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Abstract

By characterizing the worst-case profile, which maximizes the content of a buffer fed with leaky bucket regulated flows in
packet telecommunication networks, we derive a tight upper bound in the many-sources regime for the tail distribution of the
workload generated by these flows in a FIFO queue with constant service rate. Furthermore, we compare this workload distribution
with an M/G/1 queue and get insights on the better-than-Poisson property of regulated flows. We conclude that the superposition
of independent regulated flows generates an asymptotically smaller workload than a marked Poisson process whose service times
and intensity depend on the parameters of regulated sources.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In order to gain efficiency in bandwidth utilization in packet networks, standardization bodies like the IETF propose
the characterization flows of information not only by a single parameter describing the peak information rate but also
by means of additional parameters reflecting the random fluctuations of a flow. One common method for characterizing
flows is to regulate their output profiles to conform to a specified envelope. The leaky bucket algorithm is one such
method whereby, in addition to the peak rate π , the long-term mean rate ρ and the bucket size σ that is a measure of
its burstiness are specified. A source conforming to the parameters (σ, ρ, π) is said to be (σ, ρ, π)-regulated.

A formalism to study the performance of a network supporting regulated flows, called network calculus, has
been developed by Cruz [11,12] and more recently by Le Boudec [5] and Chang [7]. Network calculus provides
a framework to compute end-to-end worst-case delay based on properties of the (min, +) algebra. However, it is
essentially a deterministic approach which gives conservative worst-case bounds for network resource allocation.

In this paper, we exploit the statistical multiplexing features of regulated flows to obtain tighter performance bounds
at a single node, keeping in mind that the ultimate goal is to derive end-to-end bounds. In particular, we address the
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issue of estimating the workload distribution of a FIFO queue fed with independent regulated sources. Our approach
is based on asymptotic analysis of the workload distribution.

In order to provide satisfactory statistical guarantees, the workload distribution of a queue with (σ, ρ, π)-regulated
flows has been extensively studied. These have focused on the overflow probability and/or delay distribution for an
arbitrary number of input flows. Kesidis and Konstantopoulos [22,23] studied the problem via characterizing the
extremal traffic shape, which maximizes the fraction of time when the buffer content is above a threshold b. Chang
et al. [8] also derived an upper bound of the tail distribution of the workload but via partitioning the busy period.

As pointed out by the authors of [32] (see also [15]), these approaches can be regarded as applications of the
Hoeffding bound given in [21], and they obtain the upper bounds via majorizing the queue length by a sum of
independent processes and computing bounds based on these independent processes. Another approach to studying
the superposition of regulated sources in a buffer has been presented by Busson and Massoulié [29], where they
used Hoeffding’s inequality based on the fact that the total number of packet arrivals in a given time interval from
a regulated source is bounded. This approach was recently extended by Vojnovic and Le Boudec [32]. They also
consider the so-called many-sources asymptotic framework, which is a key regime when the peak rate of sources is
small compared with the server capacity and there are many sources; other results on many-sources asymptotics can
be found in [4,8,10,26]. See also [31] for generalizations and alternative proofs of the results in [8,22,23].

In this paper we consider the problem of estimating buffer overflows in two different contexts of interest. The
first is the many-sources asymptotic mentioned above, but our approach is different in that we first characterize the
extremal traffic profile that maximizes the probability of buffer level exceedance. The second issue we consider is
that of deriving simple majorization results for such flows that are valid even when the many-sources context is
no more valid. This is with a view of characterizing the general properties of regulated flows that might be useful
to obtain buffer overflow estimates inside the network. This, however, turns out to be a challenging problem since
scheduling and multiplexing alter the initial statistical properties of traffic flows and increase the dependence between
flows sharing common queues. This problem has been addressed by many authors; see for instance [3,14,9,28,33,34].
In particular, Bonald et al. in [3] compare the workload distribution of general packet arrival processes with that
of an M/G/1 queue with Poisson/MTU arrivals (i.e., when each packet has fixed size equal to MTU (Maximum
Transmission Unit)). They call flows “better than Poisson” (BTP) if the workload is larger when these flows are
replaced by Poisson streams. This property has an important implication for studying overflow probabilities inside the
network. Indeed, Massoulié shows in [28] via a sample-path Large Deviations (sp-LD) ordering that, if point processes
satisfy the sp-LD principles with a finite rate function, the sp-LD dominance by the Poisson process is preserved in
tandem FIFO queues. These desirable results thus inspire us to explore the BTP property of regulated flows.

Regulated flows do exemplify similar BTP properties. The authors of [19] observed that, as the number of sources
increases with fixed total load, the mean delay of regulated traffic tends to converge to that of an M/G/1 queue fed
with a marked Poisson process of parameters associated with the (σ, ρ, π) values; see Cao et al. [6] for results in
a more general setting. Intuitively, when many of these essentially deterministic on–off processes are multiplexed
together, the workload they generate is smoother than that from a Poisson process. However, Massoulié [28] also
points out that deterministic processes do not have a smaller sp-LD rate function than a Poisson process for each
sample path of their multiplexing. We thus need to define a weaker asymptotic ordering in which deterministic
regulated flows are BTP.

Thus, in the second part of this paper, we first fix the total input load of regulated flows and study the asymptotic
stochastic ordering between these fluid processes with a marked Poisson process, when the number of sources
increases. With this scaling scheme, we find that the superposition of a large number of independent regulated flows
is asymptotically smaller than a well-defined marked Poisson process. Furthermore, the workload generated by the
superposed flow is also asymptotically dominated by an M/G/1 queue fed with the marked Poisson process. Besides
this BTP property in terms of many sources with fixed load, we show that the large buffer decay rate and the many-
sources asymptotic rate of regulated flows are larger than those of the M/G/1 queue. All these results establish the
asymptotic BTP property of regulated flows.

The organization of this paper is as follows. In Section 2, we formulate our problem and present a preliminary
upper bound for the freeze-out fraction when a single regulated flow accesses the queue. The statistical multiplexing
of many streams are then considered in Section 3 where we obtain an upper bound via many-sources asymptotics.
Subsequently, we study the asymptotic BTP property of regulated flows in Section 4. Finally, Section 5 presents our
concluding remarks for the paper.
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2. Preliminary results

We consider the scenario where M classes of independent regulated flows are multiplexed into a single FIFO queue
with infinite buffer and server rate C . Each flow is leaky bucket regulated; a flow of class i is characterized by the
(σi , ρi , πi ) traffic descriptor, representing bucket size, average rate and peak rate, respectively. Let Ai (s, t) denote the
amount of data generated by a flow of class i in the time interval (s, t]. The quantity Ai (s, t) satisfies for all 0 ≤ s ≤ t

Ai (s, t) ≤ min(πi (t − s), σi + ρi (t − s)).

There are Nni flows of class i and the total input rate ρ =
∑M

i=1 Nniρi < C such that the system is stable and
a stationary regime exists. Also we need

∑M
i=1 Nniπi > C since otherwise the buffer would always be empty.

Throughout this paper, we use a fluid model for input flows so that the processes (Ai (0, t)) are continuous and
piecewise differentiable. We also assume that these processes are with ergodic and stationary increments.

To study the tail distribution of the workload in this queue, we first define the freeze-out fraction P above a given
threshold b as

P def
= lim

t→∞

1
AN (t)

∫ t

0
1{W N (s)≥b} AN (ds),

where W N (t) is the amount of fluid in the buffer at time t and

AN (t) =

M∑
i=1

Nni∑
j=1

Ai, j (0, t) (1)

is the total amount of fluid which arrives at the buffer in the time interval [0, t]. The quantity P is the fraction of
bits which enter the infinite buffer while the workload exceeds the threshold b. This quantity is a bound for the loss
probability when the buffer capacity is finite and equal to b. With the knowledge of Palm theory [25] and the ergodicity
of (AN (t)), we know that P = CP(W N (0) ≥ b)/ρ = P(W N (0) ≥ b | W N (0) > 0), where P(W N (0) ≥ b) is the
probability that the workload in the queue exceeds b in the stationary regime. It is well known in the queueing literature
that the evolution of the workload process (W N (t)) is governed by the following differential equation:

dW N (t) = −C1{W N (t)>0}dt + AN (dt).

In the following, we begin with exhibiting an extremal traffic pattern for a single regulated source (A(t)), which
maximizes the freeze-out fraction of the queue. This traffic profile later facilitates the study of the overflow probability
of a queue when many flows are multiplexed together. The workload process in the queue is denoted by (W (t)) in the
single input case.

Let us consider a busy period of the buffer and let τ denote the length of this busy period starting, say, at time 0.
The freeze-out fraction P(τ ) over this busy period can be written as

P(τ ) =
1

A(τ )

∫ τ

0
1{W (s)≥b} A(ds) =

1
Cτ

∫ τ

0
1{W (s)≥b} A(ds).

We clearly have P = E(P(τ )). Our aim is to find the traffic profile which maximizes the quantity P(τ ) generated
over the busy period considered. Instead of deriving the extremal traffic profile only for P(τ ), we can formulate this
problem in a more general setting. For a given input process (A(t)), we define a functional J (A) by

J (A)
def
=

1
A(τ )

∫ τ

0
f (W (s))A(ds),

where f is a monotonically increasing function. Our objective is to find a profile of (A(t)) such that the maximum of
J (A) is obtained over the given active period [0, τ ], while the workload process (W (t)) is in the set Y where

Y =

{
W ∈ C1

p[0, τ ] : W (0) = W (τ ) = 0
}

,

with C1
p[0, τ ] denoting the set of functions which are continuous in [0, τ ] and piecewise differentiable in (0, τ ).
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Lemma 1. The traffic pattern of the single source process (A(t)) which maximizes J (A) is independent of the function
f and is defined as follows:

• If τ ≤ (πσ)/(C(π − ρ)), the extremal traffic pattern is periodic and composed of a burst at the peak rate with
duration Cτ/π , followed by a silence period with duration (C − π)τ/π .

• If πσ/(C(π − ρ)) ≤ τ ≤ τmax
def
= σ/(C − ρ), the extremal traffic is periodic and composed of a burst at the peak

rate π with length σ/(π − ρ), followed by an activity period at rate ρ with length C(τ −
πσ

C(π−ρ)
)/ρ, and followed

in turn by a silence period with length (C − ρ)( σ
C−ρ

− τ)/ρ.

Remark 1. The traffic pattern obtained in Lemma 1 maximizes a number of quantities related to queueing
performances. When f (x) = 1{x≥b}, J (A) = P(τ ) and the freeze-out fraction is maximized. Taking f (x) = x/C , it
can be computed as in [19] and J (A) is associated with the average delay seen by arrivals. Other quantities such as
the moment-generating functions of the workload can be studied by taking appropriate functions f .

Proof. First we define on Y a partial order � by

W � V iff W (t) ≤ V (t) for all 0 ≤ t ≤ τ.

Since f is an increasing function, it is readily seen that, if (A(t)) and (B(t)) are two arrival process giving rise to the
workload processes (W (t)) and (V (t)), respectively, such that W � V , then J (A) ≤ J (B). Thus we need to find the
extremal element W ∗

∈ Y such that, for all W ∈ Y , W � W ∗. We can construct the following function W ∗(t):

• if τ ≤ πσ/(C(π − ρ)),

W ∗(t) =

{
(π − C)t, 0 ≤ t ≤ t ′1

def
= Cτ/π,

C(τ − t), t ′1 ≤ t ≤ τ

• if τ ≥ πσ/(C(π − ρ)),

W ∗(t) =


(π − C)t, 0 ≤ t ≤ t1

def
=

σ

π − ρ
,

σ + (ρ − C)t, t1 ≤ t ≤ t2
def
=

(Cτ − σ)

ρ
,

σ + ρt2 − Ct, t2 ≤ t ≤ τ.

Indeed, in the case τ ≤ πσ/(C(π − ρ)) (resp. τ ≥ πσ/(C(π − ρ))), owing to the (σ, ρ, π) constraint,
W (t) ≤ W ∗(t) for all t ∈ [0, t ′1] (resp. t ∈ [0, t2]). Now, assume that there exists some t0 ∈ [t ′1, τ ] (resp. t0 ∈ [t2, τ ])
such that W (t0) > W ∗(t0). Then,

−

∫ τ

t0
W ′(s)ds > W ∗(t0) = C(τ − t0),

which implies that there exists a t ′0 ∈ [t0, τ ] such that W ′(t ′0) < −C . This latter inequality is not possible since the
drain rate from the queue cannot exceed C . As a consequence, for every W ∈ Y , we have W � W ∗.

Now, returning to the input process, when τ ≤ πσ/(C(π −ρ)), the input process, which maximizes the freeze-out
fraction in the busy period with length τ , is the classical on-off process; during the on period the arrival rate is equal
to the peak rate and the length of the on period is equal to t ′1 = Cτ/π .

In the case when τ ≥ πσ/(C(π − ρ)), the input process, which realizes the optimal trajectory W ∗(t) over a busy
period, is composed of a burst at the peak rate π and with duration t1, followed by an activity period at rate ρ with
length (t2 − t1), and then by a silence period with length S given by S = τ − t2. Note that S is positive if and only
if τ < σ/(C − ρ). The length of the busy period of a queue with an input process satisfying a (σ, ρ, π)-constraint is
thus necessarily upper bounded by σ/(C − ρ). �

As a consequence of Lemma 1, the maximum freeze-out fraction P∗(τ ) is obtained from the extremal function W ∗

as

P∗(τ ) =


0 τ ≤ πb/(C(π − C))

1 −
πb

Cτ(π − C)
πb/(C(π − C)) ≤ τ ≤ τ ∗

b

P(τ ∗

b )τ ∗

b /τ τ ∗

b ≤ τ ≤ τmax,
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and the maximum of P(τ ) is obtained at the critical length of the busy period τ ∗

b = (Cσ − ρb)/(C(C − ρ)) with
the value P∗(τ ∗

b ) = (σ −
π−ρ
π−C b)/(σ −

ρ
C b). Hence we obtain the upper bound for the freeze-out fraction over an

arbitrary busy period of a queue fed with a single regulated input flow, which agrees with the conclusion in [22]. Since
P = E(P(τ )), we obtain the following result.

Proposition 1 (Kesidis and Konstantopoulos [22]). Under the assumptions π > C > ρ and (π − C)σ/(π − ρ) > b,
the freeze-out fraction P in the single server queue fed with a (σ, ρ, π)-regulated fluid traffic source is upper bounded
as

P ≤
σ −

π−ρ
π−C b

σ −
ρ
C b

def
= Pmax. (2)

The upper bound for the overflow probability in the stationary regime when the buffer capacity is finite and equal to b
is then P(W (0) > b) ≤ ρPmax/C.

As noted in [22,23], the worst-case traffic pattern is not unique. However, our worst-case profile also turns out to
be natural in the subsequent analysis involving many sources, as discussed in Section 3.

To conclude this section, we establish the dominance of an M/G/1 queue over the queue fed with a (σ, ρ, π)-
regulated flow. Let W̃ denote the content in the stationary regime of a buffer drained at constant rate C and fed with
batches with size σ arriving according to a Poisson process with intensity ρ/σ . The following proposition states that
W̃ is stochastically greater than W .

Proposition 2. We have W ≤st W̃ , i.e., for all b ≥ 0, P(W ≥ b) ≤ P(w̃ ≥ b).

Proof. From Proposition 1, we know that, for b ≤ σ ,

P(W ≥ b | W > 0} ≤
σ −

π−ρ
π−C b

σ −
ρ
C b

≤
σ − b

σ −
ρ
C b

,

where the last inequality is obtained by letting π → ∞. Now, by using a classical result by Erlang [30], we know
that, over the interval [ jσ, ( j + 1)σ ] for j ≥ 0,

P(W̃ ≤ x) =

(
1 −

ρ

C

) j∑
i=0

(i − x/σ)i

i !

( ρ

C

)i
e−

ρ
C (i−x/σ).

For b ∈ [0, σ ], it is easily checked that

σ − b

σ −
ρ
C b

≤
C

ρ

(
1 −

(
1 −

ρ

C

)
exp

(
ρb

Cσ

))
,

since ρb
Cσ

< 1 and then, exp(
ρb
Cσ

) ≤ σ/(σ − b ρ
C ). Hence, for all b ≥ 0, P(W ≥ b | w > 0) ≤ P(W̃ ≥ b | W̃ > 0),

and the result follows. �

Proposition 2 implies that a single regulated flow is “better-than-Poisson”. We will extend this result in Section 4
to the better-than-Poisson property of regulated flows when many of them are multiplexed in a queue.

3. Many-sources asymptotics

We now consider the problem of estimating the freeze-out fraction when a large number of independent traffic
streams are fed into a queue. When the transmission capacity C is large, and in particular, C/π = O(N ), we are in
the regime of the many-sources asymptotics, which have been studied by many authors; see for instance [4,10,26]. In
this section, we extend the results and formalism developed in Likhanov and Mazumdar [26] to the continuous-time
case by a discretization argument. Such extensions are similarly discussed in papers by Mandjes and Kim [27] and
Guibert and Simonian [17], where they assume a local convex behavior of a rate function (see Eq. (3) below).

When a superposition of independent flows (AN (t)) as defined by Eq. (1) enters a queue with server rate C = Nc,
the stationary workload (W N (t)) in the queue satisfies Reich’s formula: W N (0) = supt≥0(AN (−t, 0) − Nct). Let
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φi,t (h) = E(eh Ai (0,t)) denote the moment-generating function associated with a flow of class i where h > 0 and
define the rate function associated with AN (0, t) by

It (a) = sup
h>0

(
ah −

M∑
i=1

ni ln(φi,t (h))

)
.

We now state the main result regarding the stationary tail distribution shown in [26] for the discrete-time case. This
result can be extended to the continuous-time case by using the continuity of It (a) with respect to a.

Proposition 3. Assume that there exists a unique t0 < ∞ such that

It0(ct0 + b) = min
t≥0

It (ct + b) > 0. (3)

Suppose that lim inft→∞ It (ct + b)/ log t > 0 and that It (x) is continuous in x. Then, as N → ∞,

P(W N (0) > Nb) =
e−N It0 (ct0+b)

τ
√

2πκ2 N

(
1 + O

(
1
N

))
, (4)

where τ is the unique solution to the equation

M∑
i=1

ni
φ′

i,t0
(τ )

φi,t0(τ )
= ct0 + b

and

κ2
=

 M∑
i=1

ni
φ′′

i,t (τ )

φi,t (τ )
−

(
M∑

i=1

ni
φ′

i,t (τ )

φi,t (τ )

)2
 .

It is important to note the existence of t0, which denotes the critical or most likely time-scale to overflow.
Proposition 3 can be used to derive the worst-case traffic pattern for (σ j , ρ j , π j )-regulated flows in the case of many
sources as follows.

Proposition 4. Let ri (t) be the rate function of the arrival process (Ai (t)) of a flow of class i , which is continuous
and piecewise differentiable, such that Ai (0, t) =

∫ t
0 ri (s)ds ≤ min(πi t, ρi t + σi ) with

∑M
i=1 niρi < c. The extremal

sources which maximize the tail distribution of the queue are periodic on–off processes with random phases. In each
period, the rate function ri (t) of source class i is given by

ri (t) =


πi , 0 ≤ t ≤ t1

i
def
= σi/(πi − ρi ),

ρi , t1
i < t ≤ t1

i + t0
i

def
= t0,

0, t0 < t ≤ t0 + σi/ρi ,

(5)

where t0 is the most likely time-scale to overflow in Eq. (3) for the input process (AN (t)) and t0
i denotes the duration

of transmission at rate ρi which is determined by t0.

Proof. Note that AN (−t, 0)
d
= AN (0, t) due to stationarity. From the proof of the many-sources asymptotics in [26],

it follows that, for some ε > 0,

P(W N (0) > Nb) = P(AN (t0) > N (ct0 + b)) × (1 + O(e−εN )).

In the following, we take t0 to be fixed and investigate the contribution of the class i sources to the bound. Define
ANi

i (t) =
∑Nni

j=1 Ai, j (0, t) and ANi −(t) = AN (t) − ANi
i (t). In other words, we consider all inputs except the class i

inputs. Then, denoting by ct = ct + b, we have

P(AN (t0) > Nct0) =

∫
∞

0
P(ANi −(t0) > Nct0 − y) × dP(ANi

i (t0) ≤ y).
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From the theorem of Bahadur–Rao [1], we obtain

P(ANi −(t0) > Nct − y) = K (N )eτ y
(

1 + O

(
1
N

))
,

where K (N ) = e−N It0 (ct0)/(τ
√

2πκ2 N ) as in Eq. (4) and does not depend on y, and τ is solution to the equation

M∑
j=1, j 6=i

φ′

j,t0
(τ )

φ j,t0(τ )
= ct0 + b.

Hence, up to an error factor of (1 + O( 1
N )), we obtain

P(W N (0) > Nb) = K (N )

∫
∞

0
eτ ydP(ANi

i (0, t0) ≤ y)

and then,

P(W N (0) > Nb) = K (N )(E(eτ Ai (0,t0)))Nni = K (N )(φi,t0(τ ))Nni . (6)

From the ergodicity of the source, we have

φi,t0(τ ) = lim
T →∞

1
T

∫ T

0
eτ Ai (s,s+t0)ds.

Hence it is clear that, in order to bound the quantity P{W N (0) > Nb}, it is sufficient to maximize the right-hand
side of Eq. (6). We need determine the extremal traffic pattern which maximizes E(eτ Ai (0,t0)). With fixed t0 and τ ,
since Ai (0, t) is (σi , ρi , πi )-regulated with piecewise rate function, it is clear to see that Eq. (5) gives the extremal
rate function which maximizes the quantity of information over a given period [0, t0] (see Remark 1). �

With the above result, we can state the main result for the overflow probability.

Theorem 1. Consider a fluid queueing system with server rate C = Nc and an infinite buffer which is accessed by∑M
i=1 Nni independent regulated sources. Assume that E(Ai (0, 1)) = ρi and

∑M
i=1 niρi < c. Then, as N → ∞

P(W N (0) > Nb) =
e−N It0 (ct0+b)

τ
√

2πκ2 N

(
1 + O

(
1
N

))
, (7)

where the quantities It0(ct0 + b), τ and κ are calculated as follows:

• Define

φi,t (τ ) =
1

t +
σi
ρi

∫ t+
σi
ρi

0
eτ
∫ u+t

u ri (s)dsdu,

where ri (t) is the function defined in Proposition 4.
• Compute

It0(ct0 + b) = inf
t

sup
h

(
(ct + b)h −

M∑
i=1

ni ln(φi,t (h))

)
. (8)

• Compute τ as the solution to the equation

M∑
i=1

ni
φ′

i,t0
(τ )

φi,t0(τ )
= ct0 + b.

• Finally, compute

κ2
=

M∑
i=1

ni
φ′′

i,t0
(τ )

φi,t0(τ )
−

(
M∑

i=1

ni
φ′

i,t0
(τ )

φi,t0(τ )

)2

.
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Remark 2. The validity of our many-sources asymptotic holds when Nc
π

= O(N ), i.e., when a large number of
regulated flows are multiplexed in the queue and the buffer grows correspondingly. If the peak rates of some flows are
comparable with the capacity C of the server, the Gaussian approximation in the theorem of Bahadur–Rao [1] does
not hold. In this case, we can however use an upper bound for the overflow probability obtained via similar worst
traffic profiles and Chernoff’s inequality as

P(W N (0) > b) ≤ e−N It0 (Ct0+b), (9)

where the rate function It0 can be computed as in Eq. (8); see also [32].

The principal difference with [32] is that, in our approach, we explicitly take into account the many-sources effect
and determine the rate function for the source, which is extremal for the overflow asymptotics, rather than a priori first
bounding the probability and then trying to make the bound small [8,32].

4. Better-than-Poisson asymptotics

Besides analyzing the tail distribution of a single queue with independent regulated input flows, as mentioned in the
Introduction it is more interesting to characterize additional statistical properties of these flows such that their queueing
performance inside a large network are numerically computable. Motivated by the better-than-Poisson conjecture
studied in [3], in this section we compare the asymptotic workload distribution generated by regulated flows with that
of an M/G/1 queue.

4.1. Many sources with fixed load

We begin with a scenario similar to that defined in Section 2, except that, as N increases, the average rate of the
total aggregate (AN (t)) defined by Eq. (1) is fixed and equal to ρ =

∑M
i=1 Nniρi < C . Our goal is to identify the

stochastic ordering between the workload (W N (t)) generated by the superposition of regulated flows and the workload
(W p(t)) in the M/G/1 queue fed with a marked Poisson process (Ap(t)) with arrival rate λp =

∑M
j=1 Nniρi/σi and

with marks Bp such that P(Bp = σi ) = (Nniρi )/(σiλp).

Theorem 2. Let each of the regulated flows (Ai, j (t)) assume the rate function given in (5) with

lim
ρi →0

ρi t
0
i = 0, (10)

then when the load ρi
0 of each class i = 1, . . . , M, is fixed (ρi

0 = Nniρi for class i), we have, for all x ≥ 0,

lim
N→∞

P(AN (t) > x) ≤ P(Ap(t) > x) (11)

and with regard to workload processes,

lim
N→∞

P{W N (0) > x} ≤ P{W p(0) > x}. (12)

Indeed, when the input load ρ is fixed, as N increases, the load of individual regulated sources decreases, which
results in the bursts of a given source being more and more spread out. This intuitively explains why regulated
flows tend to converge to a marked Poisson process from the viewpoint of the Poisson convergence theorem. Our
main theorem rigorously shows that the multiplexing of independent regulated flows is asymptotically smaller than
a marked Poisson process and the corresponding workload distribution is asymptotically dominated by an M/G/1
queue explicitly known. In the following, we first set up the ordering using the extremal profile constructed in Eq. (5)
in Section 3.

The stochastic ordering between regulated flows (Ai (t)) and a marked Poisson process (Ap
i (t)) is set up via the

construction of the following two marked point processes (X i (t)) and (X ′

i (t)). As illustrated in Fig. 1, for each class i ,
the process (X i (t)) has batch arrivals of size Bi = σi +ρi t ′0i and inter-arrival time τi = t ′0i +

σi
ρi

, where t ′0i (see Eq. (5))
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Fig. 1. Constructed processes for ordering.

is the length of the on period of (Ai (t)), with t ′0i = σi/(πi − ρi ) + t0
i . In addition, let the process (X ′

i (t)) have the
same batch size Bi but inter-arrival time τ ′

i =
1
N τi . Hence, the process (X i (t)) is a replica of the process (X ′

i (t)) but
the time-scale is dilated by N , i.e., (X i (t)) and (X ′

i (
t
N )) have the same distribution.

From the construction of (X i (t)), it is clear to see that the process (X i (t)) dominates the regulated input (Ai (t))
for each sample path and thus for the corresponding workload distributions. Therefore, Theorem 2 holds if

(1) the process (X N (t)), which is the superposition of Nni independent copies of the processes ((X i (t)) for
i = 1, . . . , M , converges to (Ap(t))) in distribution,

(2) if the workload (Ŵ N
t ) generated by (X N (t)) has a stationary distribution which converges to the workload (W p

t )

of the M/G/1 queue with input (Ap(t)).

In the next sections, we show these properties, which in turn proves Theorem 2.

4.1.1. Convergence of (X N (t)) to (Ap(t))

The convergence of (X N (t)) to (Ap(t)) is stated in the following proposition.

Proposition 5. When the load ρi
0 = Nniρi of each class i = 1, . . . , M is fixed, the process (X N (t)) weakly converges

to the process (Ap(t)) when N tends to infinity; this is denoted, for short, by (X N (t)) ⇒ (Ap(t)).

Proof. Let us first consider the point process (X̂ i (t)) counting the jumps of process (X i (t)). This process has mean
intensity ρi/(σi + ρi t ′0i ) = ρi

0/(Nni (σi + ρi t ′0i )), where ρi
0 is fixed. If we superpose Nni independent copies

(X̂ i, j (t)), j = 1, . . . , Nni , of the point process (X̂ i (t)), then we are almost in the same situation as in [13,
Proposition 9.2.IV] and we can conclude that the superposed process (X̂ Nni

i (t)) such that X̂ Nni
i (t) =

∑Nni
j=1 X̂ i, j (t)

weakly converges to the Poisson process with intensity ρi
0/σi . The present situation, however, is slightly different

from [13, Proposition 9.2.IV] since the average intensity of the point process (X̂ i (t)) is not exactly equal to
ρi

0/(Nniσi ), but there is a correcting term, which tends to 0 when N goes to infinity owing to Assumption (10).
The proof of [13, Proposition 9.2.IV] can then be readily adapted to give convergence of the superposed process to
the corresponding Poisson process.

With regard to the marks, the jumps size of the process (X i (t)) is equal to Bi = σi + ρi t ′0i → σi when N → ∞,

thanks to Assumption (10). Hence, when we consider the superposed process (X Nni
i (t)) of Nni independent copies

of the individual process (X i (t)), we immediately deduce that (X Nni
i (t)) weakly converges to the marked Poisson

process with intensity ρi
0/σi and marks equal to σi .

When M classes of independent regulated flows (X Nni
i ), i = 1, . . . , M are multiplexed together as X N (t) =∑M

i=1 X Nni
i (t), we obtain the Poisson convergence of the process (X N (t)) by independence of the processes (X Nni (t))
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and the infinite divisibility of the Poisson process. In fact, for all x > 0, we have

lim
N→∞

P{X N (t) ≤ x} = lim
N→∞

∑
(k1,...,kM )∈NM

P

(
X Ni

i = ki Bi ,

m∑
i=1

ki Bi ≤ x

)

=

∑
(k1,...,kM )∈NM :

∑
ki Bi ≤x

M∏
i=1

lim
N→∞

P(X Nni
i (t) = ki Bi )

=

∑
(k1,...,kM )∈NM :

∑
ki Bi ≤x

M∏
i=1

P(X p
i (t) = ki Bi ) = P(X p(t) ≤ x)

by infinite divisibility of the Poisson process. �

4.1.2. Convergence of (Ŵ N (t)) to (W p(t))

Define the marked point process X ′(t)
def
=

∑M
i=1

∑ni
j=1 X ′

i, j (t), which corresponds to the superposition of ni

independent copies of the processes (X ′

i (t)) for i = 1, . . . , M . If we consider N independent copies of the process

(X ′(t)), denoted by (X j (t)) for j = 1, . . . , N , then we have X N (t)
d
=
∑N

j=1 X j ( t
N ). In the following, we will first

study the properties of X ′(t) which lead to the convergence result on the workload (Ŵ N (t)) of a queue fed with
(X N (t)).

We apply the same technique as in the paper by Cao and Ramanan [6]. For this purpose, we check preliminary
properties for the processes under consideration. We first note that the process (X̂ ′(t)) counting the jumps of the
process (X ′(t)) is a simple stationary point process with finite intensity

λ′
=

M∑
i=1

Nniρi

σi + ρi t ′0i
≤ λp.

In addition, we clearly have, for all θ > 0 and t > 0, E(eθ X ′(t)) < ∞.

Lemma 2. For all x ≥ C > ρ, the function

Λ1(x)
def
= lim inf

t→0
sup

θ∈[0,∞)

(
xθ −

1
t

log E(eθ X ′(t))

)
is such that Λ1(x) > 0.

Proof. From the independence of the different processes X ′

i, j (t), we have, for all θ > 0,

1
t

log E(eθ X ′(t)) =
1
t

M∑
i=1

ni log E(eBi θ X̂ ′
i (t)).

Since X̂ i (t) = λ′

i t − αi + 1
{T i

1 ≤αi τ
′
i }

, where λ′

i = 1/τ ′

i , αi = t/τ ′

i − bt/τ ′

i c, and T i
1 is the time of the first point of

(X̂ ′

i (t)) after 0, we have

1
t

log E(eθ X ′(t)) =
1
t

M∑
i=1

ni log E(e
Bi θ(λ′

i t+1{T i
1≤αi τ

′
i }

−αi )
)

=
1
t

M∑
i=1

ni (Bi (λ
′

i t − αi )θ + log(eBi θαi + 1 − αi ))

= ρθ −
1
t

M∑
i=1

ni (Biαiθ − log(eBi θαi + 1 − αi )).
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Since αi = t/τ ′

i − bt/τ ′

i c, we have limt→0
1
t

∑M
i=1 ni Biαiθ/τ ′

i = ρθ and

lim
t→0

M∑
i=1

ni
1
t

log(eBi θαi + 1 − αi ) =

M∑
i=1

niλ
′

i (e
Bi θ − 1).

Therefore, for any θ > 0,

Λ1(x) ≥ lim inf
t→0

(
xθ −

1
t

log E(eθ X ′(t))

)
= xθ −

M∑
i=1

niλ
′

i (e
Bi θ − 1)

def
= f (θ).

The derivative of the function f (θ) is equal to f ′(θ) = x −
∑M

i=1 niλ
′

i Bi eBi θ , and we note that f (0) = 0 and
f ′(0) = x − ρ > 0 for x > ρ. Hence, for sufficiently small θ , f (θ) > 0, and we deduce that Λ1(x) > 0. �

Lemma 3. We have

Λ2(C)
def
= lim inf

t→∞

t

log t
sup
θ≥0

(
Cθ −

1
t

log E(eθ X ′(t))

)
> 0.

Proof. Take θt = β
log t

t for some β > 0. We have

Λ2(C) ≥ lim inf
t→∞

(
t

log t
Cθt −

1
log t

log E(eθt X ′(t))

)
= Cβ − lim sup

t→∞

1
log t

log E(eθt X ′(t)).

As in the proof of Lemma 2, we have

log E[eθt X ′(t)
] =

M∑
i=1

ni log eBi θt (λ
′
i t−αi )E(e

Bi θt1
{T i

1≤αi τ
′
i })

≤

M∑
i=1

ni log eBi θt (λ
′
i t+1)

= ρβ log t +

M∑
i=1

ni Biθt .

Hence,

Λ2(C) ≥ Cβ − lim sup
t→∞

(
1

log t
log E(eθt X ′(t))

)
≥ Cβ − lim sup

t→∞

1
log t

(
ρβ log t +

M∑
i=1

ni Biβ
log t

t

)
= (C − ρ)β > 0. �

With the above properties of process (X ′(t)), we are now able to prove the main result of this section.

Proposition 6. For all x ≥ 0, the stationary workloads (Ŵ N (t)) and (W p(t)) are such that

lim
N→∞

P(Ŵ N (0) > x) = P(W p(0) > x).

Proof. The stationary workload Ŵ N (0)
d
= supt≥0(X N (t) − Ct). Given T ∈ [0, ∞), we can define the functional

FT ( f )
def
= sup

t∈[0,T ]

[ ft − Ct]

such that, when ft = X N (t), we have, for any finite T > 0,

P(Ŵ N (0) > x) ≤ P(FT (X N (t)) > x) + P

(
sup

t∈[T,∞)

(X N (t) − Ct) > x

)
.
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Then, using the continuous mapping theorem, the P-a.s. continuity of the projection operator f → fT ([2, Theorems
5.1 and 15.1]), and Proposition 5, we know that, for all T ≥ 0, FT (X N (.)) ⇒ FT (Ap(.)) as N → ∞. This implies
that, for any ε, x > 0, there exists N0(ε) > 0 such that, for all N > N0(ε),∣∣∣∣∣P

(
sup

t∈[0,T ]

(X N (t) − Ct) > x

)
− P

(
sup

t∈[0,T ]

(Ap(t) − Ct) > x

)∣∣∣∣∣ < ε/3. (13)

Using Lemmas 2 and 3, and similar techniques as in [6, Section III], we can show that, for all x > 0 and ε > 0,
there exist finite TX (ε) and NX (ε) > 0 such that, for T > TX (ε) and N > NX (ε),

P

(
sup

t∈[T,∞)

(X N (t) − Ct) > x

)
< ε/3. (14)

From the infinite divisibility of the Poisson process, similar results hold when marked Poisson process (Ap(t)) is the
input, i.e., for all x > 0 and ε > 0, there exist finite Tp(ε) and Np(ε) > 0 such that, for T > Tp(ε) and N > Np(ε),

P

(
sup

t∈[T,∞)

(X p(t) − Ct) > x

)
< ε/3. (15)

We then obtain, for all x > 0 and ε > 0, by taking T ≥ max(TX (ε), Tp(ε)) and N > max(N0(ε), NX (ε), Np(ε))

|P(Ŵ N (0) > x) − P(W p(0) > x)|

≤ |P(Ŵ N (0) > x) − P(FT (X N (t)) > x)| + |P(W p(0) > x) − P(FT (Ap(t)) > x)|

+ |P(FT (X N (t)) > x) − P(FT (Ap(t)) > x)|,

which implies that

|P(Ŵ N (0) > x) − P(W p(0) > x)|

≤ P

(
sup

t∈[T,∞)

(X N (t) − Ct) > x

)
+ P

(
sup

t∈[T,∞)

(X p(t) − Ct) > x

)
+ ε/3 < ε,

and the result follows. �

Remark 3. We have so far established the asymptotic better-than-Poisson properties for traffic flows which have
fixed (σi , ρi , πi ) parameters and extremal profiles given in (5). In fact, from the construction of processes (X i (t))
and (X ′

i (t)), it is clear to see that these properties can be extended to multiplexing regulated flows (Ai (t)) with
general deterministic on–off profiles. Changing the peak rate constraint and/or on period profiles does not affect the
convergence results. All that matters is that each flow (Ai (t)) has sustainable average rate ρi = limt→∞ Ai (t)/t and
its burstiness is confined as supt>0(Ai (s, t +s)−ρi t) ≤ σi . The dominant marked Poisson process can be constructed
with these (σi , ρi ) parameters, as given in Theorem 2.

The dominance performance of the M/G/1 queue is illustrated in Fig. 2. We also compare against simulation the
other performance upper bounds obtained via the many-sources asymptotic approach in Section 3 and the Bernoulli
approach [8] which bounds the moment-generating function of regulated flows by a Hoeffding inequality. In the
simulations, we fixed the capacity C = 1, the threshold b = 0.3 and the offered load ρ = 0.7 as the number
of sources increases. We simulated the overflow probability of the queue when multiple homogeneous independent
regulated flows are multiplexed together. Note that the peak rate (π = 0.5, 2) of each flow is comparable with the
capacity in our scenarios, so we chose Eq. (9) in Section 3 as the many-sources upper bound. The overflow probability
of the corresponding M/G/1 queue can be computed via the inversion of its Laplace transform which has a well-
known explicit form [24].

Fig. 2 clearly shows that our M/G/1 bound is comparable to the bounds from many-sources asymptotics. It
becomes more accurate as the peak rate of each flow or the number of sources grows, i.e., when the regulated flows
converge to the constructed marked point processes (X N (t)). Moreover, although it is only the asymptotic ordering
that we can show between regulated flows and Poisson, the numerical evaluation indicates that the workload increases
as N increases, and the better-than-Poisson property holds for any N .
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(a) π = 0.5, σ = 0.05, ρ = 0.7. (b) π = 2, σ = 0.05, ρ = 0.7.

Fig. 2. Comparison of many sources bound, Bernoulli bound, and M/G/1 bound vs. simulation for independent homogeneous regulated sources.

4.2. Discussions on other asymptotics

Besides the better-than-Poisson asymptotics for many regulated flows with their total load fixed, we have also
studied in [18] that regulated flows are better-than-Poisson in the large buffer asymptotics. We specifically have the
following result.

Proposition 7. Let the server rate be C = Nc and the buffer threshold be B = Nb. Then the workload W N (0) in
the queue with regulated inputs (AN (t)) defined by Eq. (1) decays at a faster rate than the workload W p(0) of the
M/G/1 queue, i.e.,

lim
b→∞

1
Nb

log P(W N
≥ Nb) ≤ −ξ (16)

where ξ is the Kingman’s exponent of the M/G/1 queue, defined by −ξ = limx→∞
1
x log P(W p(0) ≥ x).

Proof. We consider a partition {ci }, i = 1, . . . , M , of the server capacity C = Nc such that
∑M

i=1 ni ci = c and
ci > ρi for i = 1, . . . , M . From Reich’s formula, we have

W N (0)
d
= sup

t≥0

M∑
i=1

Nni∑
j=1

(Ai, j (0, t) − ci t) ≤

M∑
i=1

Nni∑
j=1

Wi, j (0),

where Wi, j (0) is the content in the stationary regime of a buffer drained at constant rate ci and fed with a source of
class i , which is (σi , ρi , πi )-regulated. Hence, for all b ≥ 0, we have, from Proposition 2,

P(W ≥ Nb) ≤ P

(
M∑

i=1

Nni∑
j=1

Wi, j ≥ Nb

)
≤ P

(
M∑

i=1

Nni∑
j=1

W̃i, j (0) ≥ Nb

)
,

where W̃i, j (0) is the stationary content in a fluid buffer drained at constant rate ci and fed with batches of fluid with

size σi arriving according to a Poisson process with rate ρi/σi . Its Laplace transform E(e−sW̃i, j (0)) is given by

E(e−sW̃i, j ) =
(ci − ρi )s

ci s +
ρi
σi

e−σi s −
ρi
σi

.

Let s̃i (ci ) denote the module of the pole with the smallest module of the above Laplace transform. (The positive real
number s̃i (ci ) is called the Kingman’s exponent of the corresponding M/G/1 queue.) We have s̃i =

1
σi

η(
ci
ρi

), where
for x = ci/ρi > 1, η(x) is the non-zero root with the smallest module of the equation

−xη + eη
− 1 = 0.

Note that η(x) is an increasing positive function of x and it satisfies η > 1 − 1/x and ηeη > 2(eη
− x).
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Now with independent inputs, the different random variables W̃i, j (0) are independent and the Laplace transform

E

e
−s

M∑
i=1

Nni∑
j=1

W̃i, j (0)

 =

M∏
i=1

(E(e−sW̃i ))Nni , (17)

where for fixed i , W̃i is distributed as the random variables W̃i, j (0). The tail of the probability distribution function
of the random variable

∑M
i=1

∑Nni
j=1 W̃i, j (0) is governed by the root with the smallest module of the above Laplace

transform; this root is − infi (̃si (ci )). This property holds for any partition {ci } of the server capacity such that ci > ρi
for all i = 1, . . . , M .

To determine the exact tail behavior of the probability distribution of the random variable W , we are led to
determine the maximum value of inf{̃si (ci )} over all the partitions of the server capacity C . Since s(ci ) =

1
σi

η(
ci
ρi

)

and η(x) is an increasing function of x , the optimal values c∗

i are such that all the values 1
σi

η(
c∗

i
ρi

) for i = 1, . . . , M
are equal to some constant, say s∗. Indeed, if all the si (ci ) were not equal, it would always be possible to increase

the maximum value of the minimum by decreasing the largest value. Hence, s∗ satisfies −
c∗

i
ρi

σi s∗
= e−σi s∗

− 1, for

i = 1, . . . , M . With C =
∑M

i=1 Nni c∗

i , s∗ turns out to be the solution with the smallest module to the equation

Cs∗
+

M∑
i=1

Nni
ρi

σi
(e−s∗σi − 1) = 0.

Note that the Laplace transform for the workload W p(0) of the M/G/1 queue is

E(e−sW̃ ) =
(C − ρ)s

Cs +

M∑
i=1

Nni
ρi
σi

(e−σi s − 1)

.

Therefore, s∗
= ξ is the Kingman’s exponent of this M/G/1 queue with Poisson input with intensity λ =∑M

i=1 Nniρi/σi .
Going back to Eq. (17), since all the parameters s̃i (c∗

i ) are equal to ξ , the point −ξ is a pole with order

L
def
= N

∑M
i=1 ni for the Laplace transform (17). The Laplace transform E(e−sw̃i ) can specifically be written as

E(e−sW̃i ) = ai

(
ξ

s + ξ
− fi (s)

)
,

with ai = (c∗

i − ρi )/(ρi eσi ξ − c∗

i ) and

fi (s) =

c∗

i − ρi eσi ξ + ξ
ρi
σi

∞∑
n=2

(−σi )
n

n!
(s + ξ)n−2eσi ξ

c∗

i − ρi eσi ξ +
ρi
σi

∞∑
n=2

(−σi )
n

n!
(s + ξ)n−1eσi ξ

.

It then follows that the Laplace transform (17) can be written as

E

e
−s

M∑
i=1

Nni∑
j=1

W̃i, j (0)

 =

(
M∏

i=1

aNni
i

)(
L∑

j=1

κ j

(
ξ

s + ξ

) j

+ g(s)

)
,

where and function g has poles with modules greater than −ξ and κ j is the coefficient of Y j in the product∏L
j=1(Y + b j ), with b j = ξρiσi eσi ξ/2(ρi eσi ξ − c∗

i ) − 1. Note that b j > 0 and ai > 0 from the properties of
η.

By using [20, Theorem 10.7], it follows that

P

(
M∑

i=1

Nni∑
j=1

W̃i, j (0) ≥ x

)
∼

(
M∏

i=1

aNni
i

)(
L∑

j=1

κ j

( j − 1)!
0( j, xξ)

)
,
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Fig. 3. Comparison of many-sources rate functions for homogeneous sources (i.e., M = 1) with parameters σ = 16, ρ = 1, C = N × 2, and
π = 9 —K&K rate function is the rate function obtained by Kesidis and Konstantopoulos [22].

where we have used the incomplete Gamma function 0(a, x)
def
=
∫

∞

x ta−1e−t dt . By using the asymptotic equivalent
0(a, z) ∼ za−1e−z for large z > 0, we obtain

P

(
M∑

i=1

Nni∑
j=1

W̃i, j (0) ≥ x

)
∼

κL

(L − 1)!

(
M∏

i=1

aNni
i

)
(Nbξ)L−1e−Nbξ . (18)

Take logarithms and divide by Nb; Eq. (16) then follows by letting b → ∞. �

By presenting Proposition 7 in a similar scaling setting as the many-sources asymptotics in Section 3, we make it
easier to study the relationship between the Kingman’s exponent ξ and the many-sources asymptotic rate It0(ct + b).
In fact, the authors in [4,10] have studied the connections between the many-sources asymptotic rate It0(ct + b) and
the large buffer asymptotic decay rate H(c), defined as in [4]:

H(c)
def
= − lim

b→∞

1
Nb

log P{W N (0) ≥ Nb}.

They show that for the multiplexing of general independent traffic flows, as the buffer level b becomes large, these
two asymptotics in our setting are equivalent in the limit sense, i.e.,

lim
b→∞

1
b

It0(ct + b) = H(c).

In addition, the authors of [4,10] also indicated that Poisson arrivals do not gain scale economies, i.e., 1
b I p

t0 (ct+b) = ξ .
Therefore we can conclude that the many-sources asymptotic rate of regulated flows I r

t0(ct + b) also dominates the
Kingman’s exponent of the M/G/1 queue when the buffer size goes large, i.e.,

lim
b→∞

1
b

I r
t0(ct + b) ≥ ξ. (19)

In fact, numerical computations show that I r
t0(ct + b) ≥ I p

t0 (ct + b) = ξb for any buffer level b, as seen in Fig. 3.
However, a rigorous proof of this ordering property requires explicit and accurate characterization of the moment-
generating function of the regulated flows, which demands further investigations.

All these better-than-Poisson discussions indicate that an appropriate M/G/1 queue can well estimate the workload
distribution of regulated flows in a large network system. The performance bound given by this M/G/1 queue is more
accurate when the peak rate of each regulated flow is comparable to the service capacity, i.e., when the many-sources
asymptotic bound in Theorem 1 does not hold.

5. Conclusion

In this paper we have studied the tail distribution of the buffer content when independent heterogeneous (σi , ρi , πi )-
regulated traffic streams are multiplexed in a FIFO manner. We obtained two types of upper bounds via the many-
sources asymptotic and the asymptotic dominance property of an M/G/1 queue, respectively. Numerical results
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indicate that these bounds function quite well and that substantial multiplexing gains are achievable although the
input flows are simply characterized with three leaky bucket parameters.

Our many-sources asymptotic bound is obtained via identifying the worst-case traffic profiles of regulated flows. It
is much tighter than the approximations given in the literature. Moreover, since the bound is achieved via the extremal
sources for a (σ, ρ, π) envelope, it is unlikely that we can do much better without more information about the moment-
generating function of the sources. Meanwhile, the bound via the “asymptotic better-than-Poisson” property provides
insights in understanding the workload distribution from another perspective. It implies that the workload generated
by fluid-regulated flows can be stochastically dominated by some M/G/1 queue. Both of these results complement
those reported in [19] in that we can compute bounds for both the mean buffer occupancy as well as the asymptotic.
It is also interesting to note that the extremal sources for both results have the same behavior. We can utilize the mean
delay results for network design when the traffic is best effort while the results reported in this paper are better for
tight quality of service constraints [16].

As claimed in [3], we expect to analyze the performance of regulated flows inside a network via constructing proper
M/G/1 queues for performance upper bounds. Indeed, in [34], the authors found that, in a large network, each internal
flow with initially fixed burst size σi can be regulated by the same pair of (σi , ρi ) parameters. Thus each aggregate
flow consisting of multiple individual flows from the same previous queues is regulated by (

∑
σi ,
∑

ρi ). In addition,
since flows from different previous routes can be regarded independent, these flows to an internal queue can thus be
asymptotically dominated by a marked Poisson process constructed according to the (σi , ρi ) parameters. This is a
simplest way to construct an M/G/1 queue to dominate the workload distribution of internal queues with regulated
inputs. However, this type of M/G/1 queue gives conservative estimates since it ignores the possible multiplexing
gains in aggregate flows. One extension of this work is to find proper burstiness characteristics of aggregate flows
inside the network, which should also be practical to compute for engineering purposes.
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