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Abstract—Given the expected impact of electric vehicle (EV)
charging on power grids, this paper presents a novel two-step
approach for the smart operation of EVs with four-quadrant
chargers in a primary distribution feeder, accounting for the un-
certainties associated with EVs, and considering the perspectives
of both the utility and the EV owners. In the first step of the
proposed approach, the mean daily feeder peak demand and
corresponding hourly feeder control schedules, such as taps and
switched capacitor setpoints, considering the bidirectional active
and reactive power transactions between EVs and the grid, are
determined. A nonparametric Bootstrap technique is used, in
conjunction with a genetic algorithm (GA)-based optimization
model, to account for EV uncertainties and discrete variables.
In the second step, the maximum possible power that can be
given to connected EVs at each node, while providing active
and/or reactive power to maintain the peak demand value and
corresponding feeder dispatch schedules defined in the first step,
is computed every few minutes in a way which is fair to the
EVs. The proposed approach is validated using the distribution
feeder model of a real primary feeder in Ontario, Canada,
considering significant EV penetration levels. The results show
that the proposed approach could be implemented in practice
to properly operate EVs, satisfying feeder and peak demand
constraints, which would be better than the business-as-usual
practice or a popular heuristic method in terms of number of
tap operations, system peak demand, and voltage regulation.

Index Terms—Bootstrap, distribution system management,
electric vehicle, EV smart charging, uncertainty, vehicle-to-grid.

NOMENCLATURE

Sub- and Super-Indices
b Feeder index
ev Aggregated EV index
i LTC tap index
j Switched capacitor index
l Vehicle index
n Node index
pk Peak
t Time interval index
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, Upper and lower limits
capj Upper limit for switched capacitor [kVAr]
Eevn Battery capacity of aggregate EV load [kWh]
SoCl SoC upper limit [%]
τ1,τ2 Time steps
AHD Average hourly demand [kWh]
B Number of feeders in the system
BCap Battery capacity of single EV [kWh]
EV r Electric range of EV [km]
K Number of elements in the sample
LN Number of load nodes in the system
M Number of Bootstrap samples
Mcp Maximum limit of single charging point [kW]
Mop Maximum control operations per hour for taps

(Moptap) and capacitors (Mopcap)
N Total number of nodes in the system
nev Number of EVs
pr Penetration rate
SoCf SoC at the end of charging period [%]
Tmax Maximum time limit

Variables
α, β Discharging control variables
δn Voltage angle [rad]
Ĉon Mean hourly feeder control schedule
P̂max Mean daily feeder peak demand for original sam-

ple [kW]
|V bc| Base-case voltage magnitude [p.u.]
cap Integer capacitor switch setting
E[Con] Bootstrap estimate of hourly feeder control sched-

ule
E[Pmax] Bootstrap estimate of daily feeder peak demand

[kW]
EV d Distance travelled by aggregate EV load [km]
I Current phasor [p.u.]
J Jacobian matrix
P Active power demand [kW]
Pmax Daily feeder peak demand [kW]
Q Reactive power demand [kVAr]
S Apparent power phasor [kVA]
SoC EV Battery SoC [%]
SoC0 SoC at the beginning of charging period [%]
TArr,Depn Arrival, departure time of aggregate EV load
tap Integer tap setting
V Voltage phasor [p.u.]
BLn,t Base load [kW]
P ev+,− Charging and discharging EV load [kW]
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I. INTRODUCTION

D ISTRIBUTION feeders are designed to serve forecasted
loads, and not electric vehicle (EV) loads. Hence, the

task of optimal operation of distribution feeders in this context
is a complex problem, due to the significant increase in
demand and the uncertainties associated with EV charging,
when EV penetration is high [1]. Most of EVs arrive home and
start charging at a time which coincides with the peak period of
residential areas, which may lead to new peaks or an increase
in peak demand in distribution feeders. Incentive programs
to reduce the peak demand of the system and maximize the
utilization of existing assets have been implemented by several
utilities in North America (e.g. Peaksaver Plus® program in
Ontario [2]), as an increase in peak demand may require sig-
nificant capital investment and infrastructure upgrades. Hence,
on one hand, utilities are concerned with a higher system peak
due to the charging of EVs if the penetration is high, while
on the other hand, the customers want fast and fair charging;
these are the problems this paper tries to address.

Several works in the literature address dynamic or real-
time operation of EV loads in distribution systems using a
centralized or decentralized approach. Many papers (e.g. [3],
[4]) take the vehicle perspective only, ignoring the grid; hence,
the practical feasibility of the proposed algorithms from a
grid perspective is not analyzed or verified. The decentralized
charging strategies proposed in [5] aim to schedule EV loads
in real-time and in a fair manner, while taking the operational
constraints of the grid into account; this charging strategy
ensures fairness in the frequency at which EVs are allowed
to charge from the grid, but not in terms of the energy
they receive, and has a high communication overhead. The
decentralized charging strategy proposed in [6] for real-time
EV charging is fast and robust, but does not address the
problem of tap and capacitor scheduling.

In [1] and [7]–[11], centralized strategies to charge EVs
dynamically are proposed. In [7], a cost minimizing strategy
benefitting the utility alone is proposed, neglecting fairness in
charging for all EVs, while in [8], fair EV charging leads to
an increase in system peak, which is not favourable to the
utility. A joint optimal power flow (OPF) and EV charging
approach is proposed in [9]; however, the uncertainties asso-
ciated with EVs are not considered, which is an important
factor in real-time charging of EVs. In [1], [10], and [11], the
authors propose centralized control schemes, considering the
uncertainty associated with EVs, but [10] only considers the
stochasticity in arrival time of EVs, and the proposed priority-
based charging scheme does not ensure fairness in charging.
In [1] and [11], the dynamic nature of the EVs is considered
while maximizing the power given to EVs, but simplified
distribution grid models are used to reduce computational
burden.

Four-quadrant chargers allow EVs to inject or absorb ac-
tive and/or reactive power, enabling operation in vehicle-
to-grid (V2G) mode and thus, adding more control options
for distribution feeders. The operation of four-quadrant EV
chargers in distribution feeders has been considered in several
works, such as [12]–[14], which have mostly focused on

reactive power control with EVs to improve voltage profiles
and minimize losses without discharging EV batteries. Thus,
[12] considers the simultaneous operation of four-quadrant EV
chargers, load tap changers (LTCs), and switched capacitors
for minimization of losses and capacitor operation costs;
however, the inductive and discharging regions of EV chargers
are not studied; also, the uncertainties of EV operation are not
included. In [13], a robust multi-objective optimization model
for both minimizing charging costs and voltage deviations
using four-quadrant EV chargers, including the uncertainties
of EV operation, is presented; however, this approach does
not consider battery discharging, nor distribution feeder LTCs
and switched capacitors, given the linear nature of the robust
formulation. In [14], a similar approach to the one discussed
in the current paper is proposed; however, only two-quadrant
operation is considered, and the impact of different penetration
levels are not analyzed. There are various papers that discuss
schemes and procedures (e.g. [15]) to compensate EVs for
reactive and active power services, which are beyond the scope
of the present paper, since it focuses on the optimal operation
of four-quadrant EV chargers in primary distribution feeders;
however, the approach proposed here could be used to design
possible compensation methods for EV P and Q distribution
feeder services.

Based on the previous discussions, the present paper pro-
poses a novel two-step approach for the smart operation of
four-quadrant EV chargers in a primary distribution feeder,
while considering the uncertainties associated with EVs, from
the perspectives of both the utility and the customers, as well
as the interactions with LTCs and switched capacitors, ana-
lyzing various operation modes of four-quadrant EV chargers.
Thus, the main contributions of this paper are as follows:

• Proposing a new method to obtain day-ahead hourly
feeder control schedules using an accurate and realistic
model of a 3-phase unbalanced feeder, considering EV
uncertainties, through a non-parametric Bootstrap tech-
nique, and operation in all the four quadrants of the PQ
plane.

• Proposing a novel method for maximum possible power
allocation to charge EV batteries using a proportional
fairness approach, considering also the provision of active
and reactive power from EV loads to support the grid,
without exceeding a given peak demand setpoint or the
feeder operational limits.

• Illustrating the benefits and feasibility of the proposed
two-step approach for practical applications and feeder
operation, based on the results obtained for an actual
primary distribution feeder and realistic assumptions re-
garding several four-quadrant EV operation modes and
uncertainties.

The rest of the paper is organized as follows: Section
II presents background information about four-quadrant EV
chargers. Section III describes the problem formulation of the
proposed two-step approach. The first step of the proposed
approach, i.e. the day-head dispatch of distributions feeders
with four-quadrant EV chargers, is explained in Section IV.
Section V presents the second step of the proposed approach,
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Fig. 1. Typical two-stage smart charger topology [18].

i.e. the fair charging of EV batteries, and the use of active and
reactive power from EVs to support grid operation. A simpler
heuristic approach and the business-as-usual (BAU) practice
are used as benchmarks against which the performance of the
proposed approach is evaluated in Section VI, where the test
feeder used, the assumptions made, and the simulation results
are presented and discussed. Finally, Section VI highlights the
main conclusions and contributions from this work.

II. FOUR-QUADRANT EV CHARGERS

Four-quadrant EV chargers refer to a category of chargers
that are able to operate at in all four quadrants of the PQ
plane, particularly due to bidirectional power flow capability of
the converters used, and independent and bidirectional reactive
power control at the interface with the grid. In contrast with
the existing EV chargers that are normally composed of a
diode bridge rectifier and a boost converter for power factor
correction, these chargers typically use a two-stage converter
topology, with controllable switches, as shown in Fig. 1. The
first stage is a single-phase, bidirectional, half-bridge or full-
bridge ac/dc converter that is in charge of regulating the dc-
link capacitor voltage and controlling the reactive power or
power factor at the interface with the grid. The second stage
is a bidirectional dc/dc converter, such as bidirectional buck-
boost converter, that controls the battery current according to
the charging or discharging set points [16]. In addition to being
able to charge and discharge the EV battery, four-quadrant EV
chargers allow injection and absorption of reactive power at
the grid interface independently of the EV battery power, and
merely based on the support of the dc-link capacitor, thus
avoiding added stress on EV battery and dc/dc converter. The
main disadvantage of four-quadrant chargers is the extra cost
of converters [17].

Even though four-quadrant EV chargers are still not avail-
able in the EV models on the market, the technical feasibility
of these chargers has been demonstrated with various pro-
totypes for a wide range of active and reactive power set
points (e.g. [18], [19]). Hence, the flexibility of EV loads
equipped with four-quadrant chargers is an advantage that can
be used by utilities to ensure efficient feeder operation through
coordinated operation of EV loads and proper feeder manage-
ment, while accounting for EV uncertainties, such as arrival
and departure times, initial battery state of charge (SoC), and
number of EVs charging [20]. Thus, this work proposes an ap-
proach to operate the distribution feeders efficiently when the
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Fig. 2. Schematic overview of the proposed approach.

penetration of EVs with four-quadrant chargers is significant,
while keeping the daily feeder peak demand reasonable. The
proposed technique includes day-ahead dispatch of distribution
feeders and quasi-real-time operation of four-quadrant EV
chargers via centralized scheduling.

III. PROBLEM FORMULATION

A radial primary distribution feeder, with a specified number
of nodes (bus and phase) and controllable LTCs and switched
capacitors, is considered in this work. It is assumed that
aggregated base and four-quadrant EV loads are present at
each load node. Note that the present work deals with aggre-
gated EV loads at each node, and hence does not deal with
individual EV control, which requires the representation of the
secondary distribution network, as discussed in [14], where
the representation of the secondary distribution or low-voltage
(LV) network for EV smart charging is studied in detail; in
this paper, the dispatch of individual EV chargers may affect
the active and reactive power set points, since the calculation
of the final set points takes into account the ratings of the
MV/LV distribution transformer, secondary feeder and service
cables, as well as voltage limits at each LV node, which are
not represented in aggregated load models. Furthermore, for
simulation purposes, it is assumed that active and reactive
powers at a load node are properly distributed among all EVs
connected. It is also assumed that feeder controllable variables,
i.e. tap and capacitor settings, can be adjusted every hour.
The hourly base load profiles for each load node are assumed
known through proper forecasting methods for a 24 h period
(e.g. [21]), while EV loads, which are assumed controllable in
smaller time steps (e.g. 5 min), are associated with temporal
and spatial uncertainties, i.e. the arrival and departure times,
and the initial SoCs at any given time at any node are random
variables.

This work addresses the operation process in two steps, as
shown in Fig. 2. First, the day-ahead dispatch of a distribution
feeder is performed considering uncertainties in the arrival and
departure times and the initial battery SoCs at each node as
follows:

• Arrival and Departure Times: The aggregated arrival and
departure times of four-quadrant EV loads at each node
follow given probability distribution functions (pdfs),
accounting for the temporal uncertainty of these loads,
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thereby dictating the total time available to operate the
EVs for a specific final battery SoC.

• Initial Battery SoC: The initial battery SoC of aggregate
EV loads at node n is calculated using:

SoC0
n =

(
1− EV dn

EV r

)
100 ∀ n = 1, ..., LN (1)

based on the aggregated daily distance traveled by the
electric vehicles EV dn, which is a random variable
following a given pdf, and the EVs’ electric range EVr.
The variation in initial battery SoC affects the total energy
drawn from the grid by the EVs.

The base load profiles, and aggregated EV and feeder
parameters and limits, are inputs to the first step. In this step,
hourly τ1 tap and capacitor schedules, as well as the EV
active and reactive power schedules, are computed for one day
for various realizations of the above-mentioned uncertainties,
to minimize daily feeder peak demand, while satisfying all
feeder and EV-related constraints based on an optimization
approach. These tap and capacitor schedules and daily feeder
peak demand values are then used to compute a feeder control
schedule that is likely to work well over a large number
of realizations for a mean peak demand value. The feeder
tap and capacitor schedule and peak demand are inputs to
the second step, which performs aggregated four-quadrant EV
control; aggregated EV operation limits, and feeder limits and
parameters are also inputs to the second step. The output of
the second step, which is computed every few minutes (τ2=5
min) is the per-node aggregated EV active and reactive power
for that period.

It is important to note that, in the first step, all the EVs at
a node are assumed to be aggregated into one uncertain and
variable load, so that uncertainties on EV arrival and departure
times, as well as initial battery SoCs, are all represented
through a combined stochastic load. Additionally, the quality
of the stochastic representation of EV loads will depend on
the quality of the data sets used to extract the pdfs; the pdfs
used in this paper are extracted from [22] and [23]. However,
the model proposed in this paper is independent of the EV
data; thus, if other pdfs extracted from different EV data
sets become available, they can be readily integrated into the
model. On the other hand, in the second step, the stochasticity
associated with each EV at a node, in terms of the arrival and
departure times, and the initial battery SoCs, is considered
using the same pdfs used in the first step, so that the number of
EVs needed for simulation purposes can be computed for each
time interval; in practice, this information would be available
in real time through a communication network.

IV. DAY-AHEAD DISPATCH OF DISTRIBUTION FEEDERS
WITH FOUR-QUADRANT EV CHARGERS

The objective of the first step is to compute a feeder control
schedule that would allow for the operation of the grid within
operating limits while minimizing the peak demand with four-
quadrant EV chargers, since this is of particular concern
for utilities [24]. A distinct aggregated EV realization is
generated that comprises the aggregated daily distance traveled
EV dn, and the aggregated arrival and departure times at each

node, TArrn and TDepn , where each of them is modeled using
appropriate pdfs. An hourly τ1 = 1h feeder control schedule
and the corresponding daily peak demand value are computed
using a GA-based optimization model for this realization [25],
to minimize the peak demand for the day, i.e.

minPmax = max
t=1,...,Tmax

{
N∑
n=1

(
BLn,t + P evn,t

)}
(2)

where all variables, parameters, and indices in this and other
equations are defined in the Nomenclature. This minimizes
the daily feeder peak demand, which is the maximum value
of the feeder demands (sum of the EV and base loads at all
the nodes) during each time interval t over the 24 h horizon.

The constraints of the optimization model are the following:
• EV Operation Constraints: The following constraints en-

sure that the EV battery capacity is not exceeded, and the
minimum battery SoC at the end of the charging period
is SoCfn :

Tmax∑
t=1

P evn,tτ1 ≤ Eevn ∀ n = 1, ..., LN (3)

Tmax∑
t=1

P evn,tτ1 ≥
(
SoCfn − SoC0

n

)
Eevn ∀ n = 1, ..., LN

(4)

Eevn =

nevn∑
l=1

BCapl ∀ n = 1, ..., LN (5)

Note that, for the EV penetration levels considered in this
work, constraint (4) is feasible for all generated realiza-
tions; however, this may not be the case for higher EV
penetration levels. Furthermore, the limits of apparent,
active, and reactive powers of aggregated four-quadrant
EV loads are enforced as follows:

Sevn,t =

nevn,t∑
l=1

Mcpl ∀ n = 1, ..., LN, t (6)

−Sevn,t ≤ P
ev
n,t ≤ Sevn,t ∀ n = 1, ..., LN, t (7)

−Sevn,t ≤ Qevn,t ≤ Sevn,t ∀ n = 1, ..., LN, t (8)(
Qevn,t

)2
+
(
P evn,t

)2 ≤ (
Sevn,t

)2 ∀ n = 1, ..., LN, t (9)

• System Limits: The physical limits of the system, i.e.
the constraints on the transformer taps and switched
capacitors, and the node voltage and feeder current limits,
are represented as follows:

tapi ≤ tapi,t ≤ tapi ∀ i, t (10)

0 ≤ capj,t ≤ capj ∀ j, t (11)

V n ≤ |V |n,t ≤ V n ∀ n = 1, ..., LN, t (12)

≤ |I|b,t ≤ |I|b ∀ b = 1, ..., B, t (13)

The apparent power limit at each node, which represents
the maximum capacity of the equivalent feeder or MV/LV
transformer at each node, is also considered as follows:

0 ≤ |S|n,t ≤ Sn,t ∀ n, t (14)
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• Power Flows: During each time interval t, the power
flows are determined using OpenDSS [26], which is based
on current injections and node voltages at each phase, as
well as the system admittance matrix. The actual powers
delivered to EV and base loads (P evn,t and BLn,t), are also
computed by OpenDSS, which are then used to compute
the objective function value.

• Control Operations: The following constraints limit the
number of control operations by taps and capacitors
performed every hour:

|tapi,t − tapi,t−1| ≤Moptap ∀ i, t (15)

|capj,t − capj,t−1| ≤Mopcap ∀ j, t (16)

The GA optimization technique is used here, as opposed
to other optimization techniques, to solve the proposed Mixed
Integer Nonlinear Programming (MINLP) problem, because
GA can readily handle integer variables and is also more likely
to find a solution near the global optimum, since it searches
in a wider space in the feasible region and normally does
not get stuck in a local minimum, which often happen with
classic methods that start searching from a single initial point
[27]. Thus, a comparison of the optimality gap produced for
a similar MINLP formulation of the first stage, considering
only EV battery smart charging using both GA and Sequential
Quadratic Programming (SQP) solvers based on an integer
relaxation of the original problem, is presented in [28] for
an IEEE 13-bus benchmark distribution feeder. For EV pen-
etration levels equal to or higher than 50%, the results show
a lower value of the objective function for the GA solution
approach compared to the relaxed version of the problem
solved with an SQP solver, demonstrating that the GA method,
for this MINLP problem, yields adequate results. Furthermore,
this technique allows for the ready use of existing and efficient
simulation packages, such as OpenDSS, to compute the power
flow constraints, thus simplifying the implementation of the
proposed approach.

In the Bootstrap method, K daily feeder peak demands
and their corresponding discrete feeder controls, comprising
of hourly tap and capacitor settings, are computed for a finite
number of K realizations, using this optimization model.
These independent observations populate the original sample
of size K, which is then resampled to generate M Bootstrap
replicates, each of size K. Consequently, the mean daily feeder
peak demand P̂max and the most likely hourly tap/capacitor
settings Ĉon, are computed for the original sample, as well
as for each Bootstrap sample P̂max∗ and Ĉon∗. These M
Bootstrap statistics are then used to obtain the sampling
distributions of the desired statistics. The Bootstrap estimates
of the mean feeder peak demand E[Pmax] and the most likely
feeder control schedule E[Con], which are the outputs of
the process, are obtained by computing the mean of their
respective sampling distributions, provided they approximate
a normal distribution [28].

V. REAL-TIME COORDINATION OF FOUR-QUADRANT EV
CHARGERS

The hourly feeder control schedule E[Con] computed in
the first step is used in the second step, which concentrates

on the aggregated four-quadrant EV operation control per-
formed periodically (every 5 min) at each node. The latter is
implemented using an optimization approach, and the results
are then compared with a popular sensitivity-based heuristic
approach used in several papers (e.g. [10], [29]), and the BAU
practice. All these approaches are described next.

A. Optimization Approach

In the proposed approach, the utility faces the challenge
of allocating limited amount of power among all EV cus-
tomers without exceeding the daily feeder peak demand, for
pre-computed optimal feeder controls, and considering the
perspective of EV customers. Thus, aggregate EV loads at
some nodes of a radial primary distribution feeder may be
at a disadvantage compared to others in the same feeder
due to their locations, which affect node voltages along the
feeder; hence, an increase in power to some EV loads would
come at the expense of reducing power delivered to other
loads. Therefore, this work focuses on a well-accepted notion
of fairness in the area of telecommunications and networks,
known as proportional fairness [30], which provides a balance
between two competing interests, i.e. maximizing the total
power delivered to the aggregate EV loads, and providing
some level of power to all EV loads connected for charging.
Moreover, in this model, thanks to the availability of four-
quadrant EV chargers, it is possible to discharge some EV
batteries and use reactive power to reduce the consumption
of voltage-dependent loads to achieve the daily feeder peak
demand calculated in the first stage.

Every few minutes, information is collected at each node
(e.g. number of EVs, SoCs, base loads); then, an optimization
problem is solved to determine how much active and reactive
power each aggregate load EV would inject or absorb, assum-
ing that everything remains constant during the 5 min period
under consideration. EV active power is decomposed into
positive and negative variables, i.e. P ev+n and P ev−n , which
are treated as complementary variables to avoid simultaneous
charging and discharging of EV batteries. Additionally, the
objective function of this optimization problem contains two
terms. The first term is used to maximize the charging of
connected EV loads in a proportionally fair manner for each
time interval for a given realization, and the second term
is used to minimize the deviations with respect to the peak
demand limit calculated in the first stage, as follows [31]:

max

{(
LN∑
n=1

log
P ev+n

Sevn

)
−

α

(
N∑
n=1

(
P evn + P bln

)
− E[Pmax]

)2} (17)

where, in the first term, the ratio of P ev+n to Sevn achieves its
maximum value of 1, if P ev+n = Sevn ; hence, by maximizing
the summation of the logarithms of these ratios, this term of
the objective function maximizes the power delivered to the
charging EVs at each node, and provides some level of power
to all nodes where there are EVs to charge. The second term is
only activated, i.e. α = 1, when the base load is larger than the
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peak demand limit, meaning that at that point some EVs are
required to discharge, since in this approach EV discharging is
only used to avoid exceeding the peak demand limit calculated
in the first step by directly feeding some neighboring loads,
whereas available EV reactive power can be controlled at any
moment as required by the optimization model. The use of
the EV P and Q services are assumed here to be properly
compensated, and are not requested unless strictly necessary,
without violating the EV charging limits; thus, “standard”
four-quadrant EV chargers are assumed.

The constraints of the proposed optimization model are as
follows:

• Power Flows: OpenDSS is used here to determine the
feeder flows.

• System Limits: The apparent power of the aggregated EVs
at each node is limited by:

Sevn =

nevn∑
l=1

Mcpl ∀ n = 1, ..., LN (18)

The aggregated EV active power is decomposed into a
positive and negative variables, i.e. charging and dis-
charging, as follows:

P evn = P ev+n + P ev−n ∀ n = 1, ..., LN (19)

0 < P ev+n ≤ Sevn ∀ n = 1, ..., LN (20)

−Sevn ≤ P ev−n < 0 ∀ n = 1, ..., LN (21)

P ev−n P ev+n = −ε ∀ n = 1, ..., LN (22)

−Sevn ≤ P evn ≤ Sevn ∀ n = 1, ..., LN (23)

where ε is a small positive number. EV reactive power
limits are also enforced, as follows:

−Sevn ≤ Qevn ≤ Sevn ∀ n = 1, ..., LN (24)

(Qevn )2 + (P evn )2 ≤
(
Sevn
)2 ∀ n = 1, ..., LN (25)

Finally, the node voltage, feeder current, and node appar-
ent power limits are also considered:

V n ≤ |V |n ≤ V n ∀ n = 1, ..., LN (26)

0 ≤ |I|b ≤ |I|b ∀ b = 1, ..., B (27)

0 ≤ |S|n ≤ Sn ∀ n = 1, ..., LN (28)

• EV SoC: The SoC of the individual EV batteries is
calculated as follows:

SoCl,t =SoCl,t−1 +
P evn τ2

nevnMcpl
∀ n = 1, ..., LN, l = 1, ..., nevn

(29)

SoCl,t ≤ SoCl ∀ l = 1, ..., nevn (30)

where the last equation guarantees that the upper limit of
SoC of the EV batteries is not exceeded.

• Peak Demand Constraint: This constraint ensures that
the total feeder load does not exceed the peak demand
setpoint E[Pmax] computed in the first step, as follows:

N∑
n=1

(BLn + P evn ) ≤ E[Pmax] (31)

• V2G Constraints: These constraints guarantee that the
second term of the objective function is only activated
when the base load is larger than the peak demand limit:

β = 1− sgn

(
N∑
n=1

BLn − E[Pmax]

)
(32)

α β = 0, α ∈ {0, 1}, α 6= β (33)

Note that, since at this stage the EV load is maximized
every 5 minutes, the approach will ensure that EV batteries’
SoCs reach a desirable level in the expected charging time
considered in Stage 1, as all EV loads are allocated the max-
imum active power that satisfies all system constraints. Also,
it should be mentioned that a GA-based solution approach
is used here, since the technique used in the first step can
be readily modified to solve this NLP problem, and also
because OpenDSS is used to efficiently compute the power
flow constraints, thus simplifying the implementation process.

B. Heuristic Approach

The sensitivity-based heuristic approach (e.g. [10], [29])
computes the active and reactive power outputs of EVs at
each node from the base-case Y-bus matrix (extracted from
OpenDSS), corresponding to the operating point associated
with base loads in the feeder, when there are no EV loads.
Thus, changes in active power load Pn and reactive power
load Qn correspond to changes in EV load ∆P evn and ∆Qevn
at each node, which can be computed as follows:

[
∆P evn
∆Qevn

]
= J

[
∆δn

∆|V |n

]
=

[ ∂Pn
∂δn

∂Pn
∂|V |n

∂Qn
∂δn

∂Qn
∂|V |n

] [
∆δn

∆|V |n

]
∀ n = 1, ..., N

(34)
The base-case node voltages |V bc|n are computed for the

known base load at each node, which is then used to calculate
the available voltage margin to the lower operating threshold
as follows:

∆|V |n = |V |n − |V
bc|n ∀ n = 1, ..., N (35)

In this work, since the node voltage limits only depend on
|V |n, ∆δn = 0. Consequently, ∆P evn and ∆Qevn can be
calculated as follows:

∆P evn =
∂Pn
∂|V |n

∆|V |n ∀ n = 1, ..., N (36)

∆Qevn =
∂Qn
∂|V |n

∆|V |n ∀ n = 1, ..., N (37)

From (36), there may be load nodes where the result-
ing ∆P evn exceeds the active power limit for the node;
these are corrected to ∆P evn = Sevn , if ∆P evn > 0,
or ∆P evn = −Sevn , if ∆P evn < 0. Moreover, af-
ter correcting ∆P evn , ∆Qevn is corrected to ∆Qevn =
min{((Sevn )2 − (∆P evn )2)1/2,∆Qevn }, if ∆Qevn > 0, or
∆Qevn = max{−((Sevn )2 − (∆P evn )2)1/2,∆Qevn }, if ∆Qevn <
0. In addition, for the nodes with no EV loads, ∆P evn = 0
and ∆Qevn = 0. The corrected ∆P evn and ∆Qevn are then sent
to OpenDSS, which computes the actual active and reactive
power allocated to the EV loads at each node n every τ2
minutes.
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C. Business-as-usual

In North America, the BAU practice is to provide maximum
possible power to all connected EVs, while trying to main-
tain node voltages within operating limits through automatic
regulation of LTC taps and capacitors, and this uncontrolled
operation of EVs is the reason for utility concerns regarding
peak loads exceeding feeder capacities. Typically, the up or
down voltage regulation using LTC taps is performed based
on the node voltages at the midpoint of the feeder, i.e. if the
voltage at this node is higher or lower than the maximum or
minimum voltage threshold, the taps are adjusted until this
node voltage is within the operating limits. This may result
in frequent tap changing operations, which can decrease the
lifetime of LTC taps, with large EV penetration.

VI. SIMULATION RESULTS AND DISCUSSION

A. Test System and Assumptions

The test system used in this work, depicted in Fig. 3, is
a 41-node real distribution feeder extracted from [1], which
is an unbalanced three-phase system with three LTC trans-
formers controlling the secondary voltage of the transformers,
which maintain the voltages of all nodes downstream from
the voltage regulator within operating limits; there are no
switched capacitors in this feeder. In addition, the following
assumptions are made, without loss of generality:

• A 24 h time horizon is implemented, with time steps of
τ1 = 1 h and τ2 = 5 min, for the day-ahead dispatch of
distribution feeders and fair charging of EVs, respectively.
Note that from the power system perspective, 5 min inter-
vals would be sufficiently short for EV operation, since
a finer granularity would increase voltage fluctuations,
which may have detrimental effects on the lifetime of
equipment and appliances serviced by the feeder.

• The hourly base load for the 24 h period is extracted from
[28], and comprises of typical non-flexible residential
loads, assumed known through forecasting techniques
(e.g., [21]), with feeder peak demand for the day oc-
curring at 7 pm. Table I presents the active and reactive
power peak demands for all load nodes. Since this work
focuses on the primary distribution feeder, all LV loads
connected to the medium-voltage (MV) feeder through a
distribution transformer are considered to be aggregated
at a given node at the primary distribution feeder level,
and are modeled as constant impedance loads.

• It is assumed that a household can have a maximum
of one EV, and that the average monthly electricity
consumption of a typical household in the Southern US
is 1500 kWh [32]. Hence, for an EV penetration level
pr, which is the percentage of total possible number of
EVs on the feeder, the number of EVs at a node n is
estimated as follows [1]:

nevn = pr
P pkn
AHD

(38)

where P pkn is the aggregated peak load at the node n,
and the average hourly demand AHD = 1500 kWh/(24
h x 30 days). Therefore, from the peak loads provided

TABLE I
PEAK DEMAND AND NUMBER OF EVS FOR 100% PENETRATION AT

DIFFERENT NODES OF REAL MV FEEDER

Node Ppk
n Qpk

n nevn Node Ppk
n Qpk

n nevn
n for 100% n for 100%

[kW] [kVar] Penetration [kW] [kVar] Penetration
004a 2084 685 1000 014c 67 22 30
004b 2094 688 1003 022b 48 16 20
004c 2236 735 1070 023a 10 3 3
006a 301 171 143 025b 290 95 136
006b 301 171 143 027a 152 50 70
006c 301 171 143 030c 195 64 90
008a 1044 343 500 031a 171 56 80
008b 899 295 430 031b 152 50 70
008c 1245 409 596 031c 195 64 90
010a 192 169 90 034c 204 67 96
010b 192 169 90 036b 81 27 36
010c 192 169 90 037a 57 19 26
013a 6 0 2 037c 48 16 20
013b 6 0 2 041a 712 234 340
013c 6 0 2 041b 675 222 323
014a 209 69 100 041c 780 256 373
014b 71 23 33

in Table I, the corresponding nevn can be calculated,
which would result in a total of 7240 EV loads charging
from the feeder at pr = 100%. The EV penetration levels
considered here are 30%-60%.

• EVs are considered to operate in the V2G mode, both
for active and reactive power, and modeled as constant
current loads.

• In the day-ahead dispatch step, the maximum number of
operating EVs, nevn, computed based on the EV pen-
etration level, remains constant throughout the specific
charging period, TArrn to TDepn . In addition, the arrival
and departure times of EVs are modeled as normal dis-
tributions centered around 5 pm and 7 am, and standard
deviations of 2 h and 1 h [22], respectively.

• In the second step, each EV arrives and departs in-
dividually at each node; hence, each EV at node n
is independent and identically distributed in terms of
the arrival and departure times, and the initial battery
SoC, i.e. the distribution functions from the first step
are applied to each EV. Therefore, the number of EVs
charging from the grid at node n for each time interval is
an input measured using the communication network. In
addition, only one charging window is considered during
a 24 h period.

• Plug-in hybrid EV (PHEV) 30km mid-size sedans with
a battery capacity of 8.14 kWh are considered as the EV
loads, with Level 2 charging, i.e. up to a maximum of
4.8 kW.

• In the day-ahead dispatch of feeders, the initial battery
SoC is modeled based on the daily distance traveled,
which is a random variable following a lognormal distri-
bution [23]. In the second step, this distribution function
is applied to each EV load at a node to determine the
vehicle’s SoC. It is also assumed that only the EVs that
need charging absorb active power, i.e., if the battery
is fully charged, the in-built charger will be available
to provide active or reactive power. Furthermore, it is
also assumed that EVs will not drop out of the charging
process during a given time interval t.
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Fig. 3. 41-node real distribution feeder.

• The maximum number of tap or capacitor control opera-
tions, Moptap or Mopcap, is limited to 3 per hour.

• Incentive programs are assumed to already exist, and the
EV customers participation in these programs is assumed
to be enforced through policy or by utilities themselves.

• The upper and lower voltage limits are assumed to be 1.1
and 0.9 p.u., respectively.

V2G can be an issue due to possible EV battery degradation;
in fact, manufacturers in general do not allow this option
at the present moment, although some are considering this
possibility, as mentioned in [33]. Therefore, all the following
four optimization scenarios are considered for comparison
purposes:

• No V2G: This scenario corresponds to the normal charg-
ing mode, where EVs consume only active power.

• V2G P: In this scenario, EVs can charge or discharge the
battery, without absorbing or injecting reactive power.

• V2G PQ: This scenario represents the operation of EV
in all four quadrants of the PQ plane.

• V2G Q: In this scenario, EVs operate in two quadrants of
the PQ plane, corresponding to positive (charging) active
power, and positive and negative reactive power.

In each of these scenarios, the active and reactive power limits
for EV loads, described by (7), (8), (21), and (24), are set in
such a way that the operation of EVs is restricted to certain
regions of the PQ plane.

B. Simulation Results

Table II presents the bootstrap mean peak demand for
different penetration levels, based on 15,000 bootstrap samples
generated from 25 optimization runs for each scenario and
penetration level. In all penetration levels, the largest peak
demand is obtained for the No V2G scenario, and the lowest
is obtained either for the V2G P or the V2G PQ scenarios.
The differences between the highest and lowest peak demand,
for each penetration level, are found to be between 479 kW
for 60% penetration, and 245 kW for 30% penetration. The
reductions in peak demand compared to the No V2G scenario
is due to the fact that in V2G P mode, EV batteries discharge

during the evening peak to feed neighboring loads, while in
the V2G PQ scenario, EVs also reduce the node voltages
by controlling reactive power, thus decreasing the base load
demand. The reduction of peak demand achieved in the V2G
scenarios is desirable for utilities as this reduces the need for
expensive generation resources during peak demand hours.

The performance of BAU, sensitivity-based heuristic, and
optimization approaches in allocating maximum possible
power to the connected EVs at a 60% EV penetration level are
compared in Fig. 4. Note that the optimization approach for
the different scenarios performs better than the heuristic and
BAU approaches for satisfying the feeder and peak demand
constraints, especially during the peak hours. Observe also
that the load profile obtained using the heuristic and BAU
approaches violate the peak demand value E[Pmax] computed
in the first step. This is because the heuristic approach is
based on a linearization of the power flow equations around
operating points, and thus it is effective only for a small
range of voltages around the base case. Moreover, among the
optimization scenarios, the No V2G scenario is able to charge
the fleet of EVs faster, due to reducing the demand earlier than
in the V2G P, V2G PQ, and V2G Q scenarios, as shown in Fig.
4. On the other hand, the proposed optimization technique does
not violate the node voltage limits at any node in the feeder, as
shown in Fig. 5, keeping the system peak below the setpoint
obtained in the first step. As previously mentioned, base loads
were modeled as constant impedance loads, and EVs were
modeled as constant current loads, since EV batteries are
charged following a constant current (CC)/constant voltage
(CV) method, with the CC stage taking a large portion of
the battery charging, until a cut-off point determined by the
battery SoC, cell voltages, cell temperatures, or charging time
is reached [34]. In both load models, the active and reactive
power consumption depends on the load voltage; thus, in the
case of constant impedance models, the active and reactive
powers vary quadratically with respect to the load voltage,
whereas for the constant current load, these vary linearly;
hence, the feeders’ energy consumptions depend on the load
voltages. The effect of load modeling has been studied in [1],
where constant impedance load and ZIP load models where
compared in a residential smart charging scheme, reporting
a lower energy consumption when using constant impedance
models.

A particular effect of the optimization approach is the
reduction in tap operations. This proposed approach uses
load forecasting information, constraints the number of tap
operations, and efficiently controls the active and/or reactive
power of the four-quadrant EV chargers. Because of this, as
seen in Table III for different EV penetration levels, the total
number of tap operations is significantly lower compared to
those of heuristic and BAU methods. By contrast, the heuristic
and BAU methods only rely on voltage information at the
secondary sides of the LTCs, maintaining these voltages within
a predefined band. Figure 5 depicts the system voltages for
60% EV penetration; the dark black lines represent the node
voltages at the secondary sides of LTCs, and the grey lines de-
note the voltages at the remaining system nodes. Note that only
the BAU method presents node voltages below the accepted
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TABLE II
PEAK DEMAND STATISTICS FROM FIRST STAGE FOR DIFFERENT EV PENETRATION LEVELS

Statistic (kW) 60% penetration 50% penetration
No V2G V2G P V2G PQ V2G Q No V2G V2G P V2G PQ V2G Q

Sample mean 13477.59 12998.68 13028.56 13132.84 13368.27 13020.76 12994.39 13141.01
Bootstrap mean 13477.44 12998.70 13028.51 13132.78 13368.60 13020.93 12994.30 13140.81
Bootstrap σ 16.44 25.01 29.19 23.71 17.49 27.27 21.39 22.51
95% CI [13445.6, [12948.69, [12970.12, [13085.35, [13335.23, [12966.40, [12951.53, [13095.80,

13510.45] 13048.72] 13086.89] 13180.20] 13463.01] 13075.47] 13037.08] 13185.82]

Statistic (kW) 40% penetration 30% penetration
No V2G V2G P V2G PQ V2G Q No V2G V2G P V2G PQ V2G Q

Sample mean 13258.73 12952.39 12986.42 13090.52 13190.02 12954.96 12944.21 13057.52
Bootstrap mean 13258.73 12952.46 12986.23 13090.49 13190.02 12954.96 12944.37 13057.57
Bootstrap σ 11.24 28.33 26.49 19.45 11.02 21.99 20.70 17.77
95% CI [13236.78, [12895.81, [12933.25, [13051.58, [13167.98, [12910.98, [12902.98, [13022.03,

13280.71] 13009.12] 13039.22] 13129.40] 13211.92] 12998.94] 12985.77] 13093.11]
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Fig. 4. Total system demand for 60% EV penetration.

TABLE III
NUMBER OF TAP OPERATIONS FOR DIFFERENT EV PENETRATION LEVELS

EV Heuristic Business No V2G V2G V2G
Penetration Method as usual V2G P PQ Q

60% 184 337 95 88 83 80
50% 182 317 97 101 76 97
40% 187 237 103 114 83 79
30% 185 219 102 82 74 80

limit. Observe also that LTC secondary voltages operate in a
narrow band for the heuristic and BAU approaches, compared
to those for the optimization techniques. In the case of the
heuristic method, all voltages are closer to 1 p.u., as EVs inject
reactive power and support the voltage.

Figure 6 presents the active and reactive powers of EVs in
the V2G PQ scenario for different penetration levels. Observe
that power discharging is only required in the specific periods
when the base load surpasses the peak demand limit calculated
in the first stage, as expected; thus, the possible degradation of
the batteries caused by discharging is limited. Also note that,
during the discharging periods, other vehicles keep charging,
but in a reduced way. Moreover, reactive power during the
afternoon and evening is mostly positive, meaning that EVs
are consuming reactive power to reduce voltages, and thus
decrease the demand of base loads.

VII. CONCLUSIONS

This paper proposed a two-step approach for the fair opera-
tion of four-quadrant EVs, considering the primary distribution
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Fig. 5. System voltages for 60% EV penetration.

feeder characteristics and limitations, and the uncertainties as-
sociated with these loads, such as arrival and departure times,
and initial battery SoCs. The proposed approach considered
the utility’s perspective in the first step to compute an hourly
feeder control schedule that balances the total energy delivered
to EVs and the risk of voltage limit violations. This was ac-
complished by using an optimization method and a Bootstrap
technique, minimizing the feeder daily peak demand, while
satisfying operational and physical limits of the feeder. In
the second step, the customer’s perspective was considered by
allocating fair share of power to the charging EV at each load
node periodically, while using the active and reactive power
operation capacity of four-quadrant EV chargers to satisfy
feeder limits, without exceeding the optimal peak demand
setpoint obtained in the first step. The load and voltage profiles
computed for a realistic distribution feeder using the proposed
optimization approach show that this methodology is able to
schedule four-quadrant EV loads better than a simpler heuristic
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approach and the BAU practice in terms of number or taps
operations, system peak demand, and voltage regulation, while
satisfying feeder and peak demand constraints. Future work
includes testing the performance of the proposed approach
using actual four-quadrant chargers in real-time simulations
for hardware-in-the-loop studies of distribution feeders and the
proposed controls.
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