 days using a 1-minute-
grain simulator developed at the University of Loughbor-
ough [30]. This electricity demand generator has been shown
to closely approximate real domestic demands. To generate
this synthetic trace, we choose all homes to have four occu-
pants and a randomly selected mix of appliances. All other
values were those set by default including the occupancy
pattern. The subsequent modelling and analysis of this data
set is identical to that used for our own data set. However,
it represents both a homogeneous load population as well
as a much longer CCBHT for load modelling. For the in-
dustry standard LOLP of 2.74× 10−4, the transformer size
should be 636.35 kVA according to the teletraffic analysis.
The overflow duration determined by the numerical simula-
tion is 0, whereas the teletraffic analysis predicts 39.46 min-
utes of overflow. We again see that predictions from teletraf-
fic analysis are consistent with (and overestimate) ground
truth.

8.2 Comparing Our Sizing with Industry Prac-
tice

The transformer sizing rules used by a major utility in our
geographical area are shown in Table 4. We now compare the
sizing obtained by using our analysis and these rules.

The total unit value of the 20 homes in our study is 46.6.
Thus, for the industry standard LOLP of 2.74 × 10−4 the
transformer size is 100 kVA. From Table 3, we predict that
for the same LOLP with no storage, the transformer size
should be 107.27 kVA. This is in excellent agreement with
the heuristics used by the utility. This indicates that a care-
ful load modelling based on measurements matches heuris-



Total unit value Transformer size (kVA)
1-3 10
4-9 25

10-24 50
25-36 75
37-50 100
51-88 167

Table 4: Transformer sizing rules used by a major
utility.
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Figure 8: Comparison of the teletraffic-based sizing
with the sizing guideline of a utility for a homoge-
neous load population.

tics developed over decades of field experience, validating
our analysis. Note that had the sum of unit values been
even slightly larger (greater than 50), the industry heuristic
would have advocated a size of 167 kVA, which would have
been about 56% greater than what is strictly necessary to
meet the LOLP, according to our analysis.

We also compare our proposed sizing with the sizing sug-
gested by the utility for a homogeneous load population.
For this purpose, we consider different neighbourhoods com-
prised of 10 to 35 homes, all from Class 2, i.e., the unit value
of each home is 2.5. We use the Markov model constructed
for this class in Section 6.2 to compute the aggregate ef-
fective bandwidth and the corresponding transformer sizing
for different number of homes using the industry standard
LOLP. Figure 8 depicts that the sizing obtained by using
teletraffic theory closely matches with the utility’s sizing
rules (Table 4).

9. RELATED WORK
Teletraffic theory has been used extensively in call ad-

mission control in ATM networks [24, 18, 17, 12], and in
sizing buffers in Internet routers [5, 19]. We used that same
approach in this paper and in [7] to size transformers and
storage in the grid. However, our work is different from their
work in that the requirements of the grid are different from
QoS requirements of the Internet. For example, the grid does
not care about delay and jitter.

Transformer sizing in the electrical grid is usually studied
in the context of overall distribution system planning. The

standard approach to solve the problem is to use linear op-
timization when loads are modelled using only their peak
values, ignoring temporal variations [4, 16]. Another set of
approaches are based on using the estimated load profile of
a transformer to model the temperature rise and estimate
the transformer loss of life. The load profile that is used in
this process is the estimated load of the two peak days in
summer and winter [31], the estimated load profile based on
long-time measurements of transformer loading such that
the probability that the load demand exceeds this load pro-
file is less than a given value [21], or the estimated load using
fuzzy load models [11].

Storage can be used both to smooth out variations in de-
mand, as well as variations in supply, especially in the con-
text of variable-rate generation by wind turbines and photo-
voltaic cells: see Divya and Ostergaard [15] and Deshmukh
et al [14] for further details and a survey of current work
in this area. To the best of our knowledge, most prior work
on the effect of storage in the power grid has been on the
supply side, and has not used concepts from teletraffic the-
ory. The line of work closest to ours is by Le Boudec and
Tomozei [25]. They use min-plus system theory to size the
battery, and schedule its operation such that it can be guar-
anteed that the inflexible load is always satisfied. However,
this is different from our work as their model does not in-
clude transformers and renewable sources.

10. DISCUSSION AND FUTURE WORK
Our work has made a number of simplifying assumptions.

First, we have already noted that teletraffic design rules are
meant to be used in the asymptotic regimes for the number
of houses, and transformer capacity. Although the conditions
under which using asymptotic results are valid are arguably
achieved for the transformer size (104 VA) in our measure-
ment study, they are certainly not achieved for the number
of houses. Therefore, we caution the use of these rules for
small distribution networks: they are far more applicable
deeper in the distribution tree. Unfortunately, lacking data
from a sufficiently large number of houses, we were forced
to apply our techniques to the small-n regime.

Second, although our work was motivated by the need
to re-examine transformer sizing guidelines when storage is
available and the need to develop a storage sizing guide-
line to firm up intermittent renewable generation, this paper
does not deal with this issue. We believe, however, that other
teletraffic models can be used to study grid-connected re-
newable generation and distributed energy storage systems.

Despite these limitations, we believe that the use of tele-
traffic analysis to model and size electrical grids represents
an exciting area of multi-disciplinary work. Specifically, in
this paper we do not deal with the problem of storage siz-
ing in the electrical grid. However, the Equivalence Theorem
allows us to compute the storage underflow probability [7]
which allows us to jointly size transformers and storage in
the distribution network. We also hope to use our approach
in the future to answer questions such as:

• If home-owners also own electric vehicles so that there
is storage at each home, is shared storage in the dis-
tribution system necessary or cost effective?
• How much fast-response storage must be installed at

distributed generation sites to make intermittent en-
ergy sources dispatchable?



11. CONCLUSION
We study multiplexed loads in the electrical grid and re-

visit the rules for sizing a transformer in a distribution net-
work. Instead of modelling loads by their peak values our
work presents a new approach to define design rules for dis-
tribution systems. The basis of our work is the Equivalence
Theorem, which permits us to apply teletraffic analysis to
size transformers, storage, and renewable energy sources in
the grid. We validate our approach by using our own mea-
surement data as well as synthetic data. Our results show
that our approach is in good agreement both with numerical
simulations and industry practice.
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