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ABSTRACT
Unlike prior work on demand management, which typically
requires industrial loads to be turned off during peak times,
this paper studies the potential to carry out demand re-
sponse by modifying the elastic load components of com-
mon household appliances. Such a component can decrease
its instantaneous power draw at the expense of increasing
its duration of operation with no impact on the appliance’s
lifetime. We identify the elastic components of ten com-
mon household appliances. Assuming separate control of an
appliance’s elastic component, we quantify the relationship
between the potential reduction in aggregate peak and the
duration required to complete the operation of appliances in
four geographic regions: Ontario, Quebec, France and India.
We find that even with a small extension to the operation
duration of appliances, peak demand can be significantly re-
duced in all four regions both during winter and summer.
For example, during winter in Quebec, a nearly 125 MW
reduction in peak demand can be obtained with just a 10%
increase in appliance operation duration. We conclude that
exploiting appliance elasticity to reduce peak power demand
should be an important consideration for appliance manufac-
turers. From a policy perspective, our study gives regulators
the ability to quantitatively assess the impact of requiring
manufacturers to conform to “smart appliance” standards.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Model Validation and
Analysis
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1. INTRODUCTION
The generation and transmission infrastructure in the power

grid is provisioned at a great cost for rarely-occurring de-
mand peaks. For example, in 2006, about 7% of Ontario’s
generation capacity was idle 99.6% of the time. The On-
tario Power Authority estimates that a reduction of peak
electricity demand by 7,100 MW on a base of 27,000 MW
could result in savings of up to $27 billion over 20 years [18].

This problem is well understood: utilities already imple-
ment demand response schemes to shave peak demand from
industrial customers. However, demands from the residen-
tial sector in regions such as Ontario, Quebec, France and
India represent about one third of overall demand in each
region [23, 1, 6, 8]. Moreover, it is expected that the de-
mand from the residential sector will continue to rise. In
United States, for example, it is projected that residential
electricity consumption will increase by an additional 68%
from 2003 to 2025 [10]. Therefore, there is an urgent need
to study demand reduction in the residential sector. Res-
idential electricity demand primarily arises from a handful
of power-hungry appliances. Most such appliances have an
elastic load component that can decrease its instantaneous
power draw, at the expense of increasing its duration of oper-
ation, with no impact on the appliance’s lifetime. Examples
include resistive heating elements and energy storage com-
ponents. Assuming separate control of elastic components of
an appliance, decreasing the load when elastic components
are active can reduce demand peaks.

Although this idea is simple, quantifying the potential
gains from appliance elasticity, necessary to determine if
modifying appliances is worth the effort, is complex. This is
because the gain depends on the appliance mix in a particu-
lar region, the number of elastic phases in these appliances,
the amount of power consumed during elastic phases, the us-
age patterns of these appliances, and the level of consumer
tolerance to the extension of the operation durations of ap-
pliances. To rein in this complexity, we focus our attention
on four regions: Ontario, Quebec, France and India. We
gather a comprehensive data set on the common appliances,
penetration rates, load profiles, and usage patterns for these
regions. This allows us to use simulations to estimate the
reduction in the peak demand as a function of the operation
duration extension factor in each of the four regions.

We find that even with a small extension to the operation
duration of appliances, peak demand can be significantly re-
duced in all four regions both during winter and summer.
For example, we find that during winter in Quebec (when



the peak typically occurs), there can be a nearly 125 MW
reduction in peak demand with just a 10% increase in the
duration of operation of household appliances. Interestingly,
during summer, this reduction is over and above that can be
obtained by careful scheduling of residential air condition-
ers [26].

Our results have practical implications. Appliance man-
ufacturers typically focus on energy efficiency rather than
peak-power reduction. We show that reducing power con-
sumption peaks is both feasible and effective. From a policy
perspective, our study gives regulators the ability to assess
the impact of requiring manufacturers to reduce peak power
and build appliances that provide separate control of elastic
load components.

Our main contributions are that we have:

• Identified the elasticity property of appliances that al-
lows the reduction of the instantaneous power drawn
with a quantifiable impact on the appliance operation
duration and no impact on their lifetime.

• Provided a detailed taxonomy of the ten most common
household appliances with respect to their elasticity.

• Collected, analyzed and compared a comprehensive
dataset on the types of appliances used, penetration
rates, load profiles of appliances and usage patterns
for Ontario, Quebec, France and India.

• Quantified the impact on peak power demand reduc-
tions for Ontario, Quebec, France and India as a func-
tion of the appliance operation duration extension fac-
tor via simulations.

• Validated the simulations through detailed probabilis-
tic computations.

The remainder of this paper is organized as follows. An in-
depth overview of appliances is presented in Section 2. The
assumptions underlying our work are explicitly presented
in Section 3. We present in Section 4 the method used to
shape appliance power usage to best take advantage of the
extension in the duration of operation of elastic components.
Section 5 presents evaluation methodology and the data sets
used in our work. The results of our work quantifying the
range of peak demand reductions that can be expected for
Ontario, Quebec, India and France are presented in Section
6. We discuss related work in Section 7 and the paper is
concluded in Section 8.

2. APPLIANCES - A TAXONOMY
In this section, we present an in-depth view of the inner

workings of typical household appliances. We first define the
four main classes of components that can be present in appli-
ances. Then we examine ten common household appliances
and identify their elastic components.

2.1 Components of Appliances
There are four main classes of components present in to-

day’s appliances [25]. These are purely resistive elements,
motors, electronic devices and energy storage systems.

Purely resistive components contain a heating element
that generates heat directly proportional to the amount of
electrical energy passed through the coils. These types of

components are very tolerant to variations in power and fre-
quency. The heating elements can only be damaged due to
overheating and wear if exposed to very high power. Oth-
erwise, the heat or light output is reduced. For example,
lights will be dimmed at lower power and heater will pro-
duce less heat. Importantly, there is no impact on the life-
time of purely resistive components when the power drawn
is reduced.

A motor, in simplistic terms, is a generator operating
backwards. It is present in virtually any appliance that con-
verts electrical energy to mechanical energy. The most com-
mon motor type found in today’s households is an induction
motor. Unlike purely resistive loads, motors are sensitive to
fluctuations in power. Excessive heating of the coils caused
by these fluctuations can result in the degradation of the
motor. This can be worsened due to the harmonic con-
tent introduced in the motors by these imbalances. Sudden
changes in power can also damage the motor controls.

Electronic Devices operate on low voltage Direct Current
(DC). Purely electronic devices require a small current to
operate because they do no significant physical work. The
sensitivity of these devices to power quality depends on the
type of loads the electronic devices are coupled with. A sim-
ple example is an LED clock that resets due to sudden power
transitions. Reducing these devices’ power consumption is
usually not necessary since they consume little power.

An example of a device containing energy storage is a
Plug-in Hybrid Electric Vehicle (PHEV). These devices dis-
charge their batteries during active periods. When con-
nected to the grid, the batteries can replenish their energy.
The charging can be done at different power levels without
damaging the batteries [20].

In our approach, we wish to modify the power consump-
tion of appliances when necessary. However, as outlined in
this section, certain components in appliances are sensitive
to variations in power supplied. It is clear that only compo-
nents falling under the purely resistive and energy storage
classes will experience no lifetime or reliability impact from
such variations. We will refer to a period having such a
component active to be an elastic phase.

2.2 Identification of Elastic Phases in Appli-
ances

We now identify the common household appliances that
are major consumers of power, examine their operating cy-
cles and identify the elastic phases in these cycles, if any.

The internal workings of appliances can differ according to
the region. For example, dishwashers can use a local heat-
ing element to heat water or can directly draw hot water
from a central water heater which may use gas for heating.
Typically, the type of appliance used in a region is uniform.
The Smart-A project has identified the following ten appli-
ances as common domestic loads: washing machine, tum-
ble dryer, dishwasher, oven, stove, refrigerator, freezer, air
conditioner, water heater, and space heater [24]. Although
PHEVs will become an integral part of a household in the
near future [13], we do not include it in our study because
it does not have a noticeable penetration in today’s house-
holds. We next provide an overview of the various compo-
nents present in these appliances.

A washing machine (WM) consists of a tub, drum, and
either a heating element and water pipes or hot and cold
water pipes. The drum is spun at high speeds with an in-



duction motor (an inelastic component) for the rinse and
wash cycles. Some washing machines use a local heating
element (elastic component) to heat water to temperatures
depending on the cycle selected by the consumer. The heat-
ing element typically consumes 2000W when active and is
the most power demanding component [24]. Elastic phases
occur whenever the heating element is active. The other
washing machines mix hot water obtained from a central
water heating system with cold water to achieve the desired
temperatures. These washing machines do not have any lo-
cal elastic components and the average power consumed is
around 500W during operation [2].

A tumble dryer (TD) consists of a drum and a purely re-
sistive heating element. The drum is spun with an induction
motor which consumes low power. The heating element is
used to heat up the air. This hot air is passed over the wet
laundry and the humid air is passed out into the ambient
environment. The heating element which is the only elastic
component in the dryer uses the highest power. For exam-
ple, a typical dryer in France has one elastic phase during
which the heating element consumes 2500W for about 45
minutes [24]. Since the drum and the heating element work
together, if the time taken to complete the drying is ex-
tended because the power consumed by the heating element
is reduced, the drum can continue to spin for the extended
time without significant impact as its power consumption is
a fraction of that required for the heating element.

A dishwasher (DW) consists of a rotor, a local heating
element and connection to water pipes (optionally connec-
tion to hot and cold water pipes). Some dishwashers use a
local heating element to heat water. Others mix hot water
drawn from a central water heating system with cold water
to attain desired temperatures. The rotor, operated by an
induction motor, sprays this water on the dishes. At the end
of a wash cycle, dishes are heated by the heating element to
very high temperatures to aid with the drying process. Elas-
tic phases occur whenever the heating element is active. The
heating element typically draws about 2000W [24].

An oven (O) and a stove (S) consist of a range which is a
purely resistive heating element that switches on and off to
maintain the heat specified by the consumer. The heating
element consumes about 1500W in a stove and 600 W in an
oven for about half of the cycles’ duration [24]. This is also
the maximum power consumed during the entire cooking
process operating cycle. Elastic phases in the stove and
oven occur whenever the heating element is active.

A refrigerator (RF), a freezer (F), and an air conditioner
(AC) consist of a compressor operated with an induction
motor that compresses heated refrigerant gas. These ap-
pliances have thermal inertia and their operation relies on
external temperatures and internal temperature setpoints.
The compressor needs to be on for at least 10 minutes to al-
low proper compression of gas. It cannot be on for too long
either as the heat produced due to compression can damage
the equipment. The compressor requires to be switched off
for a period to allow equalization of pressure. Due to the
sensitivity of the components present in these appliances to
power variations, we classify these appliances as having no
significant elastic component. ACs can be major contribu-
tors to peak load. An AC can consume more than 1700 W
in each cycle [24]. The power consumption of RF and F is
around 140W each and is not as high as that of an AC [24].

An electric water heater (EWH) and an electric space

Figure 1: Load profile of a dishwasher with a local
heating element for heating water.

heater (ESH) consist of a purely resistive heating element.
The heating element consumes about 2000W to 6000W for
the water heater and 8500W for the space heater [24]. The
actual power consumed depends on the type of heaters - cen-
tralized or standby. For heaters with storage, less power is
required. Elastic phases in both appliances occur whenever
the heating elements are active. The electric water heater
has one long elastic phase that lasts for 4 hours and other
short ones that lasts for about 10 minutes. These occur ap-
proximately every 3 hours. The electric space heater with
storage has one long elastic phase that lasts for about 4
hours. Its operation relies on external temperatures and the
indoor temperature setpoint.

We have included an example of a load profile for a dish-
washer that uses a local heating element for heating wa-
ter obtained from [24] in Figure 1 to illustrate the typical
power consumption of an appliance over time. The elastic
phases that occur during the operating cycle of the dish-
washer are also included in the diagram. Clearly, some of
the profiles are deterministic in the default mode of opera-
tion (e.g., WM, TD, DW) and others can vary depending on
external inputs (e.g., ESH with external temperature, EWH
with hot water consumption).

From the discussion above, we have observed that every
appliance has some combination of purely resistive, motor,
electronic and storage components. We have identified ap-
pliances that have significant elastic phases. It is clear from
the preceding discussion that the internal workings of ap-
pliances can vary from region to region and this can signifi-
cantly affect the peak reduction capacity of the area. We are
now ready to present the method used to select the reduced
power consumption profile of elastic appliances.

3. ASSUMPTIONS
Our study is motivated by the presence of elastic compo-

nents in many common household appliances. By reducing
the power consumed by appliances currently in an elastic
phase of their operation, instead of turning them completely
off, we expect a significant reduction in residential peak de-
mand with a much smaller impact on user comfort.

For the purpose of our study, we make three critical high-



level assumptions. First, we assume that it is feasible to
physically modify appliances to allow separate control of
their elastic components and that appliance vendors are ei-
ther motivated or compelled to do so. Second, we assume
that heating components of appliances are well insulated.
Therefore, if the power consumed by an elastic phase is
reduced by a factor β, the time required to complete the
phase increases in inverse proportion. Finally, we assume
that when the power to an elastic phase is reduced, this
does not affect the operation of inelastic components.

We also make the following technical assumptions. These
are not critical to our scheme, but are necessary only to
simplify analysis.

• We assume that the usage patterns of appliances are
the same across all regions.

• We assume that there are three classes of appliances.
Class 1 appliances operate once a day (e.g., the wash-
ing machine). Class 2 appliances operate in cycles over
a day (e.g., the refrigerator). Finally, class 3 appliances
operate more than once in a day but not cyclically (e.g.
water heater).

• We assume that appliances belonging to class 2 operate
continuously (worst-case use).

• We assume that households in all regions contain only
the appliances discussed in Section 2.2, so that we can
ignore the contributions of the less power-hungry ap-
pliances in our analysis.

• We assume that appliance load profiles used within a
region are the same but can differ across regions.

• We assume that in all regions considered in this study,
with the exception of India, electric space heaters are
used only during winter1.

• Conversely, during the summer, we assume that air
conditioners are used instead of space heaters (includ-
ing in India).

• We assume that air conditioners are not used during
winter in India.

• Since there is no penetration information for dryers or
electric cookers in India, it is assumed that clothes are
always air dried and alternate forms of cookers such as
gas cookers are used.

• Lacking penetration information for ovens and hobs in,
Ontario and Quebec, we assume that the penetration
rate for these appliances in these provinces is the same
as in France.

4. APPROACH
Given these assumptions, our approach is to propose a

modified load profile for appliances with elastic components
to minimize the peak power consumed during elastic phases
while continuing to meet time and energy constraints. Specif-
ically, the overall duration of operation of an appliance should
not exceed the nominal one by a factor greater than α and

1Most regions in India are tropical and do not require the
use of space heaters.

the overall energy consumed should be the same. We use an
optimization framework (described in Section 4.2) to achieve
this goal.

When appliances operate using this modified load profile,
they will be referred to as operating in a “reduced mode”.
Otherwise, these appliances will be operating in “regular
mode”. The objective of our study is to compare how much
peak reduction can be obtained when all elastic appliances
use the reduced mode instead of the regular mode.

Before discussing our proposed method for modifying the
load profile, we present the notation used in the remainder
of this paper.

4.1 Notation
We consider the 10 appliances presented in Section 2.2. To

identify the type of an appliance j, we define k = AppType(j)
which returns a value from the set {WM , TD, DW , O, S,
RF , F , AC, EWH, ESH}. The region in which an ap-
pliance j resides in is r = Region(j) which returns a value
from the set {O, Q, F , I} which represents Ontario, Quebec,
France and India. The fraction of homes in region r contain-
ing an appliance of type k is denoted as pr(k, r) and this is
the penetration rate. We assume that each appliance has a
“nominal” operating cycle used by all homes that have this
type of appliance. This nominal operating cycle is assumed
to be a succession of constant power phases (for example,
referring to Figure 1, the nominal operating cycle of a DW
has six phases, of which two are elastic).

Appliances of the same type from different regions can
have different load profiles. Let the total number of elastic
and inelastic phases in the nominal operating cycle of a type
k appliance in region r be m(k, r). Let the total duration
of a nominal operating cycle for an appliance of type k in
region r be ∆(k, r). Let the default duration of the `th phase
in the operating cycle of a type k appliance in region r be
δ(`, k, r). The power consumed in the nominal mode by a
type k appliance in phase ` from region r is P (`, k, r). The
time at which phase ` begins after the start of the operating
cycle of a type k appliance in region r is denoted t(`, k, r).
Let e(`, k, r) = 1 if phase ` in an appliance of type k in
region r is elastic, otherwise e(`, k, r) = 0.

The aggregate load in a neighborhood located in region
r with N homes at time t is denoted as A(N, t, r). This is
a random process representing the cumulative power drawn
by all N homes in region r at a time instant t.

Let ∆(k, r) denote the nominal operating cycle duration
of an appliance k in region r and let α denote the frac-
tional increase in this duration. Then, we call the quantity
b(α, k, r) = (α − 1) ∗ ∆(k, r) the delay budget that can be
used to extend the duration of the appliance’s elastic phases.
There are many ways to allocate this budget across the elas-
tic phases of an appliance k. We will now describe the one
that we have selected, which results in the largest peak re-
duction of the three methods that we analyzed2.

4.2 Power Reduction Method
In our proposed method, when the operation duration of

an appliance in region r is extended by a factor α, the power
consumed during elastic phases is adjusted so that the maxi-
mum power consumed during any elastic phase is minimized
according to the optimization problem P0(α, r) stated below.
Given r and α, the objective of our scheme is to minimize

2For reasons of space, we do not report the other two meth-
ods here.



the maximum power allocated to elastic phases so that time
and energy constraints are met.

P0(α, r) : min
{δ′(`,k,r)},{P ′(`,k,r)}

X

s.t e(`, k, r)P ′(`, k, r) ≤ X , ∀`, k (1a)

P (`, k, r) ≥ P ′(l, k, r) ≥ 0 , ∀`, k (1b)

δ(`, k, r) ≤ δ′(`, k, r) , ∀`, k (1c)

α∆(k, r) ≥
m(k,r)∑
`=1

e(`, k, r)
P (`, k, r)

P ′(`, k, r)
δ(l, k, r) , ∀k (1d)

δ(`, k, r)P (`, k, r) = δ′(`, k, r)P ′(`, k, r) , ∀`, k (1e)

where P ′(`, k, r) is the modified power consumption of appli-
ance k in region r during phase l. δ′(`, k, r) is the new time
required by appliance k belonging to region r to complete
phase `. Equation 1d represents the time constraint set by
α. Equation 1e ensures that the energy consumed by the
reduced mode remains the same as that consumed during
the regular mode.

By replacing P ′(`, k, r) by δ(`,k,r)P (`,k,r)
δ′(`,k,r) and X by 1

Y
,

the above optimization problem becomes the following linear
optimization problem P1(α, r) that can be easily solved.

P1(α, r) : max
{δ′(`,k,r)}

Y

s.t e(`, k, r)P (`, k, r)δ(`, k, r)Y ≤ δ′(`, k, r) , ∀`, k (2a)

δ(`, k, r) ≤ δ′(`, k, r) , ∀`, k (2b)

α∆(k, r) ≥
m(k,r)∑
`=1

e(`, k, r)δ′(`, k.r) , ∀k (2c)

5. EVALUATION METHODOLOGY
This section evaluates the potential for peak demand re-

duction in a neighborhood of N homes when all the appli-
ances in the neighborhood operate in reduced mode using
the optimization algorithm described in Section 4.2. We
define peak reduction gain as follows. Suppose that the
peak demand when appliances operate in the regular mode
is pLR(r) and the peak load when appliances operate in the
reduced mode is pLM (r), then the gain in peak reduction in

r is pLR(r)−pLM (r)
pLR(r)

.

We start by describing our data set in Section 5.1. This al-
lows us to estimate an upper bound on peak load reduction,
which we call the “peak demand reduction potential” of the
region, using probabilistic computations (Section 5.2). The
probabilistic method can become quickly intractable even
for small N . We therefore resort to Monte Carlo simula-
tions, as discussed in Section 5.3 for estimating the peak
demand reduction potential for a larger value of N that is
more realistic. To confirm the accuracy of results from sim-
ulations, we show in Section 5.4 that the results obtained
from simulations and computations are nearly identical for
small values of N .

Note that the true peak demand of a neighborhood is not
easily computed because of the presence of short-lived de-
mand spikes. To eliminate the effect of these spikes, we
pragmatically define the peak demand to be the largest ag-
gregate power demand that occurs with a probability of at
least 0.01%.

5.1 Data Set

Figure 2: Distribution of a washing machine being
on over a day.

The parameters used for all appliances in our computa-
tions and simulations are listed in Table 1. The load pro-
file of appliance k is specified in Table 1 with the triple
(e(k, r), P (`, k, r), δ(`, k, r)) for every phase `. The load pro-
files and penetration rates of appliances in Ontario are ob-
tained from [9], [17] and [2]. The data for Quebec is obtained
from [17] and [3]. For France, data is obtained from [24]. Fi-
nally for India, data is obtained from [4] and [15].

From Table 1, it is clear that there are variations in the
load profiles and penetration rates of appliances located in
different regions. These differences lead to differences in the
peak load reduction potential observed between regions. We
now highlight the major differences observed in Table 1.

Note that washing machines and dishwashers in Ontario
and India do not use a local heating element unlike those
appliances in Quebec and France and hence these appliances
are not elastic. The penetration rate of ACs in Ontario is
more than twice the rates in the other regions considered
in this study. Electric space heaters have a much higher
presence in Quebec compared to any other regions.

Recall that we have assumed that appliances of the same
type k, regardless of their region, have the same usage statis-
tics. Reference [24] reports the frequency of operation of ap-
pliances over 5 intervals in a day, obtained from a survey of
2500 consumers in 10 European countries. We convert these
statistics into a discrete probability distribution (pon(k, tn))
of a type k appliance being“on”over a day at the scale of one
minute by smoothing the discrete usage frequencies using a
low-pass averaging filter. Figure 2 illustrates the resultant
usage distribution of a washing machine.

Now that the data required to compute the peak reduction
for all regions considered in our study is available, we can
proceed to outlining how the peak reductions are obtained
for a given region. The peak reduction is the difference be-
tween the peak demands when appliances operate in a regu-
lar mode and the peak demands when appliances operate in
a reduced mode. In the regular mode each appliance follows
its default operating cycle. In the reduced mode, we assume
that an appliance of type k in an elastic phase ` will draw a
power computed according to P1(α, r) so that the total du-
ration of the operating cycle is now increased by a factor α.



We separately quantify the peak reductions for two seasons,
winter and summer.

5.2 Probabilistic Quantification
One method for obtaining the probability distribution of

the aggregate demand in a neighborhood belonging to re-
gion r is through a probabilistic computation. As shown
next, this computation is not tractable for large neighbor-
hood with homes containing multiple appliances.

Consider a neighborhood in France where every home con-
tains only one washing machine. A washing machine’s oper-
ating cycle consists of m(WM,F ) = 3 phases, one of which
is elastic. To simplify the derivation we introduce an “off”
phase corresponding to the time when the appliance is not
operating. The possible values that the aggregate load of a
neighborhood of N homes, each containing only a washing
machine, can take is C(N + 4− 1, N) (clearly some of these
values can be equal). The probability, p(WM, `, tn, F ), of a
washing machine being in phase ` at discrete time tn can be
computed as follows. The washing machine will be in phase
` at time tn only if it started its operation between [L,U ]
where L = tn − t(`,WM,F ) − δ(`,WM,F ) and U = tn −
t(`,WM,F ). Hence, p(WM, l, tn, F ) =

∑U
p=L pon(WM,p)

(with a slight abuse of notation).
At time tn, i` appliances are in phase ` for ` = 1, 2, 3, 4

(note that
∑4
`=1 i` = N), with probability of Π4

`=1

(
N
i`

)
∗

p(WM, `, tn, F )i` . The aggregate load in this case A =∑4
`=1 i` ∗P (`,WM,F ). From this expression, we can derive

the probability distribution of the aggregate load occurring
over a day. This allows us to compute the probability that
the aggregate load is greater than x over a day.

However, using this method to compute the probability
distribution of the aggregate load for a realistic neighbor-
hood is intractable. For example, consider 100 homes, each
containing only one appliance. Suppose this appliance has
only 4 phases (including the “off” phase in which the appli-
ance consumes 0W). Then there are 176,851 possible com-
binations to consider. In a realistic scenario, up to nine
appliances (in a season either the AC or space heater can-
not be used, hence the maximum appliances that can be
used in a region per season is nine), each with different load
profiles (and number of phases), may be active, making the
computation combinatorially intractable.

5.3 Monte Carlo Simulations
This section describes an implementation of a Monte Carlo

simulator to compute the probability distribution of the ag-
gregate load when appliances are in regular or reduced mode.
For every appliance in a neighborhood, start times are ran-
domly selected according to the probability distribution of
the appliance being active during the day. Appliances be-
longing to class 1 select this start time once over a day ac-
cording to their usage probabilities. Appliances belonging to
class 2 randomly select a start time in the“on” interval of the
cycle every time a new cycle begins. Finally class 3 appli-
ances randomly generate start times over a day according to
their usage probabilities. The aggregate demand trajectory
for a day is obtained by summing the load profiles of these
appliances shifted according to their start times. When reg-
ular mode is being simulated, nominal load profiles are used.
When reduced mode is simulated for a given α, load profiles
of appliances are modified according to P1(α, r). We run the
experiment for each scenario 1000 times for a given N , α,
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Figure 3: Comparison of percentage of peak reduc-
tion capacities during summer.

region and season. Then we present the averaged results.

5.4 Comparison between Methods
To validate the Monte Carlo implementation, we compare

results from the probabilistic computation and the Monte
Carlo simulation for N = 3 homes located in France. It
is assumed that these homes only contain a washing ma-
chine. For the computation, the derivation from Section 5.2
is used to obtain the probability distribution of all 20 possi-
ble aggregate loads for the neighborhood. The simulation is
conducted as discussed in Section 5.3. The values obtained
from the computation are treated as the “true” probability
and compared with the 95% confidence interval around the
mean probability value obtained from repeating the simu-
lation 1000 times. We find that the probability obtained
from the computation always lies within the 95% confidence
intervals, and moreover, the width of the largest confidence
interval is only 0.26% of the mean. We infer that, for this
case, the two methods used to compute the probabilities
are nearly identical, validating the Monte Carlo simulations.
Therefore, in the remainder of the paper, we present results
only from the Monte Carlo simulation.

6. RESULTS
We perform Monte Carlo simulations to obtain the peak

reduction gain for neighborhoods in each region containing
N = 100 homes, each home containing appliances according
to the penetration rates specified in Table 1. To understand
the tradeoff between peak reduction gain and α, the peak
load reduction in each region is computed when α is varied
from 1 to 2. The results for summer and winter in all four
regions are illustrated in Figure 3 and Figure 4.

Several interesting observations follow from Figure 3.

• France has the highest percentage of peak reductions
during summer (about 15% for an α value of 2. This
is probably because this region has 6 major elastic ap-
pliances that are active during summer and a low pen-
etration of (inelastic) ACs.

• India and Quebec have the next highest percentage of
peak reductions during summer. Note that the peak



k r Class pr(k,r) (%) Nominal Load Profile (in tuples of (e(k, r), P (`, k, r), δ(`, k, r)))
WM Ontario 1 85 [(0, 500W,30min)]

Quebec 1 90 [(1, 2000W, 15min), (0, 950W,15min), (0, 0W, 30min), (0, 300W,15min)]

France 1 95 [(1, 2000W, 15min), (0, 0W, 30min), (0, 300W,15min)]

India 1 95 [(0, 700W,30min)]
TD Ontario 1 35 [(1, 3000W, 45min)]

Quebec 1 29 [(1, 2200W, 45min)]

France 1 34 [(1, 2000W, 45min), (1, 1550W, 15min), (1, 1300W, 15min), (1, 950W, 15min)]

DW Ontario 1 60 [(0, 50W, 15min), (0, 500W, 15min), (0, 250W, 5min), (0, 125W, 5min)]
Quebec 1 55 [(0, 50W, 15min), (1, 2000W, 15min), (0, 50W, 45min), (1, 2000W, 15min),

(0, 250W, 15min), (0, 125W, 15min)]
France 1 50 [(0, 50W, 15min), (1, 2000W, 15min), (0, 50W, 45min), (1, 2000W, 15min),

(0, 250W, 15min), (0, 125W, 15min)]
RF Ontario 2 100 [(0, 130W, 15min), (0, 0W, 15min)]

Quebec 2 100 [(0, 130W, 15min), (0, 0W, 15min)]
France 2 100 [(0, 138W, 15min), (0, 0W, 15min)]
India 2 100 [(0, 200W, 15min), (0, 0W, 15min)]

F Ontario 2 54 [(0, 130W, 15min), (0, 0W, 15min)]
Quebec 2 51 [(0, 130W, 15min), (0, 0W, 15min)]
France 2 52 [(0, 138W, 15min), (0, 0W, 15min)]

AC Ontario 2 80 [(0, 2500W, 15min), (0, 0W, 15min)]
Quebec 2 47 [(0, 2500W, 15min), (0, 0W, 15min)]
France 2 12 [(0, 1700W, 15min), (0, 0W, 15min)]
India 2 17 [(0, 1700W, 15min), (0, 0W, 15min)]

O France 1 97 [(1, 600W, 20min), repeat for 8 cycles: (1, 600W, 3min), (0, 0W, 2min)]

S France 1 58.4 [(1, 1500W, 3min), (0, 0W, 2min),

repeat for 7 cycles: (1, 1500W, 1min), (0, 0W, 1min)]

EWH Ontario 3 23 [(1, 2000W, 30min)]

Quebec 3 23 [(1, 2000W, 30min)]

France 3 45 [(1, 2000W, 30min)]

India 3 30 [(1, 1500W, 30min)]

ESH Ontario 3 10 [(1, 8000W, 2min)]

Quebec 3 58 [(1, 8000W, 2min)]

France 3 22 [(1, 8000W, 2min)]

Table 1: Parameters used for each type of appliances (elastic phases are underlined).

demand in India is due to only four appliances. The
percentage of peak reduction is computed with respect
to this low value, which may account for the higher
percentage of peak reductions for this region.

• Ontario has only a moderate peak reduction gain in
summer (under 5% for an α value of 2). Ontario has
high penetration rates for all appliances (especially
ACs which are inelastic) and high absolute peak values,
which accounts for the smaller fractional reduction in
peak load.

From Figure 4, we see that, unlike the situation in the
summer, the percentage of peak reductions is more or less
the same for all four regions during winter.

We now consider, in more detail, the specific value of α =
1.1. This is of interest because a 10% increase in nominal
operation time is likely to be barely noticeable by consumers.
For example, the operation duration of a dryer in Ontario is
45 minutes. An extension by 1.1 of the operation duration
of the appliance means that the total operation duration is
extended to 49.5 minutes.

Table 2 shows the magnitude of peak reduction gain in
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Figure 4: Comparison of percentage of peak reduc-
tion capacities during winter.



Region Summer Winter
Ontario 2200W 3500W
Quebec 3000W 3950W
France 3100W 3900W
India 200W 200W

Table 2: Magnitude of Peak Demand Reduction for
α = 1.1 in a neighborhood with N = 100 homes.

every region for summer and winter for α = 1.1. We see
that during summer both Quebec and France have the high-
est magnitude of absolute peak demand reductions. This is
due to the higher proportion of elastic appliances in these
regions: washing machines and dishwashers are elastic in
Quebec and France unlike washing machines in Ontario and
India. Similarly, during winter, both Quebec and France
have a higher absolute magnitude of peak load reduction
than Ontario and India. This can be attributed to the higher
penetration rates of elastic appliances (e.g. washing ma-
chines, dishwasher, electric space heaters) in these regions.
From the results presented in Figure 3, Figure 4 and Table 2,
it is clear that the differences in the degree of peak demand
reduction depend not only on the properties of appliances
(which are different in every region), but also their differing
penetration rates in each region.

Focusing now on Quebec (that has around 3.2 million
households as of 2006 [7]) in winter, during which the peak
period typically occurs [12], we see that, if all elastic ap-
pliances were using the reduced mode computed for an ex-
tension of 10% of the operation duration, we can expect
a total residential peak rate reduction of about 125 MW
(= 3.2 ∗ 3950/100). During summer, ACs are major con-
tributors to peak demand. Since this reduction does not
take into account the potential reduction in the peak load
by careful scheduling of ACs [26], we see that a combined
effort on AC and elastic household appliances could have a
major impact on residential peak demand during summer.

7. RELATED WORK
Our work lies in the broad context of demand manage-

ment schemes that reduce demand during conditions of peak
load. These have been well studied in the research literature
and are also widely used by utilities worldwide. In this sec-
tion, we first give overview of the types of smart appliances
that are available in the market today. Then, we discuss
DR schemes that are currently in use by utilities for re-
ducing demand overloads. Finally, we present a summary
of DR schemes proposed in recent literature for residential
load control.

7.1 Smart Appliances
Smart appliances are generally defined to be appliances

that use computational intelligence to add operational flex-
ibility. Surveys of traditional appliances can be found in
References [9], [17], [3], [4] and [15].

Intelligence can be added to one of two types of appliances
[14]. The first type have a fixed operation duration (e.g.
washing machine, dishwasher). These typically operate once
a day for a fixed period of time. The second set of appliances
have thermal inertia and use energy to maintain a preset
temperature (e.g. space heater, refrigerator). The first type

of appliance can be made “smarter” by adding delay-start
functions [14]. This allows consumers to postpone the start
of the appliance according to time-of-use pricing.

This approach cannot be used for the second type of appli-
ances because delaying the start time of operation for such
appliances can cause the payback effect, which occurs when
an appliance consumes more energy than needed when re-
covering from a postponement in start time. Hence, such
appliances are made “smarter” by allowing consumers to de-
fine a range of acceptable temperature setpoints. When the
need arises, the setpoint that requires the least work by the
appliance is maintained [5].

The Smart-A project is a detailed study on smart appli-
ances [24]. This report has compiled a comprehensive data
set on load profiles of appliances and usage patterns of ten
common domestic appliances in Europe. This report also
makes recommendations on possible smart functions for each
appliance covered in the report. None of these recommenda-
tions, however, leverage the elasticity property of appliances.

7.2 Utility Demand Response (DR) Schemes
Both price-based and incentive-based DR programs are

currently in use by the utilities[21]: Price-based schemes
bring humans into the control loop. The schemes that fall
in this category include: Time-of-Use (TOU), Real-Time
Pricing (RTP) and Critical Peak Pricing (CPP). All these
schemes broadcast price signals to consumers who are ex-
pected to react appropriately (i.e. decrease their electricity
consumption when the price increases). With TOU, the util-
ity defines a price for a block of time - typically for a day.
This price reflects the average cost to produce electricity.
Consumers are aware of this pricing ahead of time and can
plan their appliance usage accordingly. RTP is updated on
an hourly basis and is based on actual generation costs. CPP
is like TOU with the only difference being that during peak
hours, a much higher price is set in place which reflects the
actual generation costs [21]. RTP and CPP typically target
large industrial loads. Price-based schemes depend entirely
on human reaction to price signals and differ in the fixed
time scales for which they are implemented.

Incentive-based schemes are contract-oriented. Utilities
have a higher degree of control in these schemes. Schemes
falling under this category include: Direct Load Control
(DLC), Demand Bidding (DB) and Emergency DR (EDR).
With DLC, the utility remotely shuts down power to heavy
appliances such as ACs belonging to participating customers.
Many studies have explored the use of DLC with ACs. The
choice of appliances selected for the shut down is based on
a solution to a complex optimization problem [26]. In the
DB scheme, consumers place bids based on wholesale elec-
tricity market prices. The EDR scheme is tailored more
for emergency or ancillary services. Customers commit to
cutting down their loads upon receiving requests from the
utility. Typically in these schemes, the utility provides in-
centives - mostly as monetary compensation to the partic-
ipants. Customers can be penalized if they commit to a
particular scheme and do not participate accordingly [21].
Incentive-based schemes are mostly geared to the industrial
sector. Many such schemes have been abandoned at the
pilot stages due to implementation complications.

Prior work in DR differs from our approach in many ways.
To begin with, none of the preceding schemes decouple elas-
tic and non-elastic components. Moreover, schemes such as



DLC completely turn off appliances, which can affect the
lifetime of sensitive non-elastic components. Existing DR
schemes are centralized, do not take into account consumers’
tolerance to comfort, and difficult to deploy. Finally, price
signals used by schemes such as TOU are defined the day
before: These signals do not reflect the instantaneous state
of the grid.

When elasticity is used for DR, appliances operating their
elastic phases can instantaneously respond to congestion sig-
nals received from the grid. The appliance operation exten-
sion factor is directly related to user comfort and this factor
can be used to ensure that consumers are not too inconve-
nienced. If parameters such as appliance penetration, load
profiles and usage patterns are available, then it even possi-
ble to estimate the peak demand reduction possible in that
region, as we do in our study.

7.3 Demand Response (DR) Schemes in the
Research Literature

We now discuss residential DR schemes that have been
proposed in the recent literature. Until recently, DR schemes
generally belonged to price-based and incentive-based cate-
gories as discussed in the previous section. Recently, many
studies are making proposals for residential DR schemes
that deviate from these two categories. In the following,
we present an overview of such work.

References [22, 19, 11] propose frameworks that schedule
appliances in homes by constructing and solving optimiza-
tion problems based on the day before TOU pricing infor-
mation provided by the utilities.

In Reference [22], appliances in a home are classified into
controllable and uncontrollable loads. Storage and renew-
able electricity generation are considered as part of a home
energy management system. It is assumed that appliances
operate at random times in a day, i.e. they do not follow
a usage pattern. Controllable loads are time shifted when
necessary. The load profiles of appliances are simple on-off
models. Possible variations of power draw during the opera-
tion of an appliance is not considered. The notion of comfort
is not considered in the scheduling problem.

Reference [19] uses particle swarm optimization to sched-
ule controllable loads in a home. Numerical values to quan-
tize benefits are assigned to energy services by consumers.
Costs are reflected by the price of electricity based on TOU
or CPP. The objective of the optimization problem is to
maximize net benefits. This work heavily relies on the abil-
ity of consumers to assign a numerical value to the benefit
of an energy service. It can be difficult for an consumer
to quantify the benefits for energy services in a home. In
our work, comfort is related to the duration required for
an appliance to complete its operation. This is easier for
consumers to interpret.

Reference [11], proposes a method to schedule appliances
in between households in a neighborhood. This work divides
appliances into two categories. In the first category, appli-
ances must consume a fixed amount of energy and in the
second category appliances can adjust power consumption
with no constraints to the energy requirements. User satis-
faction is incorporated for the second class of appliances in
the form of utility functions. Our work defines elasticity at a
finer granularity which is at the level of components instead
of appliances as a whole. This is more realistic as our def-
inition makes considerations as to how various components

in the appliance can be affected due to variations in power
drawn as will be described in Section 2.1. This paper uses
an economic interpretation to solve the scheduling problem.

Reference [16] proposes a dynamic pricing scheme for util-
ities based on consumer benefits and grid conditions using
utility functions. In this work, a vague notion of elastic-
ity (in terms of power reduction and time shifting) is used.
This concept is not formally defined in the paper. The mod-
elling of load profiles of appliances in this paper is simplistic.
The impact on various components in the appliances due to
power changes is also not considered in this work.

Our work is different from these research efforts for the fol-
lowing reasons. First, we consider penetration rates, usage
patterns and detailed load profiles to model the behaviour
of appliances in a region instead of simplistic on-off load
profiles in a single home. Second, we also consider possible
adverse impacts on components due to variations in power
supplied to them. Finally, we capture the notion of user
comfort by the duration required by an appliance to com-
plete its operation. We believe that this is easier to interpret
by consumers.

8. CONCLUSIONS
We define the notion of appliance elasticity and exploit

this property to define an optimization program that re-
duces appliance loads during demand peaks without overly
affecting user comfort. We use comprehensive data sets to
evaluate the potential benefits from our approach in four dif-
ferent regions around the world. Although our work makes
several simplifying assumptions, we show a significant poten-
tial for reduction in peak demand due to appliance elasticity
in all four regions considered in our study. This important
because a reduction in the peak can cause:

• A reduction in the need to deploy new generation fa-
cilities, which can cost billions of dollars.

• A reduction in the carbon footprint of peak demands
because carbon-intense generation facilities such as gas
plants or coal plants are often commissioned to serve
peak demands.

Given these potential reductions in peak load, appliance
manufacturers should consider the design of appliances that,
in addition to being energy efficient, also make an effort
to reduce their peak power load. To achieve this goal, ac-
tion from governmental regulators may be required, who can
take one of two policy approaches. First, regulators could
mandate appliance manufacturers to reduce peak power con-
sumption of appliances with fixed appliance operation dura-
tions. The advantage of this approach is that, unlike a typi-
cal DR scheme, there is no need for communication between
the utility and the consumer because appliances always op-
erate at a reduced peak. However, this does not permit
appliances to operate in regular mode when the grid is un-
congested, which may frustrate consumers due to lengthier
operation durations of appliances.

A second policy approach would be to require appliances
to operate in a reduced mode during times of congestion.
This permits appliance to operate in regular mode when the
grid is uncongested, but requires infrastructure to transmit
signals to appliances and appliance modification to respond
to control signals. This policy is especially attractive in re-
gions with deployment of smart meters with two-way com-
munication capabilities.



To understand whether there are significant gains from
either policy, a detailed cost-benefit analysis is necessary for
each scenario: we defer this to future work.
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