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Abstract—We study the impact of the limited capacity of
backhaul links on downlink user scheduling in a heterogeneous
network comprising macro base stations and small cells. As-
suming a tree topology of the backhaul network, we formulate
a backhaul-aware global α-fair time-domain user scheduling
problem and study it under three different scenarios of backhaul
limitations.

For the scenario where the backhaul links are not the bottle-
neck, we derive closed-form scheduling solutions to the scheduling
problem under certain assumptions. For the scenario where the
backhaul links between the macro base station and the small cells
are the bottleneck, we show that the global α-fair user scheduling
problem can be decomposed into a set of independent local α-fair
user scheduling problems. However, unlike the previous case, a
local scheduler in this case is not of a unique type but can be of
one of three types, depending on the available backhaul capacity.
We completely characterize these three types, and also propose
a simple heuristic for optimal α-fair scheduling.

When the link between the macro base station and the core
network is a potential bottleneck, we show how each base station
can still perform a local scheduling as in the previous case
as long as there is a master problem that allocates feasible
virtual backhaul capacities to each BS. However, computing the
optimal virtual capacities is complex and expensive in terms of
the amount and frequency of information exchanges. For this
scenario, we propose realization-agnostic heuristic schemes that
are simple to implement, and perform quite well.

Index Terms—Backhaul Limitation, Heterogeneous Cellular Net-
works, α-Fairness, Proportional Fairness, User Scheduling

I. INTRODUCTION

Heterogeneous Networks (HetNets) comprise a set of low-
power base stations (BSs) overlaying the existing macro
cellular system [1]. These low power BSs form small cells
within the macro cellular coverage area of macro base stations
(MBS). They are simply referred to as small cells (SC)
throughput this paper. The BSs are connected to the core via
some backhaul infrastructure.

The shift from the existing homogeneous structure to a
hierarchical heterogeneous architecture offers the potential of
a huge improvement in capacity via network densification [2]
[3].

The complexity introduced due to the addition of an over-
lapping layer of small cells has led to many studies that
revisit the design and operation of important network processes
like User Scheduling (US), Resource Allocation (RA), User
Association (UA), and Transmission Coordination (TC), from
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a HetNet perspective. It has been shown by a number of
works including [4], [5], and [6] that if well designed, these
processes can improve the system performance significantly.
Most of these studies focus on the wireless access end of the
HetNets, and hence there is an implicit assumption that the
backhaul infrastructure is not limiting. Such an assumption
could be justified in older cellular networks, where the access
network (and not the backhaul network) was the bottleneck.
In the emerging HetNet architecture, this assumption needs to
be reexamined.

In a HetNet scenario, there are two types of backhaul links:
the MBS backhaul links (which connect the MBSs to the core),
and the SC backhaul links (which connect SCs to the MBS).
Network operators see small cell backhauling as an immediate
challenge for the successful deployment of HetNets [7], [8].
The ultra-dense deployment of small cells with low average
number of users per BS means that the cost of backhauling
for small cells becomes a significant part of the total Capital
Expenditure (CAPEX), in some cases exceeding the cost of
the small cell BS equipment [8]. It is thus desirable that the
backhauling cost for small cells is kept low. This economic
consideration can often limit the capacity of the installed SC
backhaul links. For example, a number of cheap solutions are
being proposed, including ADSL [9], mesh networks [10],
and even non-licensed microwave links [9]. Besides economy,
flexibility is also a key requirement as there will be numerous
SCs added or moved frequently. Fiber or copper infrastructures
are often not flexible. The third constraint is physical. A small
cell might be at an inaccessible street furniture where bringing
a fiber link can be infeasible. A low capacity solution like non-
line-of-sight (NLOS) wireless backhauling might be the only
available option in such a case [7].

MBS backhaul limitations, on the other hand, are less
likely to be a concern right now, since MBS backhauling
is a small portion of the CAPEX [8], and thus can be well
provisioned. However, the future networks are expected to
operate with a high number of small cells per macro base-
station, with highly efficient wireless links (e.g., using massive
MIMO [11]) and on very high bandwidth spectrum (e.g.,
mmWave [12]). This will translate to a huge increase in traffic
load on the backhaul. Moreover, many multi-cell architectures
are emerging where signaling for coordination between BSs
is done via the backhaul links (e.g., Joint Processing (JP)
CoMP [13]), which increases the traffic load on the backhaul
links as well as pose more stringent delay requirements. The
deployment of cloud-RAN (C-RAN) [14] like architecture is
also going to put a lot of pressure on the MBS backhaul. So,
it is possible that MBS backhaul limitation might also be a
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concern for future networks.
Finite capacity of a backhaul link translates into two types

of limitations: 1) rate limitation: the maximum amount of
traffic (in bits per seconds) that can be carried via the backhaul
link, and 2) delay limitation: the delay/jitter incurred by the
backhaul link for a given traffic load. These two aspects
are inter-related, usually via complex relationships, which are
explored using various queuing models. The rate limitation
directly affects the total throughput in the HetNet whereas
the constraints imposed on delay are key in meeting control
signaling deadlines. In this study, we focus only on the rate
limitation of the backhaul links, where a backhaul link l has
a maximum capacity of Cl Mbps. Note that, limiting the
aggregate amount of traffic on a link to a given rate (lower
than Cl) can also be used to guarantee a certain level of delay
performance on that link.

The exact topology of the backhaul system can have a
major impact on the performance. We consider a hierarchical
topology of the backhaul links where SC j is connected to
the MBS via a backhaul link of capacity Cj and the MBS is
connected to the core via a backhaul link of capacity CBH .
In other words, for a downlink system, an SC backhaul link
has to carry the downlink traffic of its users only whereas the
MBS backhaul link has to carry the aggregate traffic of all its
users as well as the aggregate traffic from all other SCs in its
cell.

The purpose of our study is to understand the impact
of backhaul limitations on how user scheduling is to be
performed on the downlink of HetNets. Our main message
is that finite backhaul links have a fundamental impact on
user scheduling, i.e., there is a need for backhaul-aware user
schedulers.

We focus on a macro cellular area with one macro base
station (MBS), and a number of small cells connected to the
MBS within a macro cell. We only study the downlink and
assume that the resource allocation and the user association
scheme are given. For a given network realization of channel
gains, our objective is to schedule the users at these BSs1 so
as to guarantee fairness. We use the concept of α-fairness,
and study user scheduling scheme that guarantees α-fairness
in a global sense (i.e., over all users in the considered macro
cellular area). By choosing the value of α, an operator can
strike the trade-off she wants between fairness and efficiency.

Our contributions can be stated as follows.
1) Our work builds on [5], where Fooladivanda and

Rosenberg study the special case of α-fairness where α = 1,
also called proportional fairness (PF), under unconstraining
backhaul capacities. Under this scenario, they have shown
that, under some assumptions, the global proportional fair
(PF) user scheduling problem decomposes into independent
local PF user scheduling problems (one per BS). Additionally,
they show that the local PF is equivalent to a local equal-
time scheduling scheme. We generalize these results for the
general α-fair utility function and in particular derive closed-
form expressions for optimal schedules.

2) For the scenario where the MBS backhaul is sufficiently

1Base Station (BS) refers to both the MBS and the small cells.

provisioned and hence is not the bottleneck, but where the SC
backhaul links have limited capacities, we presented prelimi-
nary results in [15] for the special case of α = 1. Here, we
generalize the results in [15] for any α > 0. Our findings for
this scenario can be summarized as follows.

• Similar to the scenario of very large SC backhaul ca-
pacities, the global problem can be decomposed into
independent local problems. The nature of the local α-
fair scheduling is different from that of the scenario
of very large backhaul capacities. For example, local
PF scheduling under backhaul limitations is not always
equivalent to the local equal-time scheduling.

• In order to achieve global α-fairness, we show that each
small cell j has to schedule its users based on how its
backhaul capacity Cj compares to two critical values
c∗j and C∗

j,α , which are specific to a given network
realization. We show that if Cj ≤ c∗j then local α-
fair scheduling is equivalent to local equal-throughput
scheduling, while if Cj ≥ C∗

j,α then it is equivalent
to local α-fair scheduling under unconstraining backhaul
capacities.

• Using numerical results, we quantify the impact of lim-
ited SC backhaul capacity on the system performance.
We also propose a heuristic scheduler that is simple to
compute and performs very well.

3) For the more general scenario, where the MBS backhaul
is also of limited capacity, we perform a detailed analysis of
the global scheduling problem, and obtain a number of results.
Our findings for this scenario can be summarized as follows.

• We introduce a notion of virtual backhaul capacity that
allows us to decompose the global problem into per-
BS local problems. We present a simple bisection search
based algorithm to compute the optimal values of the
virtual backhaul capacities. However, these values are
realization-dependent and have to be re-computed when-
ever the network realization changes. In other words, the
user schedule at a BS is affected by the channel gains of
users in other BSs, which we call the global realization-
dependence of the optimal solution.

• We present two realization-agnostic heuristics where the
virtual backhaul capacities are kept fixed all the time,
thereby reducing the complexity of the scheduling prob-
lem greatly. We quantify the loss in performance due to
these schemes and show that they both work well.

The rest of this paper is organized as follows. In Section II,
we outline some relevant related work. In Section III, we
present the system model. Section IV shows the formulation of
the general optimization problem. In Section V, we consider
the scenario of unlimited backhaul capacities. In Section VI,
we consider the scenario when the MBS backhaul is very
large and thus SC backhaul links are the only limitations.
Section VII considers the general scenario where the MBS
backhaul is also limited. Relevant results are presented in each
section. Section VIII concludes the paper.

II. RELATED WORK

Recently, the backhauling aspect of wireless networks has
attracted a lot of attention. Its study can be broadly divided
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Fig. 1: Our system.

into two types: provisioning-related and impact-related.
Provisioning-related studies try to characterize the traffic

load that a typical cellular deployment imposes on the back-
haul network. For example, [16] looks at the LTE-Advanced
HetNet deployment and characterizes the traffic load and delay
requirements that it can impose in the presence of Joint Trans-
mission based Coordinate Multipoint (CoMP) transmission.

Impact-related studies try to characterize how a limited
backhauling can affect the system performance. [17] surveys
the impact of limited backhaul on the link level performance
due to the reduction in cooperation related capacity gains.
Beyond link level performances, backhaul limitations can also
impact the user scheduling process in HetNets. There are
some studies in the literature that have studied the interplay
between backhaul limitation and user scheduling. A number of
these works including [18], [19] deal with coordination cluster
formation as part of user scheduling decision and they try to
make BS clusters so as to reduce the backhaul communication.

Backhaul limitation is not only relevant in multi-cell co-
operative transmission. Even in HetNets without BS cooper-
ation, limited backhauls can impact performances due to the
delay and/or the rate constraints. Under such limitations, user
scheduling decisions have to be made so as to maximize a
given system performance by properly utilizing the constrained
backhaul resource as well as the precious radio resource. A
number of optimization formulations based on network utility
maximization framework have been proposed in the literature
for user scheduling in HetNets (e.g., [5], [4]) for different
network-level performance metrics, in the absence of back-
haul limitations. Our preliminary work in [15] extends these
formulations by considering limited SC backhaul capacities,
for proportional fairness. Our current work builds on these
work. We take a more general notion of fairness, and consider
different scenarios of backhaul limitations. To the best of our
knowledge, no such prior work exists.

III. SYSTEM MODEL

We consider an OFDM-based cellular network consisting
of multiple macro cells. Each macro cell comprises one
macro base station (MBS), X small cells (SCs), and N user
equipments (UE) (sometimes simply called users), see Fig.
1. We consider each macro cell, with its MBS, SCs, and
UEs as a standalone HetNet system. However, we account
for interference coming from nearby macro-cells, as we will
describe later. We focus on the macro-cell in the middle. 0
represents the MBS, P ≜ {1, 2, · · · , X} represents the set of
SCs, and N represents the set of all UEs.

In this study, we consider a tree topology of the backhaul
network as shown in Fig. 1 where small cell j ∈ P is
connected to the MBS via a backhaul link of capacity Cj .
The capacity of the backhaul link between the MBS and the
backbone is given as CBH . Since the major portion of the
traffic load is usually on the user plane, we ignore the traffic
coming from the control plane2.

We consider only the downlink of the HetNet and assume
that all users are active, i.e., there exists a downlink flow from
the MBS (source) to each UE (destination). We assume that
the users are greedy in throughput and that the BSs have an
infinite backlog of packets per UE. The MBS has a transmit
power budget of PMBS and each small cell has a transmit
power budget of PSC . We assume that each BS transmits all
the time with its available transmit power.

A. Subchannel Allocation

The system as a whole uses M ′ OFDM subchannels and
each macro-cell is allocated M = M ′

r subchannels, where r >
1 is the reuse factor. Thus, a total of M OFDM subchannels
are available for the HetNet system under study (i.e., to be
used by the MBS in the middle of Fig. 1 and its X SCs).

Different subchannel allocation schemes can be used inside
the HetNet, with significant effect on the overall system perfor-
mance. In this study, we consider a scheme called Orthogonal
Deployment (OD) [1], where K subchannels are allocated to
the small cells and the remaining M − K subchannels are
allocated to the MBS. This exclusive partitioning of subchan-
nels between the MBS and the SCs means that the macro
transmissions and SC transmissions do not interfere with each
other. In this study, we assume that K is given. The analysis
in this work can be applied to other variants, including the
partially shared deployment (PSD) and co-channel deployment
(CCD) [1].

The following assumptions will allow us to simplify our
subsequent formulations: [A1] A BS transmits on all the
subchannels allocated to it; [A2] Power allocated to a given BS
is equally divided among all the allocated subchannels; [A3]
Channels are flat, i.e., the channel gains across different sub-
channels between a BS and a UE are equal. These assumptions
allow us to reduce a time and frequency domain scheduling
to pure time domain single user scheduling problem, where a
BS allocates all of its subchannels to one UE at a given time,
as discussed in [20]. However, this means that the channel-
dependent scheduling aspect of an OFDM system cannot be
exploited in this framework.

A realization ω ≜ {Gji(ω)}j∈{0}∪P,i∈N represents a set of
channel gains between all (BS,UE) pairs. Channel gain Gji(ω)
between BS j and UE i incorporates two random aspects of
the network: 1) the random locations of N users3, which will
result in random path-loss between the BSs and the users, 2) a
random slow fading at each location modeled by a log-normal
shadowing of a given standard deviation.

2With more complex cooperative communication (like the CoMP) with joint
processing, the control plane will also carry a large traffic load in the future.

3N (and hence N ) can also depend upon ω if we consider a random number
of users.
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B. Physical interference model and link rates

Let γji(ω) be the signal to interference plus noise ratio
(SINR) between BS j and UE i on each allocated subchannel
for a given realization ω, and for a given PMBS and PSC . For
all j ∈ P ∪ {0} and for all i ∈ N , we have4

γji(ω) =
PjGji(ω)

N0 + 1{j∈P}
∑

k∈P:k ̸=j PkGki(ω) + 1{j=0}I
r
0i

(1)

where Pj is the power per subchannel for BS j given as

Pj = 1{j=0}
PMBS

(M −K)
+ 1{j∈P}

PSC

K
. (2)

Ir0i is the interference coming to user i from macro BSs in the
nearby macro cells using the same channel resources as MBS
0, based on the reuse factor of r employed among the macro
cells. In order to compute this interference, we assume that the
nearby HetNets have identical channel allocation scheme (i.e.,
OD with the same value of K) and transmit power budgets.
Interference due to SCs in the nearby cells is often very small.
So, for simplicity, we do not consider the interference from
SCs in other macro cells, but we do consider interference from
SCs in the same cell.

There is a discrete function θ(.) that maps the SINR γji(ω)
from BS j to user i to the maximum supportable data rate per
subchannel. Then, the maximum supportable rate Rji(ω) for
user i associated to BS j (available only if the UE i is alone
in BS j) is given as

Rji(ω) = Kjθ(γji(ω)) (3)

where Kj is the number of subchannels allocated to BS j,
given by the OD channel allocation scheme, as follows.

Kj = K1{j∈P} + (M −K)1{j=0},∀j ∈ {0} ∪ P (4)

For a given realization ω, and given backhaul capacities
(CBH and C = [C1, C2, · · · , CX ]), we assume that the
channel allocation parameter K as well as the rate-function
θ(.) are given. In this case, the Rji(ω)’s can be computed a
priori as input parameters using (1), (2), (3), and (4). Even
though our model assumes that the value of K is given, note
that choosing a good value of K is important (and in general
not trivial) [20].

C. User Association (UA)

We assume that the user association rule is given, with one
UE associating to only one BS. Without loss of generality,
we assume that we employ the Small Cell First (SCF) user
association rule, proposed in [5], with a tunable parameter δ.
We choose it as it had the better performance than the other
simple UA schemes studied in [5].

Small Cell First (SCF(δ)): UE i associates to small-cell
j ∈ P if j provides the best per-subchannel SINR γji(ω)
among all SCs and if this SINR is greater than δ, i.e., if j =
argmaxj′∈P γj′i(ω) and if γji(ω) > δ. If no such small cell
j exists, UE i goes to BS j̃ that provides the best SINR,

4Indicator function 1{A} = 1 if A is true, 0 otherwise.

i.e., j̃ = argmaxj′∈{0}∪P γj′i(ω). Thus, for a given K and
ω, this rule with a given value of δ allows us to determine
the set of UEs associated to BS j, represented as Aj(ω). Let
Nj = |Aj(ω)| represent the number of UEs associated to BS
j. We assume that the above stated user association scheme
guarantees that each UE has a non-zero rate to its BS, i.e.,
Rji(ω) > 0 for all j ∈ {0} ∪ P and for all i ∈ Aj(ω).
Note that if i /∈ Aj(ω), then by our definition, Rji(ω) = 0.
It is important to note that, even for a fixed value of the UA
parameter δ, the sets Aj(ω) change with the realization.

The backhaul limitations also could have an impact on UA
schemes. In this study, we take a simple UA scheme and thus
do not consider this impact. Designing backhaul-aware UA
scheme is however very important, and we leave it as a future
work.

IV. GLOBAL USER SCHEDULING PROBLEM

We intend to schedule the users so as to guarantee a global
fairness. This would entail fairness among all users in the
entire system, i.e., over multiple cells. However, under our
assumptions, the system-level global scheduling can be sep-
arated into independent per macro cell scheduling problems.
So, in the following, when we mention the global problem,
we mean the problem at the level of one macro cell, and thus
global fairness deals with users within the macro cell under
consideration. These users might be associated to the MBS or
one of the X SCs.

We use the notion of α-fairness, which was introduced in
[21], and has been used often in throughput allocation frame-
works usually under Network-Utility Maximization (NUM)
formulations [22], [23]. If λ is the throughput offered to
a given user, the utility corresponding to this allocation is
given by Uα(λ) = λ1−α

1−α if α > 0, α ̸= 1 and is given by
Uα(λ) = log(λ) if α = 1.

For tractability, we made the assumptions [A1]-[A3],
which allow us to reduce the scheduling problem to a
pure time-domain single user scheduling at each BS. Thus,
the user scheduling process is completely characterized by
{βji}j∈{0}∪P,i∈N , where βji denotes the fraction of time BS
j schedules user i. Then, our global α-fair user scheduling
problem corresponds to finding the values of {βji}’s such
that

∑
i∈N Uα(λi) is maximized, where λi is the throughput

offered to user i. Of particular interest is the case of α = 1,
as used in [24] which yields the global proportional fair (PF)
scheduling problem.

Formally, the global scheduling problem can be stated as
follows: given ω, {Rji(ω)}, K, CBH , {Cj}, find the optimal
values of {βji} by solving the following.

[P(ω)] max
(λi),(βji)

∑
i∈N

Uα(λi)

subject to: λi =
∑

j∈P∪{0}

Rji(ω)βji,∀i ∈ N (5)

∑
i∈N

Rji(ω)βji ≤ Cj , ∀j ∈ P (6)∑
j∈P∪{0}

∑
i∈N

Rji(ω)βji ≤ CBH (7)
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∑
i∈N

βji ≤ 1, ∀j ∈ P ∪ {0} (8)

0 ≤ βji ≤ 1{i∈Aj(ω)}, ∀i ∈ N , ∀j ∈ P ∪ {0}
(9)

(5) relates user schedules to throughputs, (6) is the con-
straint due to finite backhaul capacities at each small-cell.
(7) is the constraint due to the limited capacity of the MBS
backhaul, which limits the total flows on all BSs. (8) represents
the scheduling constraints at each BS. Note that the mention
of ω in the parenthesis of the optimization problem name is
done to stress on the fact that the given problem is realization-
dependent.

We can show that maximizing the sum of the α-fair utility
is equivalent to maximizing the following throughput-based
metric.

Tα({λi}i∈N ) =

(
1

|N |
∑
i∈N

λ1−α
i

) 1
1−α

, α > 0, α ̸= 1

=

(∏
i∈N

λi

) 1
|N|

, α = 1 (10)

For PF (i.e., α = 1), this metric T 1(.) represents the geometric
mean (GM) of user throughputs. We will refer to Tα(.) simply
as the α-mean throughput.

We identify three scenarios: Scenario 0, Scenario 1, and
Scenario 2. Scenario 0 is the scenario where the capacities
of both the MBS backhaul and the SC backhaul links are
large enough not to be bottlenecks , this is true in particular
if Cj > Krmax, and CBH > (XK + (M −K))rmax where
rmax = maxγ≥0 θ(γ) is the highest value of the rate function).
Scenario 1 represents the scenario where the SC backhaul
capacities are limited and the MBS backhaul capacity is not
constraining. Scenario 2 is the most general scenario where
all backhaul links have capacities that are constraining.

Prior work exists for some versions of this problem for
α = 1 (i.e., global PF). For scenario 0 (i.e., without con-
sidering the backhaul limitations (6) and (7) ), Fooladivanda
and Rosenberg in [5] have shown that the following properties
hold.
1) Decomposability: The global problem for α = 1 can
be decoupled into a set of X + 1 independent local PF
problems, one per each BS. A local problem for BS j tries to
maximize its own local sum of utilities (

∑
i∈Aj(ω) Uα(λi)),

without regard to how the scheduling is done in other BSs.
A local scheduling solution at BS j depends only on its
local information (e.g., values of channel gains of its own
users Aj(ω)) which we will refer to as the local realization
dependence, as opposed to the global realization dependence
in which schedules in a BS would depend on channel gains
in other BSs. Local realization dependence is a desirable
property.
2) Equal-time equivalence: Under the stated assumptions, a
local PF scheduling at BS j is equivalent to an equal-time
scheduling where each user i ∈ Aj(ω) is allocated 1

|Aj(ω)|
fraction of time.

In our preliminary work in [15], we studied Scenario 1 for

α = 1 and showed that the above decomposition holds, but
the equal-time equivalence does not always hold.

In this paper, we build on these prior works and study the
problem under a more general α-fairness objective.

V. SCENARIO 0: {Cj}’S AND CBH ARE VERY LARGE

The following theorem states our results for Scenario 0.
Theorem 1 (Scheduling under Scenario 0): If all backhaul

links are very large,
a) Decomposition: The global problem [P(ω)] can be decou-
pled into a set of X + 1 independent local α-fair problems,
one per each BS, where the local problem for BS j is

[Pj
Local(ω)] : max

{βji≥0}i∈Aj(ω)

∑
i∈Aj(ω)

Uα(Rji(ω)× βji)

s. t.
∑

i∈Aj(ω)

βji ≤ 1; βji ≥ 0 (11)

b) Closed-form solution: The following schedule is optimal
for the local problem [Pj

Local(ω)].

βji =
Tji,α(ω)∑

i′∈Aj(ω) Tji′,α(ω)
, ∀i ∈ Aj(ω), ∀j ∈ {0} ∪ P (12)

where Tji,α(ω) ≜ Rji(ω)
1−α
α .

Proof: The proof is shown in Appendix B.
This result means that scheduling is very simple for Scenario
0. The result is the generalization of the known result for
α = 1, where the local scheduler is the equal-time scheduler.

VI. SCENARIO 1: CBH IS VERY LARGE WHILE {Cj}’S ARE
NOT

When CBH is very large, the constraint (7) (MBS backhaul
constraint) can be removed from the optimization problem
[P(ω)]. Let us call this relaxed problem as [P∞(ω)]. [P∞(ω)]
can be decomposed into a set of local α-fair scheduling prob-
lems, one per BS. The local scheduling problem for the MBS
is [P0

Local(ω)], which is the simple local α-fair scheduling
problem without backhaul limitations, defined earlier. SC j
should solve the local α-fair scheduling problem with backhaul
limitations, shown below.

[Pj
Local(ω,Cj)] : max

{βji}i∈Aj(ω)

∑
i∈Aj(ω)

Uα(βjiRji(ω)) s.t.

∑
i∈Aj(ω)

βji ≤ 1, (ζj,ω) (13)

∑
i∈Aj(ω)

βjiRji(ω) ≤ Cj , (µj,ω) (14)

βji ≥ 0, ∀i ∈ Aj(ω) (lj,i,ω) (15)

where ζj,ω , µj,ω, and lj,i,ω are the dual variables of the
scheduling constraint (13), the total-flow constraint (14), and
the non-negativity constraint of user schedules, respectively.

In other words, under Scenario 1, BS j schedules its users
independently of other BSs with only its local information (its
own backhaul link capacity Cj , and channel gains Gji of its
own users only), and thus there is no need for a global entity to
assist in the stated decomposition. (12) can be used to obtain
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the optimal solution of [P0
Local(ω)]. In the next subsection, we

will derive the solution to the local α-fair scheduling problem
[Pj

Local(ω,Cj)].

A. Local α-fair Scheduling under Backhaul Limitation

If we define the following two critical values of the backhaul
capacity for BS j, and realization ω,

c∗j (ω) ≜
|Aj(ω)|∑

i∈Aj(ω)
1

Rji(ω)

C∗
j,α(ω) ≜

∑
i∈Aj(ω)

Rji(ω)
1
α∑

i∈Aj(ω) Tji,α(ω)
(16)

then, the nature of the local α-fair scheduling can be charac-
terized as follows.

Theorem 2: The local α-fair scheduling [Pj
Local(ω,Cj)]

can be characterized based on how the backhaul capacity Cj

compares to the two critical values. There are three regions:
(a) If Cj ≥ C∗

j,α(ω), the scheduler is in Region 1 (which we
refer to as backhaul-unlimited (BHU) scheduler), and is given
as follows.

βji =
Tji,α(ω)∑

i′∈Aj(ω) Tji′,α(ω)
, ∀i ∈ Aj(ω) [Region 1] (17)

(b) If Cj ≤ c∗j,α(ω), the scheduler is in Region 2 (which we
refer to as local equal-throughput scheduler), and is given as
follows.

βji =
Cj

|Aj(ω)|Rji(ω)
, ∀i ∈ Aj(ω) [Region 2] (18)

(c) If c∗j < Cj < C∗
j,α, the scheduler is in Region 3. The

optimal dual solution is obtained by solving the following
equations for µj,ω > 0 and ζj,ω > 0.∑

i∈Aj(ω)

Rji(ω)
1
α

(µj,ωRji(ω) + ζj,ω)
1
α

= Cj

∑
i∈Aj(ω)

Tji,α(ω)

(µj,ωRji(ω) + ζj,ω)
1
α

= 1 [Region 3]

The primal solution is then given as βji = Tji,α(ω) ×
(µj,ωRji(ω) + ζj,ω)

− 1
α for all i ∈ Aj(ω).

Proof: The proof can be found in Appendix A.
Note that the two critical values are realization-

dependent which means that any change in the
realization would trigger a need to recompute them.

Interpretation of Theorem 2
In Fig. 2a, we show curves that represent the typical shape
of the plots of α-mean throughput (Tα(.) ) as a function
of the backhaul capacity Cj for a given value of α for one
of the small cells j ∈ P when the local α-fair scheduling
is performed. This figure clearly shows the three scheduling
regions (Regions 1, 2 and 3) as a function of the two critical
values of the backhaul capacity.

For sufficiently large backhaul capacity Cj ≥ C∗
j,α(ω),

we are in Region 1. For a very limited backhaul capacity
Cj ≤ c∗j (ω), we are in Region 2. For intermediate values

α = 1
α = 2

Tα

(
{λi}i∈Aj(ω)

)

Cj
Region 2

c∗j C∗
j,2 C∗

j,1
Region 1Region 3 α = 1

α = 23Region 2 Region 1

(a) Illustration of Theorem 2

1
(ω) (ω)

(ω)

2 3 1

Ĉj,1(ω)

Feas. Eq. Time
Feas. Eq. Throug.

Optimal

(b) Motivation for the heuristic, α = 1

Fig. 2: α-mean throughput versus SC backhaul capacity for a
realization

of the backhaul capacity c∗j (ω) < Cj < C∗
j,α(ω), we are in

Region 3.
Region 1: For each value of α, there is a critical value of
the backhaul capacity C∗

j,α such that any more capacity of
backhaul link does not translate to a better performance. This
is shown as Region 1 in the figure. It is important to note that,
for a given set of user rates, this critical value is different for
different values of α. Note that in this region, the scheduler is
the same as the backhaul-unlimited (BHU) scheduler defined
for Scenario 0. As an aside, note that C∗

j,α(ω) is also the
smallest value of the backhaul capacity Cj for which the
backhaul link is no longer a bottleneck on the performance.
Region 2: If Cj ≤ c∗j (ω), we have βjiRji(ω) =

Cj

|Aj(ω)| for all
i ∈ Aj(ω) (from Theorem 2(b)). This is a region where users
in a given BS are offered equal throughput Cj

|Aj(ω)| . Thus for
Cj ≤ c∗j (ω), a local equal-throughput scheduling is equivalent
to the local α-fair scheduling. It is interesting to note that,
unlike C∗

j,α(ω), this critical value is independent of α and so
is the scheduler. In other words, all α-fair local schedulers
operate identically when Cj ≤ c∗j (ω). In Fig. 2a, they would
all have the same Region 2.
Region 3: For c∗j (ω) < Cj < C∗

j,α(ω), neither local equal-
throughput nor backhaul-unlimited α-fair scheduling is opti-
mal. The optimal solution to the local α-fair scheduler has
to be obtained by computing the solution to the equations in
Theorem 2(c). Note that for α → ∞ (i.e., the max-min case),
Region 3 does not exist.

B. Simple Heuristic

When the scheduling is in Region 1 or Region 2, the
variables have closed-form solutions as given in (17) and (18),
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and hence are very easy to compute. In Region 1, backhaul-
unlimited α-fair scheduling is optimal whereas in Region
2, a local equal-throughput scheduling with throughput of

Cj

|Aj(ω)| is optimal. We do not have closed-form solutions for
Region 3, where we need to numerically solve the set of non-
linear equations in Theorem 2(c). A scheduler preferably with
closed-form solutions for all regions would be desirable.

We propose the following simple heuristic: take the best of
two easy-to-compute feasible schedulers.

1) The first one is a feasible version of the equal-
throughput scheduler, i.e., a solution to the local
problem with the following constraint Rji(ω)βji =
Rji′(ω)βji′ for all i, i′ ∈ Aj(ω). The solution to this
feasible local equal-throughput scheduling is βji =

min{ Cj

|Aj(ω)|Rji(ω) ,
c∗j (ω)

|Aj(ω)|Rji(ω)} for all i ∈ Aj(ω).
Note that this scheduler is optimal for Region 2.

2) The second one is a feasible (scaled-down) ver-
sion of the backhaul-unlimited scheduler, i.e., βji =

Tji,α(ω)∑
i′∈Aj(ω) Tji′,α(ω)k, where k is a strictly positive scal-

ing constant that corresponds to the largest value
less or equal to 1 that guarantees feasibility of the
local problem. This problem is solved by βji =

min

{
CjTji,α(ω)∑

i′∈Aj(ω) Rji′ (ω)
1
α
,

Tji,α(ω)∑
i′∈Aj(ω) Tji′,α(ω)

}
for all

i ∈ Aj(ω). This scheduler is optimal for Region 1.

The rational behind our heuristic is illustrated in Fig. 2b.
This approach results in a much simpler scheduler as compared
to the optimal one because of the closed-form scheduling
solutions. Of course, we need to verify that this simplification
does not result in a significant loss in performance. We will
see how this scheme performs in realistic network settings
while presenting the numerical results in the next subsection.

Further properties of the local problem: We now present
some properties of the local problem that will be used in the
analysis of Scenario 2. Let, fj,ω(Cj) be the optimal value of
[Pj

Local(ω,Cj)]. Also, let ∂fj,ω(Cj)
∂Cj

≜ f ′
j,ω(Cj) be the rate

at which the optimal value changes with Cj . Then, we can
show that the following holds.

Lemma 1: The rate of change of fj,ω(Cj) with respect to
the backhaul capacity Cj is given as follows:

∂fj,ω(Cj)

∂Cj
=


(

|Aj(ω)|
Cj

)α
if Cj ≤ c∗j (ω)

µ∗
j,ω(Cj) if c∗j (ω) < Cj < C∗

j,α(ω)

0 if Cj ≥ C∗
j,α(ω)

(19)

where µ∗
j,ω(Cj) is the optimal value of the dual variable µj,ω

for backhaul capacity Cj .
Proof: Please see Appendix C.

Also, note that fj,ω(Cj) is a concave, non-decreasing
function of Cj in (0,∞). In particular, fj,ω(Cj) is strictly
increasing in (0, C∗

j,α(ω)].
∂fj,ω(Cj)

∂Cj
= f ′

j,ω(Cj) is a strictly
decreasing function of Cj in (0, C∗

j,α(ω)].

C. Numerical Results

We consider a hexagonal HetNet deployment area with each
side equal to 500/

√
3 m, which corresponds to the scenario

of an inter-site distance (ISD) of 500m (urban setting). The
centrally placed MBS is overlaid with X = 4 symmetrically
placed small cells (j = 1, 2, 3, 4) at a distance of d = 178 m.
from the MBS. An MBS transmit power budget PMBS of 46
dBm and an SC transmit power budget PSC of 30 dBm are
considered. The overall system has M ′ = 99 subchannels and
the reuse factor of r = 3. Hence there are M = 33 subchannels
available to each macro-cell, out of which K subchannels
are allocated to each small cell and the remaining M − K
subchannels are allocated to the MBS. The interference from
the outer macro-cells is calculated by considering 18 identical
macro cells around the given macro cell, and by assuming that
identical channel splitting (K) is employed in the interfering
macro-cells. We only consider the interference the 4 small
cells create for each other.

We use the distance-based path-loss model recommended
by 3GPP [25], with MBS-UE path-loss at distance d ≥ 35m
given as 128.1+37.6 log10 (d/1000) and an SC-UE path-loss
at distance d ≥ 10m given as 140.7 + 36.7 log10 (d/1000) in
dB. The channel gains Gji are obtained by further applying a
log-normal shadowing of 8 dB standard deviation. A random
realization ω corresponds to a realization of channel gains for
a random instance of uniformly deployed N equal to 30 user
positions and randomly generated shadowing coefficients.

The rate function θ(.) is taken as the 15-rate MCS available
in LTE, as shown in Table III of [20]. The table shows the
per-subcarrier efficiency el in terms of bits per symbol for
a given threshold SNR. The actual per-subchannel link rate
f(γji) can then be calculated as el

nsc·nsym

Tsubframe
if γji is between

lth and (l + 1)th SNR threshold. nsc = 12, nsym = 14
and Tsubframe = 1ms are respectively the number of sub-
carriers in one subchannel, the number of OFDM symbols
in one subframe and the duration of a subframe. We take
N0 = −112.45dBm as the noise power per subchannel (i.e.,
a noise of −174dBm/Hz with a noise figure of 9 dB).

We consider scenarios where the small cells are identical,
i.e., they all have the same backhaul capacities Cj equal to C.
Also, recall that in this scenario, CBH is sufficiently large.

We study 100 random realizations ω ∈ Ω of user positions.
The average of the α-mean throughput Tα(.) over these
realizations is the metric for comparison of the different
schemes (optimal and sub-optimal).

1) PF Scheduling (α = 1) : In Fig. 3a, we plot the average
GM throughput (which is the α-mean throughput for α = 1)
of users in a given SC as a function of SC backhaul capacity
C for K = 15, δ = 6.6dB. The impact of limited SC backhaul
capacity on the throughput performance is significant. Let us
concentrate on the optimal scheduling scheme. We can see that
after a certain point, increasing capacity C does not translate
to a significant improvement on the throughput performance.
This is expected due to the concavity of fj,ω(Cj), and the fact
that ∂fj,ω(Cj)

∂Cj
is equal to 0 for Cj ≥ C∗

j,α(ω). Also, it can be
observed that, for this particular scenario, there is a value of C
(about 12 Mbps, shown by the vertical dashed line) after which
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Fig. 3: Comparison of the optimal and the sub-optimal local
α-fair schedulers

there is effectively no improvement in system performance as
we increase the backhaul capacity. This value of C can be
considered as the sufficient capacity of the SC backhaul link
to guarantee that the SC backhaul link is no longer a bottleneck
to system performance.

The figure also illustrates that using either a local equal-
throughput or a local equal-time scheduling regardless of the
backhaul capacity can result in a significant loss in perfor-
mance. The same figure shows that our heuristic, where a BS
chooses the best of local feasible equal-throughput and local
feasible equal-time for each realization, works remarkably
well. This scheduler achieves a performance very close to
optimal and yet is quite simple to compute. This heuristic
can thus be seen as good backhaul-aware local PF scheduler.

2) α = 2: In Fig. 3b, we plot results for α = 2. This value
of α maximizes the harmonic mean of user throughputs and is
often called the minimum potential-delay scheduling. The plot
shows similar results, in particular, it shows that our proposed
heuristic is a good approximation of the local α-fair scheduler.

VII. SCENARIO 2: {Cj}’S AND CBH ARE NOT VERY
LARGE

A. Optimal Scheduler

Similar to Scenario 1, it would be desirable to decompose
the global problem for Scenario 2 into independent local
problems. However, unlike Scenario 1, decomposing the global

problem into local problems is not straightforward, mainly due
to the coupling constraint (7) (the MBS backhaul constraint).
Indeed, allowing each BS j to independently schedule based
on its own local problem ([Pj

Local(ω,Cj)]) could lead to
violation of the MBS backhaul constraint (7). Thus, in order to
obtain a decomposition that is feasible, we need to guarantee
that the local problems do not violate the MBS backhaul
constraint. This can be accomplished by defining the notion
of virtual backhaul capacities C̃j for each BS j ∈ {0} ∪ P
where C̃j is used by the local scheduler at BS j as the
actual available local capacity (as opposed to Cj). The vector
C̃ = [C̃0, · · · , C̃j , · · · , C̃X ] is considered to be feasible if it
satisfies the following conditions.∑

j∈{0}∪P

C̃j ≤ CBH ; C̃j ≤ Cj , ∀j ∈ P (20)

Given a feasible vector C̃, if the local scheduler at BS j
solves [Pj

Local(ω,C̃j)] with C̃j as its local backhaul constraint
without regard to other local problems, the end result is a
feasible solution to the global problem [P(ω)]. Hence, as
long as a master problem can provide one such feasible
C̃, the solutions due to the local schedulers would yield a
feasible solution to the global problem, thereby yielding a
feasible decomposition. Our first goal is to find an optimal
decomposition, i.e., one that would yield the optimal solution
of problem P[ω)]. Solving the following master problem
will provide the values of C̃j corresponding to the optimal
decomposition.

max
C̃≥0

∑
j∈{0}∪P

fj,ω(C̃j) s.t. (20) (21)

Recall that fj,ω(C̃j) is the value of the local problem
[Pj

Local(ω,C̃j)] at BS j where C̃j is the backhaul capacity.
Without loss of generality, we will assume that the MBS

solves this master problem. In our tree topology, it is indeed
the most natural place to compute the solution to the master
problem. This formulation can be seen as a two-level problem
in which small cells report their user channel gain information
({Gji(ω)}i∈Aj(ω)) to the MBS which computes and reports
back to them the optimal values of the virtual capacities C̃j .
BS j can then perform the local scheduling by considering the
reported C̃j as the available backhaul capacity (as opposed to
Cj), i.e., solving [Pj

Local(ω,C̃j)] . This two-level decompo-
sition solves the global problem optimally, and can be seen
as an alternative formulation to [P(ω)]. Note that presenting
the original global problem as a two step problem does not
simplify its computational complexity but allows us to propose
a good heuristic later.

Alternatively, a distributed approach could be used where
the small-cells would report the subgradients and the MBS
would update them with the value of Λ. Such process
would eventually converge to the optimal solution. This
way, there is no need to collect the channel gains, but
now the overhead would be on the exchange of Λ, and
one gradient per BS at each step until convergence. The
efficiency would depend on how fast the process converges.
Alternative Dual-based Formulation
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We can rewrite the master problem as:
maxC̃≥0

∑
j∈{0}∪P f̃j,ω,Cj (C̃j) s.t.

∑
j∈{0}∪P C̃j ≤ CBH ,

where f̃j,ω,Cj (C̃j) = min{fj,ω(C̃j), fj,ω(Cj)} for all
j ∈ {0}∪P , and where C0, which is not a physical constraint
but is here for consistency, is equal to a large value (e.g.,
greater than CBH ). This modified problem has only one dual
variable, which we call Λ. Then, solving the following dual
problem is equivalent to solving the master problem,

min
Λ≥0

max
C̃≥0

L(C̃; Λ) (22)

where L(C̃; Λ) =
∑

j∈{0}∪P f̃j,ω,Cj (C̃j) −
Λ
(∑

j∈{0}∪P C̃j − CBH

)
is the Lagrangian function.

The following result allows us to obtain the solution to the
dual problem.

Theorem 3:

Λ∗(ω) = min

Λ ≥ 0 :
∑

j∈{0}∪P

C̃D
j,ω,Cj

(Λ) ≤ CBH


is the optimal value of Λ in problem (22), where C̃D

j,ω,Cj
(Λ) ≜

min{f ′(−1)
j,ω (Λ), Cj} for all j ∈ {0} ∪ P is a mapping from

dual variable Λ to primal variable C̃j , f ′(−1)
j,ω (Λ) is the inverse

mapping of f ′
j,ω(Cj) defined in (19), and is given as follows:

f
′(−1)
j,ω (Λ) =


|Aj(ω)|
Λ

1
α

Λ ≥
(

|Aj(ω)|
c∗j (ω)

)α
µ
∗(−1)
j,ω (Λ) 0 < Λ <

(
|Aj(ω)|
c∗j (ω)

)α
C∗

j,α(ω) Λ = 0

(23)

where µ
∗(−1)
j,ω (Λ) is the inverse of µ∗

j,ω(Cj) which is the
dual variable of the local problem [Pj

Local(ω,Cj)] as defined
earlier, and (c∗j (ω), C

∗
j,α(ω)) are the critical values defined in

(16).
Proof: Please see Appendix D.

Even though computationally similar, there is a benefit of
looking at the dual version as opposed to the primal problem:
we can find a mapping from the dual variable to the virtual
backhaul capacity C̃j allowing us to express the primal optimal
solutions based on the optimal value of Λ.

This problem can be solved for one scalar value of Λ by
employing a simple bisection-search for the smallest feasible
value of Λ. This is because, the C̃D

j,ω,Cj
(Λ) are non-decreasing

as we decrease Λ, as shown in Appendix D (and hence∑
j∈{0}∪P C̃D

j,ω,Cj
(Λ) is non-decreasing as we decrease Λ).

The details of the bisection search algorithm is presented in
Algorithm 1.

In the dual framework, we can thus view the global op-
timization as follows: The MBS computes the optimal dual
variable Λ∗(ω) and sends this value to the SCs. Each SC com-
putes its virtual backhaul capacity C̃j = C̃D

j,ω,Cj
(Λ∗(ω)) for

the given dual variable and then performs its local scheduling
using this computed value. Besides this concise representation
of the optimal solution, the dual formulation also serves as the
basis for a very good heuristic that we will discuss later.

Algorithm 1 Compute Optimal Dual Variable Λ∗(ω)

Input: ω, {C̃D
j,ω,Cj

(.)}j , CBH

Define: g(Λ) ≜
∑

j∈{0}∪P C̃D
j,ω,Cj

(Λ)
Begin:
(ΛMax,ΛMin)← (L, 0) ▷ L :A sufficiently large number
while |Λmid − ΛMax| < ϵ do ▷ ϵ :A small positive number

ΛMid ← ΛMax+ΛMin
2

if g(ΛMid) ≤ CBH then ΛMax ← ΛMid

else ΛMin ← ΛMid

end if
end while
Return ΛMax

B. Complexity and Overhead versus Performance Trade-off:
Heuristic Schemes

The optimal values of C̃j (either computed using the primal
master problem or by using the dual version) are global
realization-dependent. By global realization-dependence, we
mean that the values of C̃j change with a change in the
network realization. Such a change in realization could be
due to various factors: mobility, change in channel gains, user
arrival or departure etc. There are at least two aspects of the
optimal scheduler that are undesirable:
1) Computational Complexity: Computationally, the master
problem is as complex as the global problem [P(ω)] which is
a convex optimization problem of size Θ(XN) with Θ(XN)
constraints. The complexity of an interior-point method for
solving a convex optimization problem is known to be poly-
nomial on the problem size [26]. In our case, the problem size
(the number of variables or constraints) increases linearly with
the number of users N . Thus, for medium to large values of
N , quick computation of the optimal C̃j can be a challenge.
2) Amount and frequency of information exchange (over-
head): The master problem needs the information of the
channel gains from all users in all BSs. The optimal problem
(either the primal or the dual version) is complex as it requires
re-computation of the master problem each time a realization
changes.

Note that other key parameters such as the resource allo-
cation parameter K or the UA parameter δ can also change
with time. However, the time-scale at which these parameters
change is usually much larger than the time-scale at which the
realizations change. So, in the remainder of this section, we
assume that K and δ are fixed and do not change with time.

It would be desirable to have a scheme that overcomes
the aforementioned issues by: 1) having a simpler master
problem (with reduced problem size), and 2) requiring less
overhead (i.e., less amount of and less frequent information
exchange between the MBS and the SCs) for solving the
master problem. These simplifications come at the expense
of some loss in throughput performance. Finding the right
amount of trade-off between the throughput performance and
the complexity/overhead is important.

We can define a class of realization-agnostic schemes where
the virtual backhaul capacities are kept fixed all the time, even
when the network realization changes, with changing channel
gains as well as changing number of users in the system. Given
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these fixed values of the virtual backhaul capacities, the global
problem can then be decomposed into per-BS local problems,
thereby not requiring any information exchange between the
MBS and the SCs.

We will take two approaches to choosing the realization-
independent values of the virtual backhaul capacities:

Average virtual backhaul capacity based approach:
We could generate offline a set of realizations in Ω′ where
each realization ω ∈ Ω′ has a random number of users N . We
can then compute the optimal values of the virtual backhaul
capacities for each of these realizations. We can then take the
average of these virtual capacities as our fixed values, i.e.,

Cj =
1

|Ω′|
∑
ω∈Ω′

C̃∗
j (ω), ∀j ∈ P ∪ {0}

Dual-based approach:
We can replace the master problem by an approximate
problem that is realization-independent. For example, in
the dual version of the master problem, we can replace the
realization-dependent mapping C̃D

j,ω,Cj
(.) by a realization-

independent mapping C
D

j,Cj
(.). Below, we derive one such

mapping.
From Theorem 3, we know that in the interval

[
(

Nj(ω)
c∗j (ω)

)α
,∞), CD

j,ω,Cj
(Λ) is a non-increasing function of Λ

with dependence on Nj(ω), and is equal to min{Cj ,
Nj(ω)

Λ
1
α

}.

Also, CD
j,ω,Cj

(Λ) is a non-linear non-increasing function in

the interval of [0,
(

Nj(ω)
c∗j (ω)

)α
] (that depends on the actual rates

{Rji(ω)}), decreasing from min{Cj , C
∗
j,α(ω)} for Λ = 0

to min{Cj , c
∗
j (ω)} for Λ =

(
Nj(ω)
c∗j (ω)

)α
. If we replace the

instantaneous values of c∗j (ω), C∗
j,α(ω), and Nj(ω) by the

average values of these quantities, we could achieve our goal
of replacing CD

j,ω,Cj
(Λ) by functions of Λ that do not depend

on the realization, as follows:
Given channel allocation parameter K, UA

parameter δ, and a set of realizations Ω, we can
compute the average values of C∗

j,α(ω), Nj(ω),
and c∗j (ω): N j ≜ lim|Ω′|→∞

1
|Ω′|

∑
ω∈Ω′ Nj(ω),

C
∗
j,α ≜ lim|Ω′|→∞

1
|Ω′|

∑
ω∈Ω′ C∗

j,α(ω), and
c∗j ≜ lim|Ω′|→∞

1
|Ω′|

∑
ω∈Ω′ c∗j (ω). We can then

use the following simple relationships between the
(approximate) dual variable Λ and the primal variables
C̃j : C

D

j,Cj
(Λ) = min{f ′(−1)

j (Λ), Cj} where

f
′(−1)

j (Λ) =


Nj

Λ
1
α
, Λ ≥

(
Nj

c∗j

)α(
C

∗
j,α − Λ×∆j

)
, Λ <

(
Nj

c∗j

)α
and ∆j ≜

C
∗
j,α−c∗j(
Nj
c∗
j

)α

.

The dual-based scheme works as follows: The small cells re-
port the measurements on the average values of (c∗j , C

∗
j,α, N j).

With these values, the MBS uses the bisection-search al-
gorithm in Algorithm 1 to compute the realization-agnostic

values of the virtual backhaul capacities which it sends to the
SCs. These values are then kept fixed.

Remark 1: Note that the dual-based heuristic can be imple-
mented easily as an online algorithm (with no offline tuning
required). This can be done by each BS learning the required
averages, and reporting these averages once the measurements
converge.

C. Numerical Results

We study how the realization-agnostic schemes work over a
set of 500 realizations Ω′, where each realization ω ∈ Ω′ has
a number of users chosen uniformly at random in the interval
[10, 30]. The users are distributed uniformly at random in the
deployment area. Note that, in Section VI-C, we considered a
set of realizations Ω with a fixed number of users (N = 30).
But, in this section, we consider realizations with different
number of users. This setup encompasses a large set of random
realizations in a dynamic network with varying number of
users and thus allows us to see if the realization-agnostic
scheme works well in a dynamic context. Other than this, we
take the same physical layer and network level parameters and
setup as in Section VI-C.

In Fig. 4a, we consider the case of proportional fairness
(PF) (α = 1) with three different values of CBH , i.e., 9, 16,
and 30 Mbps, for K = 15 and δ = 6.6dB. We present the
performance of the sub-optimal schemes in terms of the loss in
α-mean throughput performance incurred due to these schemes
with respect to the optimal one, for different values of the
backhaul capacities. Let χs(ω) be the α-mean throughput for
realization ω for scheme s. Then, the average loss in α-mean
throughput for scheme s over the set of realizations Ω′ is given
as 100× 1

|Ω′|
∑

ω∈Ω′
χ(Opt)(ω)−χ(s)(ω)

χ(Opt)(ω)
where χ(Opt)(ω) is the

α-mean throughput of the optimal scheme for realization ω.
Observation (Realization-agnostic schemes work well for

α = 1): The results show that the price of using a realization-
agnostic scheme is less than 12% for CBH small and decreases
when CBH increases. A degradation of less than 12% is a
reasonable price to pay, especially since the optimal scheme
would be much more complex, and would require a lot of
information exchange and a frequent global computation of
the optimal solutions. A realization-agnostic scheme, on the
other hand, yields independent scheduling at each BS.

In Fig. 4b, we show similar results for α = 2 for CBH =
16Mbps. This shows the effectiveness of our heuristic schemes
for another value of α.

VIII. CONCLUSION

In this paper, we study the impact of limited backhaul
capacity on user scheduling in a heterogeneous network with
a macro base station (MBS) overlaid with a number of
small cells, inter-connected via a backhaul network deployed
in a tree topology. We generalize the results available for
proportional fairness under unlimited backhaul capacities to
a more general objective of α-fairness, and under different
scenarios of backhaul limitations. If each BS could perform
its own scheduling locally, it would result in a simple operation
of a HetNet. This decoupling of user scheduling processes in
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Fig. 4: Performance of the two realization-agnostic heuristic
schemes w.r.t. the optimal scheme, N ∈ [10, 30]

different BSs is obtained naturally in a network where the
backhaul links do not have capacity limitations, and in such
case, each BS can use a simple local scheduler. We have shown
that if the limiting factor is the backhaul links between the
MBS and the SCs, then each BS can still schedule locally and
independently from the other BSs but the local scheduler can
take different forms based on the level of capacity limitation.
We propose a very simple scheduler that performs well under
backhaul limitations.

When the link between the MBS and the core network
is also a limiting factor, scheduling becomes much more
complex. Each BS can still perform a local scheduling as in
the previous case as long as there is a master problem that
allocates feasible virtual backhaul capacities to each BS. Doing
so in an optimal way is complex and expensive in terms of
the amount and frequency of information exchanges but we
show that a relatively simple heuristic works very well.

APPENDIX A
PROOF OF THEOREM 2

The following important property of [Pj
Local(ω,Cj)] will

be useful in the ensuing analysis.
Proposition 1: If Cj > 0, there exists a unique optimal

solution to [Pj
Local(ω,Cj)] with βji > 0 for all i ∈ Aj(ω).

The proof is similar to Proposition 1 in [15].

The Lagrangian function of the local problem can be defined
as follows.

L(βj ;µj , ζj , lj) = −
∑

i∈Aj(ω)

Uα(βjiRji(ω))−
∑

i∈Aj(ω)

lj,i,ωβji+

µj,ω(
∑

i∈Aj(ω)

Rji(ω)βji − Cj) + ζj,ω(
∑

i∈Aj(ω)

βji − 1)

where βj and lj are respectively the vectors comprising
of all βji and all lj,i,ω for i ∈ Aj(ω). The Karush-Kuhn-
Tucker (KKT) conditions [26], necessary for optimality of
[Pj

Local(ω,Cj)], can be written as follows.

∂L

∂βji
= 0 =⇒ βji =

Tji,α(ω)

(µj,ωRji(ω) + ζj,ω − lj,i,ω)
1
α

,

∀i ∈ Aj(ω) (24)

ζj,ω(
∑

i∈Aj(ω)

βji − 1) = 0 (25)

µj,ω(
∑

i∈Aj(ω)

Rji(ω)βji − Cj) = 0 (26)

lj,i,ωβji = 0, ∀i ∈ Aj(ω) (27)
µj,ω ≥ 0; ζj,ω ≥ 0; lj ≥ 0

Eq.(13); Eq.(14); Eq.(15);

(24) are the first-order necessary conditions for optimality.
(25), (26) and (27) are the so-called complementary-slackness
conditions. The primal problem involves maximization of a
concave function over a convex set, and hence any tuple
of primal and dual variables ({βji}, µj,ω, ζj,ω, {lj,i,ω}) that
satisfies all of the KKT conditions is optimal [26]. Also,
from Proposition 1, we know that such a solution is unique.
Moreover, since the optimal solution is known to satisfy
βji > 0, we have lj,i,ω = 0 for all i ∈ Aj(ω) from (27).
Using this fact on the first order condition (24), we get

βji =
Tji,α(ω)

(µj,ωRji(ω) + ζj,ω)
1
α

, ∀i ∈ Aj(ω) (28)

Note that the optimal dual variables obey one of the three
conditions: (µj,ω = 0, ζj,ω > 0), (µj,ω > 0, ζj,ω = 0),
and (µj,ω > 0, ζj,ω > 0). This is because, (28) imposes
µj,ωRji(ω)+ζj,ω ̸= 0, for α > 0. Hence, (µj,ω = 0, ζj,ω = 0)
is not possible.

We will make use of the following lemmas to establish our
main result.

Lemma 2: (a) If Cj ≥ C∗
j,α(ω), then (βji =

Tji,α(ω)∑
i∈Aj(ω) Tji,α(ω) , ∀i ∈ Aj(ω)) is the unique optimal solu-

tion to [Pj
Local(ω,Cj)]. (b) If Cj < C∗

j,α(ω), then (βji =
Tji,α(ω)∑

i∈Aj(ω) Tji,α(ω) , ∀i ∈ Aj(ω)) is not feasible.

Proof: It is easy to verify that βji =
Tji,α(ω)∑

i∈Aj(ω) Tji,α(ω) for

all i ∈ Aj(ω), µj,ω = 0 and ζj,ω =
(∑

i∈Aj(ω) Tji,α(ω)
)α

satisfy all KKT conditions if Cj ≥ C∗
j,α(ω). It is thus an

optimal solution consistent with the backhaul capacity value
Cj ≥ C∗

j,α(ω). Proposition 1 implies that this is in fact the
only optimal solution. If Cj < C∗

j,α(ω), substituting βji =
Tji,α(ω)∑

i∈Aj(ω) Tji,α(ω) for all i ∈ Aj(ω) in
∑

i∈Aj(ω) βjiRji(ω) ≤
Cj results in a contradiction.
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Lemma 3: (a) If Cj ≤ c∗j (ω), then (βji =
Cj

|Aj(ω)|Rji(ω) , ∀i ∈ Aj(ω)) is the unique optimal

solution to [Pj
Local(ω,Cj)]. (b) If Cj > c∗j (ω), then

(βji =
Cj

|Aj(ω)|Rji(ω) , ∀i ∈ Aj(ω)) is not feasible.

Proof: We can easily verify that βji =
Cj

|Aj(ω)|Rji(ω) for

all i ∈ Aj(ω), µj,ω =
(

|Aj(ω)|
Cj

)α
and ζj,ω = 0 satisfy all

KKT conditions if Cj ≤ c∗j (ω). It is thus an optimal solution
consistent with the backhaul capacity value Cj ≤ c∗j (ω).
Proposition 1 implies that this is also the only optimal solution.
If Cj > c∗j (ω), then substituting βji =

Cj

|Aj(ω)|Rji(ω) for all
i ∈ Aj(ω) in

∑
i∈Aj(ω) βji ≤ 1 results in a contradiction.

Lemma 4: If c∗j (ω) < Cj < C∗
j,α(ω), the optimal dual

solution is obtained by solving the following equations for
µj,ω > 0 and ζj,ω > 0.

∑
i∈Aj(ω)

Rji(ω)
1
α

(µj,ωRji(ω) + ζj,ω)
1
α

= Cj (29)

∑
i∈Aj(ω)

Tji,α(ω)

(µj,ωRji(ω) + ζj,ω)
1
α

= 1 (30)

Proof: We will first show that the optimal dual variables
have to satisfy µj,ω > 0 and ζj,ω > 0. First, we assume
that there exists a dual optimal solution such that µj,ω = 0.
µj,ω = 0 implies ζj,ω > 0, and hence

βji =
Tji,α(ω)

ζ
1
α
j,ω

and
∑

i∈Aj(ω)

βji = 1

=⇒ βji =
Tji,α(ω)∑

i∈Aj(ω) Tji,α(ω)
, ∀i ∈ Aj(ω)

We know from Lemma 2(b) that this is an infeasible solution
since Cj < C∗

j,α(ω). Thus, we require µj,ω > 0.
Similarly, we assume that there exists a dual optimal so-

lution such that ζj,ω = 0. ζj,ω = 0 implies µj,ω > 0, and
hence

βji =
Tji,α(ω)

(µj,ωRji(ω))
1
α

and
∑

i∈Aj(ω)

βjiRji(ω) = Cj

=⇒ βji =
Cj

|Aj(ω)|Rji(ω)
, ∀i ∈ Aj(ω)

We know from Lemma 3(b) that this is an infeasible solution
since Cj > c∗j (ω). Thus, we require ζj,ω > 0.

Thus, the optimal solution has to satisfy µj,ω > 0 and
ζj,ω > 0. In such case, (25) and (26) require that the
primal constraints (13) and (14) are satisfied with equality.
Substituting the value of βji from (28) in these equalities, we
get the required equations.
Proofs for Lemma 2, 3, and 4 complete the proof for Theorem
2.

APPENDIX B
PROOF OF THEOREM 1

Note that the optimal schedules for Scenario 0 have to be
equal to the solutions for sufficiently large values of Cj . So,
the proof of Lemma 2 contains the proof for Theorem 1.

APPENDIX C
PROOF OF LEMMA 1

The results for c∗j (ω) ≤ Cj and Cj ≥ C∗
j,α(ω) are

immediate from the closed-form solutions of fj,ω(Cj) from
Theorem 2.

For c∗j (ω) < Cj < C∗
j,α(ω), we know that an optimal dual

variable µ∗
j,ω(Cj) is a subgradient of fj,ω(Cj) at Cj . We need

to show that this is unique and is the only subgradient, or
alternatively we need to show that fj,ω(Cj) is differentiable.

The differentiability of fj,ω(Cj) can be shown by noting
that the local problem has a unique optimal dual solution
µ∗
j,ω(Cj) for c∗j (ω) < Cj < C∗

j,α(ω). Applying this unique-
ness in Corollary 5(ii) of [27] proves differentiability.

APPENDIX D
PROOF OF THEOREM 3

We first establish the following proposition which allows us
to compute the primal variables {C̃j}j∈{0}∪P that maximize
the lagrangian function for a given dual variable Λ.

Proposition 2: C̃D
j,ω,Cj

(Λ) = min{f ′(−1)
j,ω (Λ), Cj}, ∀j ∈

{0} ∪ P give the values of virtual capacities {C̃j} that max-
imize the Lagrangian function L(C̃; Λ) for a given Λ where
f
′(−1)
j,ω (Λ) is defined in (23), with µ

∗(−1)
j,ω (Λ) representing the

inverse mapping of µ∗
j,ω(Cj) in the interval of (0,

(
|Aj(ω)|
c∗j (ω)

)α
).

Proof: Case 1: Cj ≥ C∗
j,α(ω) We first prove the propo-

sition for the case of large {Cj} (specifically, Cj ≥ C∗
j,α(ω)

for all j). In this case, f̃j,ω,Cj (C̃j) = fj,ω(C̃j). The Karush-
Kuhn-Tucker (KKT) first-order conditions ( ∂L

∂C̃j
= 0) give us

the following.

f ′
j,ω(C̃j) = Λ ∀j ∈ {0} ∪ P (31)

Thus, for all Λ > 0, we require that a primal variable C̃j has
to be less than or equal to C∗

j,α(ω) (or, otherwise f ′
j,ω(C̃j)

would be 0, which means Λ = 0). Together with this, the
strictly decreasing nature of f ′

j,ω(C̃j) for 0 < C̃j ≤ C∗
j,α(ω)

allows us to compute an inverse function of f ′
j,ω(Cj), defined

as f
′(−1)
j,ω (Λ), for all Λ > 0 and that, by definition, it should

satisfy (31). Finding the exact description of this inverse
function is not difficult, as outlined below.

The inverse function of f ′
j,ω(Cj) with an image in (0, c∗j (ω)]

has a domain of Λ ∈ [
(

|Aj(ω)|
c∗j (ω)

)α
,∞), whose expression,

shown in (23), is immediate from (19). This inverse function
with an image in (c∗j (ω), C

∗
j,α(ω)] has a domain of Λ ∈

(0,
(

|Aj(ω)|
c∗j (ω)

)α
), and is given by the inverse of dual variable

µ∗
j,ω(C̃j), since ∂fj,ω(C̃j)

∂C̃j
= µ∗

j,ω(C̃j).

For Λ = 0, f ′
j,ω(C̃j) = Λ does not have a unique solution

as f ′
j,ω(C̃j) = 0 is true for all C̃j ≥ C∗

j,α(ω). Choosing C̃j =
C∗

j,α(ω) as the unique map of the inverse function for Λ = 0
thus does not affect optimality.

Case 2: Cj < C∗
j,α(ω) For Cj < C∗

j,α(ω), the additional
requirement of the inverse mapping is that the value of
primal variables as a function of Λ have to be feasible. A
bounded version of the inverse mapping, with an upper-bound
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of Cj would satisfy the primal feasibility constraints, which
is exactly what C̃D

j,ω,Cj
(Λ) guarantees.

Since C̃D
j,ω,Cj

(Λ) is a non-increasing function of Λ in
[0,∞), and since f̃j,ω,Cj (C̃j) is non-decreasing in C̃j ,∑

j∈{0}∪P f̃j,ω,Cj (C̃j) can be solved my taking the smallest
value of Λ so that the MBS backhaul constraint is satisfied.
This is exactly what Theorem 3 states.
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