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Abstract

We focus on the charging process of a fleet of electric vehicles overnight for

providing load-side regulation service. At the heart of this complex problem,

the goal is to transfer a certain amount of energy to the fleet by a given dead-

line; however, when and how fast the energy is sent is flexible. We examine

a unidirectional setting in the cases where regulation signals are determin-

istic (worst case) and stochastic. We study both a single-shot optimization

scenario carried at the start of the charging period, and a dynamic optimiza-

tion scenario, where the optimal control strategy is re-evaluated several times

over the duration of the charging interval. We show that most of the gains

from dynamic optimization can be obtained by re-evaluating the optimiza-

tion problem at the midpoint of the charging interval. Moreover, the optimal

value of the regulation service in the worst-case deterministic setting nearly

matches the stochastic setting with dynamic optimization. We validate our
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results using both simulation and real-world data.

Keywords: Vehicle-to-grid, Load-side frequency regulation service,

Ancillary service, Variable-rate charging

1. Introduction and State of the Art

1.1. Introduction

The frequency regulation service, one of the key ancillary services in the

power grid, balances generation and load, taking control action as frequently

as once every 30 seconds. Without this balance, alternating current frequency

deviates from its standard value (for example, 60 Hz in North America),

which can hurt grid-connected equipment, and, in the worst case, perma-

nently damage generators. Currently, frequency regulation service is pro-

vided by a set of generators contracted to respond rapidly to control signals

to increase or decrease their power. If the amount of generated power is

increased to compensate for the excess grid load, the service is called regula-

tion up. On the other hand, if the amount of generated power is decreased

to match the reduced load in the grid, the service is called regulation down.

The balance between generation and load can be equivalently achieved

by changing the aggregated load, provided these loads have some level of

flexibility in their consumption profile. This approach has several benefits:

• Generators that provide frequency regulation service are typically nat-

ural gas or hydroelectric generators. That is because, unlike coal and
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Nomenclature

m mean of regulation signals [kW]
r maximum deviation of regulation signals from mean [kW]
T total time available for charging the fleet [h]
T0 time instant up to which regulation service is provided [h]
T1 maximum possible duration of regulation service given the capacity

constraint of storage units [h]
T2 maximum possible duration of regulation service given the time

constraint to fill all storage units by a given deadline [h]
∆t time interval between incoming regulation signals [h]
vi’s baseline (normalized) regulation signals [kW]
xi’s regulation signals sent from grid [kW]
p peak power of individual storage units [kW]
PL peak power of the main line connecting fleet to the grid [kW]
n number of vehicles in the fleet
Cs maximum capacity by which each individual storage unit

can be charged [kWh]
C maximum capacity by which the whole set of storage units

can be charged, C = nCs [kWh]
Si initial residual capacity of the ith storage unit (i.e., at the beginning

of the charging period) [kWh]
S0 sum of initial residual capacities of the storage units,residua

S0 =
∑n

i=1 Si [kWh]
S(t) residual capacity of the whole system at time t [kWh]
Ri remaining capacity of the ith storage unit at the beginning

of the charging period [kWh], Ri = Cs − Si

Pe probability of error
α standard interval multiplier: given Pe, α is determined such that (µ − ασ, µ + ασ) is

a (1 − Pe)-confidence interval for the normal random variable
N (µ, σ2)

µS(t) mean of total residual capacity at time t [kWh]
σS(t) standard deviation of total residual capacity at time t [kWh]
σ0(t) normalized standard deviation of total residual capacity

at time t [kWh]
Rv(i) autocorrelation function of the stationary baseline signal v [(kW)2],

Rv(i) = E[vjvj−i]
σv standard deviation of the stationary baseline signal v [(kW)2],

σ2
v = Rv(0)

µv mean of the stationary baseline signal v [kW]
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Nomenclature

TC correlation time of the regulation signal x [h]
fup

m,r(t) upper bound on the system residual capacity at time t [kWh]
fdown

m,r (t) lower bound on the system residual capacity at time t [kWh]
PC average power necessary for charging the fleet [kW], PC = C−S0

T

Q Q is called power ratio and defined as Q = PC

PL/2
(unitless)

κ a constant defined as product of α and σv squared [(kW)2], κ = (ασv)
2

Tu time interval between update points in the dynamic charging [h]
d number of update points in the dynamic charging
mi value of mean charge rate decided at time

ti = iTu [kW]
ri value of maximum deviation from mean mi decided

at time ti = iTu [kW]
T i

0 optimal duration of frequency regulation service
starting from ti = iTu [h]

T i
reg realized duration of frequency regulation service

starting from ti = iTu [h]
mopt optimal value of the mean charge rate [kW]
ropt optimal value of the maximum deviation from mean [kW]
T opt

0 optimal duration of regulation service [h]
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nuclear generators, the output of these generators can be easily ad-

justed by changing the level of the input gas or water. The problem

with gas generators is that they burn fossil fuels, thus causing economi-

cal and environmental problems. Hydroelectric generators do not burn

fossil fuels. However, a generator that is planned to provide regulation

service has to work below its maximum capacity to create room for ma-

noeuvring its output. As a result, if a hydroelectric generator is used

for providing regulation, some capacity for generating clean energy will

be lost.

• Generators typically achieve maximum efficiency when working at max-

imum capacity. However, a generator providing balancing service nec-

essarily works, on average, below its maximum capacity, and thus does

not achieve its maximum efficiency.

• Generating variable-rate power leads to higher wear and tear of gen-

erators. In contrast, some loads may be insensitive or less sensitive to

the variations in the input power, and are therefore better candidates

for providing regulation service.

• With the advent of new sources of renewable generation and variable

load in the future grid, the need for regulation will increase. Being

equipped with control units, some loads in the future smart grid can

actively participate in the regulation service market.

For a load to be able to participate in the frequency regulation market, three
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conditions must be met: First, it must have some level of flexibility in its

consumption profile and therefore be relatively insensitive to variations in

input power. Second, the load must be significant with respect to the power

fluctuations in the grid, because the utility does not want to deal with minor

players. Third, the load should be controllable, so that it can respond to reg-

ulation control signals. Examples of such loads include industrial cold storage

units, industrial boilers, large-scale pumps and ventilators, and storage units

of fleets of electric vehicles. Over the past years, pilot programs have demon-

strated successful application of load-side regulation service providers [8].

This has even motivated commercial entities to monetize the aggregation of

loads to provide regulation service [9].

In this paper, we focus on the charging process of a fleet of electric ve-

hicles overnight as a representative system for providing load-side regulation

service. This system provides a simple setting to study this complex problem.

At its heart, the goal is to transfer a certain amount of energy to the fleet by

a given deadline; however, when and how fast the energy is sent is flexible [9].

Studying fleets also allows us to analyze a simple multi-component systems

(each vehicle in the fleet is one component of the overall system). Study-

ing multi-component loads is important in the context of load-side frequency

regulation service because, as mentioned earlier, for a load to take part in

the frequency regulation market, it needs to have a consumption rate that

is significant with respect to the power fluctuations in the grid. A coalition

of multiple loads may be required to achieve this minimum required input
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power.

The integration of electric vehicles with the power grid to achieve a mutual

benefit is termed vehicle-to-grid (V2G) [2]. This integration may take two

forms: bidirectional and unidirectional. In bidirectional integration, electric

vehicles can both receive energy from the grid and send energy to it de-

pending on the consumption profile of other loads in the network. In the

unidirectional case, electric vehicles can only receive energy from the grid.

In this case, electric vehicles can still be used for providing both regulation

up and regulation down services. This is because the input power to the elec-

tric vehicles can be decreased or increased depending on the status of other

loads in the network. Due to the relatively high loss currently associated

with AC-DC and DC-AC power transfers, the bidirectional case is thought

to be infeasible in practice. In contrast, in the unidirectional case, no extra

infrastructure other than the communication and control system is required

[16]. In this work, we therefore focus on unidirectional charging of electric

vehicles.

1.2. Relationship to prior work

The use of electric vehicles for providing frequency regulation service has

received much attention during the recent years, and it has been studied

by researchers from different perspectives [14–23]. Authors in [19, 23] use

dynamic programming to obtain optimal regulation signal bids. The algo-

rithms proposed in these studies aim to maximize the value of regulation
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service while providing electric vehicles with the desired target residual ca-

pacities1. One limitation of the above studies is that the variation in system

residual capacity due to regulation up and down signals is assumed to be

negligible. In other words, it is assumed that the accumulative sum of reg-

ulation up and down signals is ideally equal to zero. As we will see in this

study, regulation up and down signals are random in nature, and even if

they have zero mean, they have a non zero variance. Accounting for this

variance is important in obtaining reliable estimates of the system perfor-

mance. Sortomme and El-Sharkawi [16, 10] study unidirectional frameworks

for providing frequency regulation service, and extend their analysis to bidi-

rectional settings in [18]. The formulation presented in these studies allows

regulation up and regulation down signals to have unequal expected values.

However, these formulations also do not account for the variance of the sys-

tem residual capacity due to the random nature of regulation up and down

signals. It should be noted that as time goes on the uncertainty in the sys-

tem residual capacity increases, due to the random nature of the regulation

signals. That is because regulation signals are added to each other over time

and their uncertainties compound. Kamboj et al. [14, 1] study the formation

of electric vehicle coalitions and propose heuristic algorithms for determin-

ing the average charge rate and regulation service bids. Although algorithms

proposed in these studies are reasonable choices, they are not guaranteed

1The residual capacity of a storage unit is defined as the total energy stored in the unit.
It is measured in units of energy, kWh.
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to result in the optimal value of regulation service in the system. This is

especially the case in unidirectional settings where charging of electric vehi-

cles and provision of regulation service should be done simultaneously, and

it is not clear how to select system parameters to effectively achieve both

these goals. In this study, we aim to develop a mathematical framework that

can be used to obtain rigorous values of the system parameters given the

constraints imposed by both utility and owners of electric vehicle. Another

limitation of the above studies is that they all compute regulation service

bids solely based on constraints of the individual battery units. In practice,

however, the main line connecting the aggregator to the utility also has a

maximum tolerable power.

In this work, we present a framework to model regulation signals and we

study it both in a worst case deterministic setting and a stochastic setting.

1.3. Contributions

The contributions of this work are four fold:

1. We introduce a framework to model regulation signals in a system

that provides load-side frequency regulation service. This framework

captures the performance boost gained from exploiting the opposing

effect of regulation up and down signals. It also helps to precisely

characterize the uncertainty in the system residual capacity.

2. We use an analytical approach to obtain the optimal values of the reg-

ulation parameters. We study the system in the cases where regulation
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signals are deterministic (worst case) and stochastic.

3. We use our approach to study both a single-shot optimization scenario

carried at the start of the charging period, and a dynamic optimiza-

tion scenario, where the optimal control strategy is re-evaluated sev-

eral times over the duration of the charging interval. We show that

most of the gains from dynamic optimization can be obtained by re-

evaluating the optimization problem at the midpoint of the charging

interval. Moreover, the optimal value of the regulation service in the

worst-case deterministic setting nearly matches the stochastic setting

with dynamic optimization.

4. We obtain an analytical condition under which a multi-component sys-

tem can be modelled as a single large storage system, thus achieving

its maximum performance. We also study how to satisfy this condition

in practical systems and how the estimates of the system performance

should be modified when the desired condition is not satisfied.

Although the results in this work are presented for the special case of charging

a fleet of electric vehicles, they address key aspects of load-side frequency

regulation service, and can be applied to broader applications in this context,

such as large-scale pumps and industrial boilers.

The organization of the paper is as follows: In Section 2, we describe the

characteristics of the fleet of electric vehicles that is studied in this work. In

Section 3, we explain mathematical models used to describe the incoming

regulation signals as well as the system of electric vehicles. In Section 4, we
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analytically obtain a condition under which the assumption that a collection

of storage units in the fleet can be modeled as a single large storage unit is

valid. In Section 5, we formulate a single-shot optimization problem under

this assumption and study this problem under a worst case deterministic

setting and a stochastic setting. In Section 6, we introduce a dynamic op-

timization scenario in which the parameters of the system may be updated

multiple times during the charging process, and study how the performance

of the system improves as a result of this dynamic charging. In Section 6.2,

we present numerical results obtained from both simulation and real-world

data taken from PJM Interconnection broader [13]. We conclude the paper

in Section 7.

2. System

We study a fleet of electric vehicles with a single owner, who contracts

with an electric utility (such as a local distribution company or a third-party

aggregator) to provide frequency regulation service. From the owner’s per-

spective, it is critical that the vehicles are fully charged before a certain

deadline (typically overnight). However, the owner is insensitive to the ac-

tual charging rate, as long as this condition is met. Therefore, we propose a

contract where control over vehicle charging is ceded to the utility (or aggre-

gator), which can charge the vehicles at will as long as the vehicles are fully

charged before the deadline. In return, the fleet owner obtains a monetary

reward to offset operating costs. In this work, we do not study the form or
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value of this monetary compensation. Examples of fleets that can be used

for this purpose include fleet of vehicles used for courier services, or a fleet

of city transit buses.

The utility uses the storage units of the electric vehicles to maintain

the balance between generation and load in the grid. More precisely, the

fleet has a charge controller that responds to a regulation signal to control

the charging rate of the electric vehicles. The value of this signal reflects

stochastic fluctuations in other loads in the grid. This naturally implies that

the utility needs to stop obeying the regulation signals at some point and

switch to a deterministic phase to ensure that all the storage units are fully

charged by the end of the charging period.

The value of the regulation service to a utility depends on two factors: the

magnitude r of power variations from the mean value m, and the duration T0

over which the regulation service is provided. In current regulation service

markets, the value of regulation service is measured in MW-h. For example,

if a generator agrees to vary its output up to 5 MW above or below its

mean output for 1 hour, the value of the resulting regulation service will be

5 MW-h. Motivated by these considerations, in our work, the utility will

select for the fleet the two regulation parameters m and r to maximize the

objective function which is the product of the magnitude of the maximum

variation in the regulation signal, i.e., r and the length of the interval over

which regulation service is provided, i.e., T0.

Batteries are by far the most expensive part of electric vehicles and their
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charging and discharging need to obey a set of tight constraints to deliver the

expected lifetime. Typically, the battery management system in the battery

pack will tell the charger how much power it is willing to accept (i.e., a

maximum limit) at a given time depending on the current state of charge,

temperature, age, etc. As a result, our assumption that any regulation signal

can be obeyed is very strong. By making it, we obtain results that should be

considered as a bound on the performance that can be achieved by practical

systems.

3. Model

This section presents a mathematical model for the system described in

the previous section.

Let the charging process occur over the interval [0, T ] (i.e., T is the dead-

line). Recall that regulation signals are sent periodically by the grid to the

charge controller, typically every 30 seconds. To model this phenomenon, we

assume that over this interval, the grid sends k regulation signals denoted

x1, · · · , xk. The jth regulation signal xj, 1 ≤ j ≤ k, is used to control fleet

charging over the interval ((j−1)∆t, j∆t). The utility, which has been given

control of the fleet during this interval, has to determine the regulation pa-

rameters m and r where the regulation signals have mean m and may vary

up to a maximum amount of r above or below m as well as the time T0 during

which the regulation service is enabled.

The regulation signal sequence is bounded from below and above by two
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worst case deterministic sequences. The minimal regulation sequence is a se-

quence of k signals, each with the value m − r. Symmetrically, the maximal

regulation sequence is a sequence of k signals, each with the value m + r.

Unlike prior work, which has only studied the charging problem in the pres-

ence of the worst case sequences, we study the optimal fleet charging when

we model the regulation signal sequence as xj = m + rvj, 1 ≤ j ≤ k, where

v denotes a zero-mean stationary stochastic process with maximum +1 and

minimum -1. Here, the discrete-time process v is assumed independent of m

and r and captures the intrinsic properties of the regulation signal. When

dealing with the stochastic case, we will assume that the cumulative sum of

xj’s can be modeled as a Gaussian random variable. This is a reasonable

assumption, because as we will see in Section 6.2, regulation signals obey a

truncated Gaussian distribution, and the correlation time between them is

typically considerably less than the length of the regulation period.

The charge controller charges the electric vehicles by obeying the regu-

lation signal sequence xj until time T0. In the remaining time, T − T0, the

utility switches to a deterministic phase and completes the charging process

of all storage units in all vehicles by time T . This two-phase charging process

is required because the utility needs to ensure that all storage units will be

fully charged by the end of the charging period regardless of the (uncertain)

residual capacity of the system at time t = T0.

We denote by n the number of vehicles in the fleet. We use Si to denote

the initial residual capacity of the ith vehicle, i = 1, · · · , n. We denote the
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maximum capacity by which each storage unit can be charged by Cs. We

represent the peak rate at which each individual storage unit can be charged

by p and the power capacity of the power line connecting the fleet with the

grid by PL. Using the above notations, the value of the regulation service in

the system can be represented as rT0.

It is known that both overcharging and overdischarging of batteries of

electric vehicles negatively impact their lifetime. As a result, batteries of

electric vehicles are usually charged only up to a fraction of their total ca-

pacity, e.g. 90% of the total capacity. Also, they are discharged only up

to a minimum charge level, e.g., 10% of the total capacity. In the above

formulation, Cs is the maximum charge level up to which each individual

storage unit can be charged. This value is always less than the nominal ca-

pacity of the storage units. Since, in this work we study a unidirectional

setting for charging electric vehicles, the batteries of the electric vehicles are

never discharged. As a result, we do not need to be concerned with the min-

imum charge level of the storage units. We only need to assume that the

initial residual capacities of the storage units are such that they satisfy the

minimum setpoint constraint.

4. Equivalence Assumption

Before formulating our optimization problem, we derive a condition under

which we can model the fleet of electric vehicles as a single large storage unit

with peak power PL, total capacity C = nCs and initial charge S0 =
∑n

i=1 Si.
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Theorem 1 below summarizes the results in this section. This theorem

provides a sufficient and necessary condition under which the distributed

storage system composed of n identical units of size Cs, each having a max-

imum charging rate of p and the single large storage unit are equivalent to

each other. Equivalence here means that both systems will behave the same

irrespective of the regulation signals being sent. In other words, two systems

are called equivalent if any signals that can be obeyed by one of them can be

obeyed by the other one as well, and vice versa.

What makes a distributed system different from its corresponding single

storage unit is the limitation in the input power of individual storage units.

As an example, consider a distributed system that has n = 2 units with

p = 1, Cs = 1, and with initial residual capacity both equal to 0.5. Let

PL = 2. We would like to replace this distributed system by a single central

unit of size C = 2 and initial residual capacity equal to 1. Whenever the

charge controller receives a regulation signal, it has to decide how to schedule

the charging of the two units. Imagine that it decides to charge unit 1 with

higher priority. Then, at some point, unit 1 will be fully charged and the

regulation can only be performed on the second unit that can be charged

with an input power p < PL. Thus, at this point the distributed system

will not be equivalent to single unit any more. It is easy to see that if the

charge controller has treated each unit identically, the equivalence would

have held. As illustrated by this example, both the initial residual capacity

of the storage units and the distribution mechanism determine whether the
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two systems are equivalent or not.

It can be seen that the distributed system and the single large storage

unit are equivalent to each other only if the input power can be distributed

among the storage units in such a way that the number of none-full storage

units times p remains greater than or equal to the incoming power during the

whole charging process. Theorem 1 below provides a necessary and sufficient

condition for this relation to hold. As we will see in the proof of this theorem,

Proportional Charging (PC) turns out to be an ideal scheme for distributing

the incoming power among the storage units.

Theorem 1. Consider a distributed system composed of n storage units

each with capacity Cs and peak power p. Assume the ith storage unit in this

system has initial residual capacity Si, i.e., the capacity to fill is Ri = Cs−Si,

1 ≤ i ≤ n. Also, assume the system is connected to the grid through a power

line with peak power PL.

The above distributed system is equivalent to a single large storage unit

with total capacity C = nCs, initial residual capacity S0 =
∑n

i=1 Si, and

input peak power PL, if and only if the following condition holds:

Rmax

p
≤

∑n
i=1 Ri

PL

(1)

where Rmax = maxi{Ri}.

Proof. Recall that in our system, a regulation signal always corresponds
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to charging (never to discharging). It is not hard to see that any signal that

can be obeyed by the distributed system can also be obeyed by the single

large storage unit system, because its charging rate matches the peak input

power. Thus, to show the above equivalence, we just need to show that

condition 1 is a sufficient and necessary condition under which any signal

that can be obeyed by the single large storage unit can also be obeyed by

the distributed system2.

First, we prove that condition 1 is sufficient for this equivalence to hold.

Consider a regulation signal q(t) > 0 over the interval [0, T ] that is known to

be absorbable by the single large storage unit. This implies that signal q(t)

satisfies the following two constraints:

q(t) ≤ PL, for all 0 ≤ t ≤ T (2)
∫ T

0

q(t) dt ≤ R (3)

where R =
∑n

i=1 Ri is the remaining capacity in the large storage unit.

We show that signal q(t) can also be sent to the distributed storage system

if conditions 1, 2 and 3 hold and the PC scheme is used for distributing

the incoming power among the individual units. Under the PC scheme the

fraction of input power that is sent to each storage unit is proportional to the

2We say a signal can be obeyed by a storage system if the peak power of the signal is
at most as large as the peak input power of the storage unit and also the energy requested
by the signal is at most as large as the remaining capacity of the storage unit.
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remaining capacity of that unit. It is not hard to see that under this scheme

the fraction of power sent to each storage unit does not change over time.

To show signal q(t) can also be obeyed by the distributed system, we first

note that the individual peak power of storage units, p, will be never violated

during the charging process. That is because the fraction of power sent to

the ith storage unit, denoted by qi(t), satisfies:

qi(t) =
Ri

∑n
i=1 Ri

q(t) ≤ Rmax
∑n

i=1 Ri

q(t) ≤ Rmax
∑n

i=1 Ri

PL ≤ p

The first inequality in the above expression comes from the fact that

Rmax is the largest value among all Ri’s. The second inequality comes from

inequality 2, and the third inequality comes from condition 1.

Next, we note that none of the storage units becomes fully charged until

perhaps the end of the charging process. To show this we note that the total

energy send to the ith storage unit by time T , denoted by Ei, satisfies:

Ei =

∫ T

0

qi(t) dt =

∫ T

0

Ri
∑n

i=1 Ri

q(t) dt =
Ri

R

∫ T

0

q(t) dt ≤ Ri

R
R = Ri

The facts that the incoming power q(t) can be distributed among the

individual units without their peak power being violated, and none of the

storage units become fully charged before the the end of the charging process,

imply that signal q(t) can be absorbed by the distributed storage system.

We next show that condition 1 is necessary to ensure that the any sig-
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nal that can be sent to the single big storage unit can also be sent to the

distributed system. To show this, we consider the constant signal q(t) = PL

over the interval [0, T ], where T = R
PL

, and R is the remaining capacity of the

big storage unit. The big storage unit can absorb this signal, and at the end

of the charging period it will become fully charged. If the big storage unit

and the distributed system are equivalent to each other, then the distributed

system must also be able to absorb this signal. One should note that if the

distributed system absorbs the above signal, then all individual storage units

must get fully charged by the end of the charging period. But the maximum

energy that can be sent to each storage unit over the interval [0, R
PL

] is p( R
PL

).

Thus, for all storage units we must have Ri ≤ p R
PL

. In particular, we must

have Rmax ≤ p R
PL

, where Rmax is the maximum remaining capacity among

the whole storage units. This completes the proof.

5. Optimal Single-Shot Charging

In this section, we formulate the single-shot optimization problem and

derive the optimal parameters for the charging process. We study a single-

shot charging scheme, where the values of m, r and T0 are determined at

the beginning of the charging period and do not change until the end of the

process. Subsequently, in Section 6, we study a dynamic setting in which

the value of the charging parameters can be updated during the charging

process.

In this section, we assume that the fleet of electric vehicles can be mod-
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elled as a single large storage unit with input charge power upper bounded by

PL and a total capacity C = nCs. The initial residual capacity of this system

is denoted by S0 =
∑n

i=1 Si. We have called this assumption the equivalence

assumption earlier. In Section 4, we have analytically obtained a condition

under which this assumption is valid, and see that this condition is likely to

be satisfied in all practical systems where the initial residual capacity of the

batteries is relatively low.

As previously mentioned, the values of m, r and T0 should be computed

so that the value of regulation service rT0 is maximized. In solving this

problem, two key constraints must be taken into account: (i) the system must

be able to provide regulation service with the contracted deviation parameter

r during the whole interval [0, T0], (ii) the storage will get fully charged by

the end of the charging period T . Note that these are two fundamental

constraints in the system, and similar constraints are expected to exist in

other load-side frequency regulation service providers.

To ensure that regulation service is successfully provided over the inter-

val [0, T0] (constraint (i) described above), the following constraints must be

satisfied: m − r ≥ 0 and m + r ≤ PL. The first inequality captures the uni-

directional nature of the charging process. The second inequality accounts

for the bounded size of the link connecting the fleet to the grid. Another

constraint is that the system must never get fully charged during the inter-

val [0, T0]; otherwise, it cannot respond to the incoming regulation signals

anymore. Let S(t) denote the residual capacity of the system at time t. The

21



value of S(t) at time t = l∆t, 1 ≤ l ≤ k, can be written as:

S(t) = S0 + ∆t

l
∑

j=1

xj (4)

where the xj’s are the regulation signals that are unknown. The value of

the system residual capacity at time T0 must be less than or equal to C.

Mathematically, this constraint can be written as S(T0) ≤ C.

To guarantee that all vehicles will be fully charged by the end of the

charging process (constraint (ii) described above), we need to ensure that

there is enough time to fill the remaining capacity of the vehicle batteries,

C−S(T0), during the second phase of the charging process which has duration

T − T0, knowing that there is a constraint on the peak power of the main

line, PL. This constraint can be written as C−S(T0)
PL

≤ T − T0.

Using the above constrains, the stochastic optimization problem that the

utility should solve to select the regulation parameters m, r and T0 is:
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max
m,r,T0,l0

r T0 (5)

s.t. m, r, T0 ≥ 0, T0 ≤ T

m − r ≥ 0

m + r ≤ PL

S(T0) ≤ C

S(T0) = S0 + ∆t
∑l0

j=1 xj

T0 = l0∆t

C−S(T0)
PL

≤ T − T0

Note that the regulation signals xj’s are stochastic (unless we conserva-

tively model them using the maximal and minimal deterministic regulation

sequences as will be discussed later) and therefore, S(T0) is a random vari-

able in the optimization problem 5. As a result, in general, we need to use

the statistical properties of S(t) when studying this optimization problem.

In the following, we will study two particular cases of interest. The first

corresponds to the case where we assume that the cumulative sum of the

regulation signals is Gaussian while the second is the deterministic worst

case.
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5.1. The Optimization Problem under the Gaussian Assumption

5.1.1. Formulation

In a single-shot stochastic process, the values of m and r are not changed

during the charging process. Thus, once the values of these parameters are

set, the system must be ready to deal with the worst-case scenarios that may

happen as a result of this selection. Let µS(t) and σ2
S(t) denote the mean

and variance of S(t) at time t. Also, let Pe be the maximum tolerable error

in the system. There are, a priori, two types of potential errors. The first

corresponds to the situation when the system gets fully charged before the

end of the regulation service period and cannot provide regulation service any

more, and the second to the situation when the system is not fully charged by

the end of the charging period. We design the system in such a way that with

probability 1 − Pe neither error occurs in the system. We assume that the

cumulative sum of the regulation signals is Gaussian which translates into a

Gaussian assumption on the system residual capacity. Let us fix the value of

Pe. Under the Gaussian assumption, the value of S(t) lies with probability

1-Pe within the interval [µS(t)+ασS(t), µS(t)−ασS(t)] where α = −G−1(Pe

2
),

and G(·) is the normal standard distribution function. Using these notations,

the system optimization problem, in its worst case (i.e., assuming the worst

case trajectories for S(t)), can be expressed as:
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max
m,r,T0,l0

r T0 (6)

s.t. m, r, T0 ≥ 0, T0 ≤ T

m − r ≥ 0

m + r ≤ PL

µS(T0) + ασS(T0) ≤ C

T0 = l0∆t

C−[µ(T0)−ασS(T0)]
PL

≤ T − T0

From Eq. 4, it can be shown that the mean of S(t) at time t = l∆t is

given by (see Appendix A):

µS(t) = S0 + ml∆t = S0 + mt (7)

Also, it is not hard to show that the variance of S(t) at time t = l∆t

is given by σ2
S(t) = r2σ2

0(t) where σ2
0(t) can be expressed in terms of the

autocorrelation function of the stochastic process v (recall that the regulation

signal sequence is xj = m+rvj for all 1 ≤ j ≤ k where v denotes a zero-mean

stochastic sequence in [−1, 1]) as follows (Appendix A):

σ2
0(t) = t∆t

(

Rv(0) + 2
l−1
∑

i=1

Rv(i)
)

− 2(∆t)2

l−1
∑

i=1

i Rv(i) (8)
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Here, Rv(i) = E[vjvj−i] denotes the autocorrelation function of v. Note that

σ2
0(t) only depends on the basic regulation signal v, and not on parameter

r. In the special case when the incoming regulation signals are uncorrelated,

Rv(i) = 0 for i ≥ 1, and thus σ2
0(t) simplifies to:

σ2
0(t) = t∆tRv(0) = t∆tσ2

v (9)

where σ2
v = Rv(0) is the variance of the signal v.

In general, however, the signal v is correlated and it is important to take

these correlations into account.

Substituting values of µS(t) and σS(t) from Eq. 7 and Eq. 8 in the

optimization problem 6, we obtain:

max
m,r,T0,l0

r T0 (10)

s.t. m, r, T0 ≥ 0, T0 ≤ T

m − r ≥ 0

m + r ≤ PL

S0 + mT0 + αrσ0(T0) ≤ C (11)

T0 = l0∆t

C−[S0+mT0−αrσ0(T0)]
PL

≤ T − T0 (12)

In this problem, T0 is an integer multiplier of ∆t. In the following, we will
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relax this constraint when solving the optimization problem 10 and allow T0

to take any real value within the interval [0, T ]. This is a reasonable assump-

tion, because ∆t is much smaller than other time scales in the problem.

This problem can be complex depending on the function σ0(t) which is

a function of the autocorrelation function of v. Before providing analytical

insights and solutions to this problem for different examples, we first provide

some geometric interpretation.

5.1.2. Geometric representation

We find it useful to illustrate the constraints presented in 10 using a geo-

metric representation. Such a geometric representation is given in Fig. 1. In

this diagram, the vertical axis denotes the system residual capacity and the

horizontal axis represents time. Each path within the presented rectangle

illustrates a sample trajectory for charging the system based on given tra-

jectories of regulation signals. All feasible trajectories must start from the

bottom left corner of the rectangle, (0, S0), and end at the top right corner

(T,C). Because of the limitation on the peak power of the system, denoted

by PL, all feasible trajectories must lie within the two parallel lines with

slope PL, one crossing point (0, S0) and the other one point (T,C). Consider

a variable-rate regulation signal with mean m and maximum deviation r. In

this case, the feasible trajectories are limited by the two lines crossing point
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(0, S0) with slopes m − r and m + r respectively. Define:

fup
m,r(t) = µS(t) + ασS(t) = S0 + mt + αrσ0(t)

f low
m,r(t) = µS(t) − ασS(t) = S0 + mt − αrσ0(t)

As mentioned in the previous subsection, all trajectories of the regulation

signal lay between fup
m,r(t) and f low

m,r(t) with a probability that can be con-

trolled by parameter α. We denote by T1 the intersection between the curve

fup
m,r(t) and the horizontal line y = C or the line t = T whichever comes first.

Also, we denote by T2 the intersection between the curve f low
m,r(t) and the line

with slope PL crossing point (T,C) or the line y = C whichever comes first.

Given the values of m and r, the optimal value of T0 is the smaller of the

two first coordinates of T1 and T2. That is because the largest value of T0

that satisfies both constraints 11 and 12 is min(T1, T2).

5.1.3. Solution to the optimization problem

In this section, we reduce the nonlinear three variable optimization prob-

lem 10 to a simple one variable optimization problem over the interval (TI , T )

(see later), which can be solved precisely. We start by presenting the follow-

ing key theorem:

Theorem 2. Let (mopt, ropt, T opt
0 ) be the optimal solution to problem 10.

At this optimal solution, both inequalities 11 and 12 are active (i.e., hold at

equality) provided that g(t) = σ0(t)
t

is a decreasing function of t.
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Proof. See appendix B.

The geometric interpretation of the above theorem is that at the optimal

solution, the values of the first coordinates of T1 and T2 (in Fig. 1) are equal

to each other and equal to T0, provided that g(t) = σ0(t)
t

is a decreasing

function of t.

In the special case when the incoming regulation signals are uncorrelated,

it can be seen that g(t) = σ0(t)
t

=

√
σ2

v∆t√
t

is a decreasing function of t. Theorem

3 below indicates that the same result is indeed true for all signals with a

positively-valued autocorrelation function Rv(·).

Theorem 3. g(t) = σ0(t)
t

is a decreasing function of t if the corresponding

autocorrelation function Rv is positively-valued.

Proof. See appendix C.

Examples of positively-valued autocorrelation functions include triangu-

lar and exponential autocorrelation functions. In Subsection 6.2.2, we obtain

the autocorrelation function of real-world PJM Interconnection regulation

traces. As we will see there, the autocorrelation function of these signals has

a triangular form, and thus the above theorem can be applied.

Given Theorem 2, one can replace inequalities 11 and 12 in the optimiza-

tion problem 10 by equalities. We can then evaluate the value of m to obtain
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the following equation in terms of r and T0:

r =
(T − T0)PL

2α σ0(T0)
(13)

After some simple algebra, we arrive at the following optimization prob-

lem which includes only variables m and T0:

max
m,T0

PL

2α
(T−T0)T0

σ0(T0)
(14)

s.t. m,T ≥ 0, T0 ≤ T

m − (T−T0)PL

2α σ0(T0)
≥ 0 (15)

m + (T−T0)PL

2α σ0(T0)
≤ PL (16)

S0 + mT0 + (T−T0)PL

2
= C (17)

To gain insights on the above optimization problem, it is useful to plot

constraints 15, 16 and 17 in the m–T0 plane (see Fig. 2). To do so, we first

note that inequality 15 corresponds to the area above the curve C1 defined

by:

m =
(T − T0)PL

2α σ0(T0)
(18)

Similarly, we note that the inequality presented in 16 corresponds to the
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area below the curve C2 defined by:

m = −(T − T0)PL

2α σ0(T0)
+ PL (19)

At T0 = T , the curves C1 and C2 take the value 0 and PL, respectively.

Moreover, it can be seen that these curves are symmetric around the line

m = PL/2 in the m–T0 plane, and thus always intersect at a point with

height PL/2 (Fig. 2).

Finally, let the curve represented by Eq. 17 be C3. We rewrite its equation

as:

m =
C−S0

T
− PL

2
(1 − T0

T
)

T0/T
(20)

Let PC = C−S0

T
. Note that this quantity represents the average power

required to fill all the batteries by the end of the charging period. To study

the behavior of the system, we find it useful to define the power ratio Q as

follows:

Q =
PC

PL/2
(21)

In plotting the curve C3, we distinguish between the following three

regimes: (i) Q < 1 (or PC < PL

2
), (ii) Q > 1 (or PC > PL

2
) and (iii) Q = 1

(or PC = PL

2
). One can see that the convexity of this curve depends on the

regime in which the system operates. The feasible solutions for the opti-

mization problem 14 are those points on C3 that lay above C1 and below
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C2.

After finding the feasible region, we turn our attention to the objective

function in the optimization problem 14. The objective function in this

problem depends only on T0. From Fig. 2 it can be seen that the feasible

values for T0 lay in the interval (TI , T ), where TI is the first coordinate of

the intersection between curves C3 and C1 or C2 (depending on the regime in

which the system is operating). Therefore, to solve the optimization problem

14, one needs to find the value of T0 in the interval (TI , T ) that maximizes

the objective function. Our computations shows that in many practical cases

the objective function 14 is strictly decreasing over the interval (TI , T ) and

thus the optimal value of T0 will be the starting point of this interval, i.e.,

TI .

A special case: Uncorrelated regulation signals. We now study the solution

to 14 in a special case when the incoming regulation signals are uncorrelated.

As we will see here, the solution in this case can be obtained by solving a

third-order polynomial equation.

As discussed earlier, in the case of uncorrelated regulation signals σ2
0(t) =

t∆tσ2
v . With this value for σ2

0(t), the curves C1 and C2 intersect at (TJ , PL/2),

where:

TJ =
(
√

4T + κ∆t −
√

κ∆t)2

4
(22)

Here κ = (ασv)
2 is a constant. Note that in practical systems where
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∆t ≪ T the value of TJ in 22 will be close to T .

Next we study the objective function in 14 for this special case. Using

the above value for σ2
0(t) the objective function is:

f(T0) =
PL

2ασv

√
∆t

(T − T0)
√

T0 (23)

It is easy to see that the above function has a global maximum at T0 =

T/3, and it is decreasing for values of T0 greater than T/3. As mentioned

earlier, to obtain the optimal solution to the optimization problem 14, we

must find the value of T0 in the interval (TI , T ) that maximizes the objective

function. Recall that TI is the first coordinate of the intersection between

curves C3 and one of C1 or C2 depending on the regime in which the system

is operating. From Fig. 2, it can be seen that in all regimes the value of TI

is greater than or equal to TJ . As mentioned above, in practical systems the

value of TJ is close to T , and since TJ ≤ TI < T , the value of TI will be close

to T too. As a result, the whole interval (TI , T ) lays on the right-hand side

of the point T0 = T/3, and the objective function 23 is strictly decreasing

over the interval (TI , T ). This implies that the optimal value of T0 will be

the starting point of the interval (TI , T ), i.e., TI .

As mentioned in the previous subsection, when Q < 1 (the first regime),

the value of TI is given by the first coordinate of the intersection between

curves C1 and C3. Using simple algebra, we obtain the optimal value of T0

as x2, where x is the solution to the following cubic polynomial:
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ax3 + bx2 + cx + d = 0, (24)

a =
PL

2ασv

√
∆t

b =
PL

2

c =
−PLT

2ασv

√
∆t

d = C − S0 −
PLT

2

Similarly, in the second regime where Q > 1, it can be seen that the opti-

mal value of T0 is given by y2 where y is the solution to the cubic polynomial:

ay3 + by2 + cy − d = 0

Once we obtained the optimal value of T0 for these 2 regimes, we can

obtain the optimal values of m using Eq. 20, and the optimal value of r

using Eq. 13.

Finally, in the third regime where Q = 1, the three curves C1, C2 and C3

all intersect at (TJ , PL/2). It can be seen that in this case the optimal value

of r equals PL

2
= m.

In this section, therefore, we have reduced the problem to a simple single-

variable optimization problem.

34



5.2. Optimal solution in the deterministic case

In this subsection, we study the solution to optimization problem 5 in

the (deterministic) worst case where regulation signals are all equal to each

other, and equal to either m+ r or m− r, corresponding to the maximal and

minimal regulation sequence, respectively. We find closed form solutions for

this problem in all regimes (i.e., for all values of Q). The solution in this

case provides a measure of the degree of improvement that can be obtained

by taking a stochastic approach to the problem. This setting is illustrated

by the two lines crossing point (0, S0) with slopes m + r and m − r in Fig.

1. We use the same definition for T1 and T2 as before when we replace the

curve fup
m,r(t) (resp. f low

m,r(t)) by the line of slope m + r (resp m − r). With

these definitions, the value of T0 will be again min{T1, T2}. One can follow a

procedure similar to the one described in Appendix B to obtain the optimal

values of m, r and T0 in this deterministic setting. Theorem 4 below gives

the solutions in this case.

Theorem 4. Consider the optimization problem 5 in the deterministic

case where regulation signals are all equal to each other, and equal to either

m + r or m − r.

• When Q < 1, any value in the interval (P1, PL/2) is optimal for m,

where:

P1 =
PC

2

1

1 − PC

PL

In this case, the optimal value of r is m, and the optimal value of the
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objective function rT0 is C−S0

2
.

• When Q ≥ 1, the optimal values of m lay in the interval [PL

2
, P2], where:

P2 =
PL

2

3PC

PL
− 1

PC

PL

In this case, the optimal value of r is equal to PL −m, and the optimal

value of the objective function rT0 is PLT−C+S0

2
.

Proof. See Appendix D.

As mentioned in the above theorem, the optimal solutions in the deter-

ministic case are not unique. Moreover, one can see that the values PL/2

and PC always lay in the interval of optimal values for m.

5.3. Results in the case of a representative system

In this subsection, we illustrate some of the results obtained in the pre-

vious subsections for a representative system. We consider a fleet of electric

vehicle consisting of 80 vehicles, each with a 20 kWh storage unit. We as-

sume the fleet is available for charging from 10 PM to 6 AM; thus, the total

charging period is 8 hours. Using the notations introduced in the previous

subsection, we have n = 80, Cs = 20 kWh and T = 8 h.

If all vehicle batteries are empty at the beginning of the charging period,

the system needs a total energy of 80×20 = 1600 kWh to get fully charged by

the next day’s morning. Given the length of the charging period, 8 hours, the

input peak power is expected to be PL ≥ 1600 kWh/8 h = 200 kW. Because
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we plan to provide regulation service, the input peak power should be chosen

greater than 200 kW. Larger values of the input peak power are expected to

result in higher values of regulation service. We will study the effect of input

peak power on the optimal value of regulation service later in this subsection.

We assume that the autocorrelation function of the regulation signals has

a triangular shape. As we will see in Section 6.2, this is consistent with

the results obtained from real-world data. We define the correlation time

TC of a triangular autocorrelation function as the time-lag beyond which

the autocorrelation function vanishes, i.e., the time-lag beyond which the

incoming regulation signals are uncorrelated. Based on the results obtained

from the real-world data (see subsection 6.2.2), we set TC = 45 min and

σv = 0.5 (unitless). We take the probability of error in the system to be

Pe = 10−3. Finally, we assume the batteries of the vehicles are initially

charged at 25% on average. This leads the system initial residual capacity

to be 25% × 80 × 20 kWh = 400 kWh, and the required average power, PC ,

to be:

PC =
C − S0

T
=

1600 kWh − 400 kWh

8 h
= 150 kW

Figure 3 plots the value of the regulation service rT0 as a function of the

input peak power PL. In plotting Fig. 3, we keep PC constant at 150 kW

and vary PL in the range 200-400 kW. We find it useful to normalize the

horizontal axis and plot the value of regulation service as a function of the
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power ratio Q defined in 21. Figure 3 compares the optimal value of the

regulation service obtained when assuming a Gaussian cumulative sum of

the regulation signals with a triangular autocorrelation function with the

value of the regulation service obtained from the following four sub-optimal

methods:

• Stochastic with m = PC. In this method, the mean charge rate m is

taken equal to PC , and the value of r is then equal to min{PC , PL−PC}.

Given the values of m and r, the functions fup
m,r(t) and f low

m,r(t) can be

evaluated, and from those, values of T1 and T2 are obtained. The value

of T0 is then equal to min{T1, T2}.

• Stochastic with m = PL

2
. In this method, the mean charge rate

m and deviation parameter r are both taken equal to PL

2
. As in the

previous case, given the values of m and r, the functions fup
m,r(t) and

f low
m,r(t) are evaluated, and from those, values of T1 and T2 are obtained.

The value of T0 is then equal to min{T1, T2}.

• Deterministic with m = PC. In this method, similar to the first case

above, the mean charge rate m is set to PC and we allow for deviations

of at most r = min{PC , PL − PC} above or below this mean but, we

account for the worst cases where all regulation signals are equal to

each other and equal to either PC + r or PC − r.

• Deterministic with m = PL

2
. In this method, similar to the second

case above, the mean charge rate m and the deviation parameter r are
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both equal to PL/2 but again we account for the cases where all signals

can be equal to each other and equal to either PL or 0. Note that The-

orem 4 predicts that the value of the regulation service obtained from

this method and the previous one are both optimal in a deterministic

regime and equal to each other.

As illustrated in Fig. 3, the amount of regulation service provided by taking

into account the stochastic nature of the signals is, in general, greater than

the value of the regulation service provided by the deterministic approaches.

Moreover, not surprisingly, the values of regulation service for the two deter-

ministic case are equal to each other. As illustrated in Fig. 3, Q = 1 yields

nearly the highest regulation service. This implies that the utility should

choose to design the system so that PL is at least equal to 2C−S0

T
. We will

discuss this issue later in the present section.

Next, we study the effect of the system initial residual capacity S0 on

the optimal value of the regulation service. To this end, we keep the input

peak power constant at PL = 300 kWh, and vary the system initial residual

capacity between 0% and 50%. The results are presented in Fig. 4 as a

function of Q = 2(C−S0)
TPL

. Figure 4(a) plots the optimal value of the regulation

service as a function of the power ratio Q. In this figure, we have compared

the proposed optimal method with the four sub-optimal methods mentioned

above. Figure 4(b) compares the length of the regulation period T0 for the

same methods. As illustrated in Fig. 4(a), given the values of PL and T , the

optimal value of regulation service is maximized when Q turns out to be one,
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or equivalently, the initial residual capacity of the system turns out to be C−
TPL

2
. From Fig. 4(b) it is clear that the system with the optimal parameters

provides, in general, longer durations of regulation service. Importantly, it

can be seen from Figs. 3 and 4(a) that the value of the regulation service

obtained from the optimal method, and the (suboptimal) stochastic method

with m = PC are close to each other in all three cases Q < 1, Q = 1 and

Q > 1. This implies that in practical applications, the value of m = PC can

be used as a good approximation to the optimal value of m.

In Fig. 5, we study the effect of the correlation time TC of the incoming

regulation signals on the optimal value of the regulation service. In plotting

this figure, the values of PC and PL are kept constant at 150 kW and 300

kW, respectively, and the correlation time between the regulation signals is

varied between 0 and 2 hours. As shown in this figure, the optimal value

of the regulation service decreases as the correlation among the regulation

signals increases. This is because when regulation signals are not correlated,

or are correlated with small correlation times, regulation up and regulation

down signals cancel the effect of each other over short periods of time, and

the energy sent to the fleet remains close to its expected value. However,

when regulation signals are correlated over longer intervals, it may be the

case that a sequence of consecutive up or down regulation signals appear in

the system, and lead the system residual capacity to largely deviate from

its expected value. In such situations, the variance of the system residual

capacity increases, and the value of the regulation service decreases for a
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given probability of error. In Fig. 5, we have only presented values of the

regulation service greater than or equal to 600 kW-h. That is because, as

shown in Fig. 4(a), the deterministic approach that achieves zero error can

yield a regulation service value of 600 kW-h. All other proposed methods

are useful only if they offer regulation service values greater than this error-

free case. This illustrates that depending on the values of the parameters,

a deterministic approach can be the best solution. In this figure, we also

show how the choice of the error probability impacts the optimal regulation

service. Clearly the higher the probability, the higher the regulation service.

Finally, in Fig. 6 we study the effect of the variance of the base signal, σv,

on the optimal value of the regulation service for different values of the error

probability. As shown, the optimal value of the regulation service decreases

quickly as σv increases. That is because, the variance of the system residual

capacity, S(t), increases as σv increases (see Eq. 8), and the resulting in-

creased uncertainty leads to more conservative estimates of the value of the

regulation service achievable in the system. As in Fig. 5, the diagram in Fig.

6 presents only values of the regulation service greater than or equal to 600

kW-h.

5.4. Setting the physical parameters PL and p

In this section, we study how to set parameters PL and p in a system of

electric vehicles that is planned to provide the regulation service. This is a

one-time parameter design and should be performed when the infrastructure
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of the fleet is designed. We denote the obtained values of parameters by P des
L

and pdes, respectively.

As mentioned in Section 5, in order to get a good value for the regulation

service, we should have Q ≤ 1 irrespective of the value of the initial residual

capacity S0. Hence, the value of PL should be set to be twice as large as the

value of PC . Larger values of PL increase the price of the connection line,

but they do not significantly increase the value of regulation service (see Fig.

3). The maximum value of PC corresponds to the case when all storage units

are fully discharged at the beginning of the charging process. In that case,

the value of PC equals to nC
T

. To ensure that the full potential of the system

is used for providing the regulation service (irrespective of the value of S0),

P des
L should be set based on this worst-case scenario3:

P des
L = 2

nC

T
(25)

Now we study how to set the value of p. As mentioned in Section 4, the

performance of a distributed storage system is upper bounded by a single

big storage unit. This upper bound can be achieved if the value of p is

sufficiently large. The minimum value of p that achieves this upper bound

can be obtained using condition 1. Hence:

3Alternatively, if an accurate estimate of PC is available, one may use this value to
determine P des

L
.

42



pdes ≥ P des
L

∑n
i=1 Ri

Rmax

=
2nC

T
∑n

i=1 Ri

Rmax

=
2

∑n
i=1

(Ri/C)

n

Rmax

T

=
2

1 −
∑n

i=1
(Si/C)

n

Rmax

T

=
2

1 − β

Rmax

T
(26)

where β =
∑n

i=1
(Si/C)

n
is the average normalized initial residual capacity of

the individual units. A conservative value for pdes that ensures the validity

of 26 can be obtained by replacing Rmax by C in this inequality. This results

in the following lower bound for pdes:

pdes ≥ 2

1 − β

C

T
(27)

Hence, the value of pdes depends on the average residual capacity of the

individual storage units. Although the residual capacity of the storage units

may vary from day to day, their average may have less variations. Given an

estimate for the value of β in the system we can use inequality 27 to obtain

the minimal value of pdes. From this inequality, it can be seen that if the

value of β varies between 0%−50%, the minimal value of pdes varies between
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2C
T

and 4C
T

. 4

We are now ready to evaluate the values of parameters P des
L and pdes for

the representative system introduced in Section 5.3. Using Eq. 25, the input

peak power in this system should be set at P des
L = 2nC

T
= 280×20kWh

8h =

400 kW. Moreover, assuming an average initial residual capacity of 25%,

the individual peak powers should be set to a minimum of pdes = 2
1−α

C
T

=

2
1−0.25

20kWh
8h = 6.66 kW. This line power can be achieved by a level 2 charging

infrastructure [5].

We conclude this section by considering the case when condition 1 does

not hold, e.g., when the initial residual capacity of the storage units is rel-

atively high (small R) and this initial charge is distributed heterogeneously

among the individual units (large Rmax). In such cases, one can replace the

input peak power PL by a modified value that can be obtained from condition

1, as follows:

Pmod
L =

∑n
i=1 Ri

R1

p (28)

This modified value of PL can replace the value of PL in Section 5 to

determine the charging parameters of the system.

4One should note that if the value of β approaches 1, the right-hand side of inequality
27 goes to infinity. In such cases, the original condition in 26 should be used to obtain the
value of pdes which includes both β and Rmax.
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6. Dynamic Optimization

6.1. Introduction

In the single-shot optimization studied in Section 5, the optimal values of

m and r are set at the beginning of the charging process and will not change

until the end of the regulation service period. In this system, because of

the one-shot nature of the process, the parameter values should be chosen

conservatively so as to ensure the successful operation of the system. One

can extend the above system to a dynamic setting in which the values of m

and r are updated multiple times during the charging process. The updated

values of m and r will be then determined based on the current state of the

system at each updating point. We expect this dynamic setting to improve

the total value of the regulation service provided by the system. However, we

should note that the time span between updating points in a dynamic setting

cannot be too short. Otherwise, frequently altering the system parameters

(including the requested mean power) may serve as a source of fluctuations

in the grid, rather than a mean of absorption of the fluctuations generated

by other sources.

In this section, we introduce a simple dynamic setting for charging the

fleet of electric vehicles. In particular, we study a system in which the values

of m and r are updated d+ 1 times at points t = 0, Tu, 2Tu, · · · , dTu. At this

point, we assume that the value of Tu is given and that the value of d will

be determined during the charging period, as will be described shortly. We

examine the system at each updating point, and evaluate the three param-
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eters m, r and T0 based on the current residual capacity of the system and

the time remaining until the end of the charging period T . Let mi, ri and T i
0

denote, respectively, the values of m, r and T0 at updating point ti = iTu. If

the value T i
0 is greater than Tu, it means that the system can safely work until

the next update point ti+1 = (i + 1)Tu. In that case, we continue providing

the regulation service until time ti+1 = (i+1)Tu, and again check the system

at time ti+1. On the other hand, if the value of T i
0 evaluated at the updating

point ti is less than Tu, we provide regulation service until ti + T i
0 and then

switch to a deterministic phase to finish the charging process by time T , i.e.,

in that case, d = i. Figure 7 illustrates the geometric representation of a

typical system with dynamic charging.

Let T i
reg denote the length of the ith regulation period during the charging

process described above. Note that T 0
reg = T 1

reg = · · · = T d−1
reg = Tu and

T d
reg = T d

0 . The total value of the regulation service provided by the system

can be then expressed as:

Equivalent service =
d

∑

i=0

riT i
reg (29)

We study the dynamic setting in both the deterministic and the stochastic

cases. In the deterministic case, as mentioned in Section 5, there are a range

of optimal values for the mean charge parameter m. We study two special

cases where m is set to PL

2
and to PC . The advantage of choosing PL

2
over PC

is that this choice makes the system parameters independent of the residual
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capacity at each updating point.

We will see next that the value of the regulation service will significantly

increase in a system with dynamic setting, and that the difference between

the deterministic and the stochastic settings reduces.

6.2. Numerical Evaluations

In this section, we use simulation and real-world regulation data to obtain

results for different settings. To this end, we use the representative system

described in Section 5.3. Sections 6.2.1 and 6.2.2 use simulation and real-

world data, respectively, to assess the performance of the system. In each of

these subsections, we study both single-shot and dynamic settings.

6.2.1. Simulation data

A) Single-shot optimization. In this subsection, we use simulation data to

assess the value of the regulation service in a system using a single-shot opti-

mization scheme. To this end, we study the representative system introduced

in Section 5.1.3. We assume the system is initially 25% charged. Moreover,

we set PL = 300 kW, TC = 45 min, σv = 0.5, and Pe = 10−3. Using the

methodology presented in Section 5.1.3, we can show that the optimal values

of the variables in the stochastic setting are mopt = 150 kW , ropt = 150 kW

and T opt
0 = 4.92 h. Given ropt and T opt

0 , the optimal value of the regulation

service is roptT opt
0 = 738.1 kW-h.

To evaluate the system, we manually generate 100 zero-mean random

traces with TC = 45 min, σv = 0.5 and maximum and minimum +1 and -1,
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respectively. Then, we multiply these traces by ropt and lift them up by mopt

to obtain final regulation signal trajectories. We use these signals to charge

the system of electric vehicles for a time duration with length T opt
0 . We seek

to determine whether the regulation signals can be safely absorbed by the

system during this interval. Moreover, we wish to determine whether the

residual capacity of the system at time t = T opt
0 allows the system to be fully

charged by time T . We found that the generated trajectories almost always,

up to the predicted error, lay within the fup
m,r and f low

m,r boundaries, and the

regulation service was safely provided over the interval [0, T0]. Moreover,

residual capacity of the system at t = T opt
0 was always large enough to allow

the system to be fully charged by time t = T using an input power less than

PL. These results confirm our predictions in Section 5.

From Theorem 4 it is easy to see that the optimal value of regulation

service in the deterministic setting is 600 kW-h. This value is realized by

mopt = ropt = 150 kW and T opt
0 = 4 h.

B) Dynamic optimization. In this subsection, we study how the value of reg-

ulation service increases by using dynamic optimization. Figure 8 shows the

expected value of the regulation service as a function of time span between

updates in the stochastic setting and in the deterministic setting with both

m = PL

2
and m = PC . The system under study is the same system described

in the previous section. In plotting Fig. 8, we generated 1000 random trajec-

tories for v (recall that v is a zero-mean random sequence with TC = 45 min,

σv = 0.5 and maximum and minimum +1 and -1, respectively), and use them
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to charge the system while the value of Tu was varied between 0 and T . As

illustrated in this figure, the resulting functions has a sawtooth shape. When

the number of updates increases, the value of the regulation service increases

sharply and, perhaps surprisingly, the deterministic setting outperforms the

stochastic one. What is also surprising is that the two deterministic settings

do not perform identically when the number of updates increases. As illus-

trated in the figure, even a single additional update can greatly improve the

value of the provided regulation service.

6.2.2. Real-world data

In this section, we use regulation traces collected in 12 consecutive days by

the PJM Interconnection company to study the system of electric vehicles.

This data is available at [13]. The regulation signals in this data set are

normalized such that they lay within the range ±1. We randomly divided

the data into a training set consisting of four days, and a test set consisting

of eight days. Figure 9 shows the QQ plot of the regulation traces in the

training set versus standard normal. It shows that the regulation signals

well match the distribution of a normal random variable truncated at ±1.

We evaluated the variance of the signals in the unified data stream to obtain

an estimate for the value of σv. The obtained estimate for σv was 0.5069.

We then use the autocorrelation function of the regulation signals to es-

timate the correlation time of the regulation traces. Figure 10 shows the

autocorrelation functions of the regulation data plotted for the four days in
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the training set. As illustrated in this figure, all autocorrelation functions

exhibit a triangle-like shape. As described in Subsection 5.3, we define the

correlation time of a triangular autocorrelation function as the lag time be-

yond which the autocorrelation function becomes zero. As shown in Fig. 10,

the correlation time TC of the regulation signals is approximately equal to 45

min in all training days. We use the values of σv = 0.5069 and TC = 45 min

in the remaining of this section. We also note that the mean of the regula-

tion signals in the training set was equal to µv = −0.10 instead of zero. To

account for this difference, we lift the regulation signals in the test data by

the mean value µv obtained from the training set. This change leads the base

regulation signal to lay within the interval [−0.9, 1.1] rather than [−1, 1]. We

noted that this change did not affect the proper operation of the system. In

general, it is interesting to extend the model presented here to the settings

where the base signal v(t) can have a nonzero mean.

A) Single-shot optimization. In this subsection, we use the real-world regu-

lation traces described above to assess the value of the regulation service in

a system using single-shot optimization. To study the system in the stochas-

tic setting, we use the parameters σv and TC obtained from the training set

to solve the optimization problem for the the previously described system

of electric vehicles. As before, we assume that the system is initially 25%

charged, and the tolerable error in the system is Pe = 10−3. With these

parameters we obtain mopt = ropt = 150 kW and T opt
0 = 4.89 h, leading to an

optimal regulation service value of roptT opt
0 = 733.36 kW-h.
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Next, we multiplied the traces in the test set by ropt and lifted them by

mopt to obtain trajectories for charging the system. The test set consisted

of eight days. For two days in this set, the regulation data was available for

only part of the day. We divided the regulation traces in each test day into

blocks of approximately 8 hours. This data taken together provided a total of

22 blocks of regulation traces. We used these traces to charge the system for

a period of T opt
0 = 4.89 hours, and then switched to a deterministic phase to

completed the charging process by the end of the charging period at T = 8 h.

Figure 11 shows the geometric representation of the charging process in the

system. As presented, the regulation service is successfully provided over the

interval [0, T opt
0 ] and there is always enough time for the system to get fully

charged by the end of the charging period.

The optimal values of the regulation service and the the regulation service

time in the deterministic setting are independent of the parameters σv and

TC , and remain at roptT opt
0 = 600 kW-h and T opt

0 = 4 h, respectively.

B) Dynamic optimization. In this subsection, we use the PJM regulation

traces to study the fleet of vehicles in a dynamic setting. To this end, we

again use the 22 blocks of regulation data obtained from the test data to

assess the value of the regulation service. We consider both stochastic and

deterministic settings.

Remember from the previous subsection that an appropriate value for Tu

in a dynamic setting can be a time duration slightly less than T opt
0 in the

single-shot setting. Therefore, we set the value of Tu to 4.88 h in the stochas-
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tic, and to 3.99 h in the deterministic setting. Note that these are slightly

less than the values of T opt
0 obtained above for the corresponding single-shot

settings. These values of Tu achieve much of the improvement in the value

of regulation service that is obtainable from the dynamic optimization while

adding only a single updating point to the system. In the deterministic set-

ting, we used m = PL

2
at each update point. However, as illustrated in Fig.

8, the two choices of m = PL

2
and m = PC are expected to perform similarly

on average when Tu is close to T opt
0 . We noted that the average values of

the regulation service value in the stochastic and deterministic settings were

improved to 913.9 kW-h and 848.9 kW-h, respectively. As suggested by these

numbers, the value of the regulation service can considerably increase by us-

ing the dynamic optimization, and the difference between the stochastic and

the deterministic settings reduces in the dynamic setting. Figure 12 shows a

geometric representation of the charging process in the stochastic setting.

7. Conclusion and Future Work

In this paper, we studied how a fleet of electric vehicles can provide

frequency regulation service while getting charged overnight. Examples of

potential fleets that can be used for this purpose include the DHL fleet of

vehicles and the fleet of city transit buses. We studied a scenario in which

the fleet is charged by a variable-rate signal overnight. In this scenario,

we found the optimal values of the average charge rate and the maximum

allowed deviation from the average. Our objective function was to maximize
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the value of the regulation service that can be offered to the grid.

Our results on a representative system indicate that if PL (the peak power

of the fleet main line) is at least twice as large as PC , the system can achieve

much of the achievable regulation service value (Fig. 3). Also, we observed

that the optimal value of the average power that should be requested from

the grid m is close to PC in all three regimes (Figs. 3 and 4a). This implies

that PC can be used as a good approximation to mopt, in practice. We also

observe that the optimal value of the regulation service in the system is

inversely related to the correlation time of the regulation signals (Fig. 5).

This is expected; when the correlation time of regulation signals is large,

regulation up and down signals slowly compensates the effects of each other,

and this leads to more conservative estimates of the regulation service.

We studied the relation between a distributed storage system and a single

large storage unit. We obtained conditions under which the distributed sys-

tem can be modeled as a single large storage unit, thus achieving its upper

bound performance.

We studied dynamic optimization settings in which the value of the sys-

tem parameters m and r are updated multiple times during the charging

period. We observe that such settings can significantly increase the value of

the regulation service provided by the system.

In addition to a stochastic setting, we studied the system in a worst case

(deterministic) setting where regulation signals are all equal to each other,

and equal to the maximal or minimal regulation sequence. The advantage of
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this system is that there is no risk attached to it, i.e., regulation can always be

provided. We compared the regulation service obtained from the stochastic

and deterministic settings in both single-shot and dynamic optimizations. We

noted that although stochastic setting is expected to result in higher values

of the regulation service, this difference in performance reduces with dynamic

optimization. This implies that even without knowing the stochastics of the

system, one can obtain high values of regulation service using a dynamic

deterministic scheme.

The results presented in this work can be extended in multiple directions:

First, we can study the optimal value of the regulation service when the

equivalence condition between the distributed storage system and the single

large storage unit (condition 1) does not hold. In this situation, we discussed

replacing PL by a modified value provided in Eq. 28. However, this is not

guaranteed to provide the optimal value of the regulation service. One should

note that although it might be possible to improve the value of the regulation

service by letting PL go beyond the modified value presented above, this

choice may lead to situations when the system would fail to absorb incoming

signals in some cases as a result of the limitations in individual power lines.

This means that in such situations, in addition to the ordinary sources of error

studied in this work (namely the error that occurs when the storage units

become fully charged before reaching end of the regulation service period,

and the error that occurs when there does not remain enough time for the

system to become fully charged by the end of the charging period) we need
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to account for an extra source of error due to the limitations in the individual

power lines.

Second, we can generalize the above system to a bidirectional setting. In

that case, constraint m − r ≥ 0 in 5 should be replaced by m − r ≥ −PL.

Third, we can extend the above system to the setting where the base

regulation signal v(t) can have a nonzero (either negative or positive) mean.

This would represent situations where the peak power of the regulation up

and down signals are identical, but the energy contents are not necessarily

the same.

In this work, we used a simple dynamic setting to illustrate the advantage

of using dynamic optimization to improve the value of the regulation service

provided by the system. However, as discussed in Section 6.2.1, this set-

ting is not optimal. It would be interesting to use techniques from dynamic

programming to obtain optimal strategies for dynamic optimization in both

stochastic and deterministic settings.
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APPENDICES

Appendix A

In this appendix, we obtain the mean and the standard deviation of the

system total residual capacity S(t). The value of S(t) at time t = l ∆t is

given by:

S(t) = S0 +
l

∑

j=1

xj ∆t, 0 ≤ t ≤ T

Using the linearity of expectation, we can obtain the mean of S(t) as:

E[S(t)] = S0 +
l

∑

j=1

E[xj] ∆t = S0 + ml∆t = S0 + mt, 0 ≤ t ≤ T (30)
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To obtain the variance of S(t), we note that xj = m + rvj, 1 ≤ j ≤ k.

Here, k is the total number of regulation signals sent to the fleet. With these

notations, we have:

S(t) = S0 +
l

∑

j=1

xj ∆t

= S0 +
l

∑

j=1

(m + rvj) ∆t

= S0 + ml∆t + r∆t
l

∑

j=1

vj

As a result,

σ2
S(t) = Var[S(t)] = (r∆t)2Var[

l
∑

j=1

vj] (31)

To obtain Var[
∑l

j=1 vj] we note that E[
∑l

j=1 vj] =
∑l

j=1 E[vj] = 0. Let

Rv(i) = E[vjvj−i] be the autocorrelation function of the zero-mean signal v.

We have:

59



Var[
l

∑

j=1

vj] = E[(
l

∑

j=1

vj − E[
l

∑

j=1

vj])
2]

= E[(
l

∑

j=1

vj)
2]

= E[
l

∑

j=1

v2
j ] + 2E[

l
∑

1≤j′<j≤n

vj′vj]

= lRv(0) + 2
l

∑

1≤j′<j≤n

Rv(j
′ − j)

= lRv(0) + 2
l−1
∑

i=1

(l − i)Rv(i)

= l [Rv(0) + 2
l−1
∑

i=1

Rv(i)] − 2
l−1
∑

i=1

iRv(i) (32)

Plugging the value of Var[
∑l

j=1 vj] from Eq. 32 into 31, we obtain:

σ2
S(t) = (r∆t)2Var[

l
∑

j=1

vj]

= r2(∆t)2 [l (Rv(0) + 2
l−1
∑

i=1

Rv(i)) − 2
l−1
∑

i=1

iRv(i)]

= r2
{

(l∆t)∆t [(Rv(0) + 2
l−1
∑

i=1

Rv(i))] − 2(∆t)2

l−1
∑

i=1

iRv(i)
}

= r2
{

t∆t[(Rv(0) + 2
l−1
∑

i=1

Rv(i))] − 2(∆t)2

l−1
∑

k=1

iR(i)
}

= r2σ2
0(t)
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where σ2
0(t) is given by Eq. 8.

Appendix B

In this appendix, we prove Theorem 2. Let (m, r, T0) be the optimal

solution to 10 (we have dropped the superscript opt for simplicity). To prove

Theorem 2, we show that the values of T1 and T2 corresponding to (m, r)

are equal to each other if g(t) = σ0(t)
t

is a decreasing function of t. This is

equivalent to saying that both inequalities 11 and 12 hold at their equality

under the above condition.

We use proof by contradiction. We assume the optimal solutions of of

m and r lead to either T1 < T2 or T1 > T2, and show that both these

assumptions lead to contradiction.

First, consider the case where T1 < T2. In this case, we have T0 =

min(T1, T2) = T1. In this case, it can be shown that for optimal values of m

and r, we must have m−r = 0. Otherwise, if m−r > 0, we can fix the value

of r and replace m by m∗ < m such that m∗ − r still remains greater than

zero. Now let T ∗
1 and T ∗

2 denote new crossing points associated with m∗ and

r. It is not hard to see that T ∗
1 will be larger than T1. To see this, we note

that the value of fup
m∗,r(t) is less than fup

m,r(t) for all t:
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fup
m∗,r(t) − fup

m,r(t) = S0 + m∗t + αrσ0(t) − (S0 + mt + αrσ0(t)

= t(m∗ − m)

< 0

The above inequality holds because m∗ < m and the time parameter t is

always positive. Since fup
m∗,r(t) < fup

m,r(t) for all t, the crossing point fup
m∗,r(t)

with the top horizontal line, i.e., T ∗
1 , always lies at the right of the crossing

pint fup
m,r(t) with the same line, i.e., T1. Thus, the value of T ∗

1 would be

greater than T1. Because of the continuous nature of the modification in m,

we can choose m∗ such that T ∗
1 remains less than T ∗

2 . Under this assumption,

the value of T ∗
0 defined as min(T ∗

1 , T ∗
2 ) will be equal to T ∗

1 .

Now it can be seen that in the new setting the value of r has not changed

and T ∗
1 is greater than T1. As a result, we have rT ∗

1 > rT1. Since T ∗
0 = T ∗

1

and T0 = T1, this implies rT ∗
0 > rT0. This is in contradiction with the

assumption that the original values of m and r were the optimal ones.

Now let m− r = 0 or equivalently r = m, so the optimal solution can no

longer be modified by the operations like the one mentioned above. It can

be shown that even in this case the solution can be improved by decreasing

m, although decreasing m in this case will be at the price of decreasing r.

To show this, again let m∗ < m be a new mean value in the system. We

define r∗ = m∗ to be the new deviation parameter associated with m∗. As
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before, let T ∗
1 and T ∗

2 be the crossing points in the new setting. We show

that T ∗
1 > T1 . To prove this, we again show that fup

m∗,r∗(t) < fup
m,r(t) for all t:

fup
m∗,r∗(t) − fup

m,r(t) = S0 + m∗t + αr∗σ0(t) − (S0 + mt + αrσ0(t))

= S0 + m∗t + αm∗σ0(t) − (S0 + mt + αmσ0(t))

= (t + ασ0(t))(m
∗ − m)

< 0

The above inequality comes from the fact that m∗ < m and the time

parameter t and baseline standard deviation σ0(t) are positive. It can be

seen that since fup
m∗,r∗(t) < fup

m,r(t), the intersection between fup
m∗,r∗(t) and the

horizontal line at the top of the rectangle lies at the right of the intersection

between fup
m∗,r∗(t) and the same line. That is, T ∗

1 is greater than T1. Again,

because of the continuous nature of the above modification in the mean value,

we can choose m∗such that T ∗
1 remains less than T ∗

2 , and thus the value of

T ∗
0 , defined as min(T ∗

1 , T ∗
2 ), will be equal to T ∗

1 .

Now we show that r∗T ∗
1 > rT1. To show this, we note that the values of

fup
m∗,r∗(T

∗
1 ) and fup

m,r(T1) are both equal to C and thus equal to each other:

S0 + m∗T ∗
1 + αr∗σ0(T

∗
1 ) = S0 + mT1 + αrσ0(T1)

Using m∗ = r∗ and m = r, and removing S0 from both sides, we can
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simplify the above equation as follows:

r∗T ∗
1 + αr∗σ0(T

∗
1 ) = rT + αrσ0(T1)

Now we rewrite the above equality as:

r∗T ∗
1 (1 + α

σ0(T
∗
1 )

T ∗
1

) = rT1(1 + α
σ0(T1)

T1

)

or,

r∗T ∗
1

rT1

=
1 + ασ0(T1)

T1

1 + α
σ0(T ∗

1
)

T ∗

1

Since σ0(t)
t

is a assumed to be a decreasing function of t and T ∗
1 > T1,

the right-hand side of the above equality is greater than one and so is the

left-hand side. As a result, we have r∗T ∗
1 > rT . The facts that T ∗

0 = T ∗
1 and

T0 = T1 imply r∗T ∗
0 > rT0. This is in contradiction with the assumption that

the values of m and r are the optimal solutions to the problem.

Next, we consider the case where T1 > T2 for the optimal solutions m

and r, and again show this is in contradiction with the optimality of the

solution. In this case, T0 = min(T1, T2) = T2. It can be shown that under

the above assumption, we must have m+ r = PL for the optimal values of m

and r. Otherwise, similar to the procedure mentioned in the previous case,

we can fix the value of r and increase the value of m, such that the objective

function is increased.
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Next we assume m + r = PL. We show that under this assumption, if we

increase the mean value m, which will be at the expense of reducing r, the

overall objective function will be increased. To show this, let m∗ > m be the

new mean value and r∗ = PL − m∗ be the associated deviation parameter.

We show f low
m∗,r∗(t) > f low

m,r(t) for all t. To see this, we note:

f low
m∗,r∗(t) − f low

m,r(t) = S0 + m∗t − αr∗σ0(t) − (S0 + mt − αrσ0(t))

= S0 + m∗t − α(PL − m)σ0(t) −
(

S0 + mt − α(PL − m)σ0(t)
)

= t(m∗ − m) + ασ0(t)(m
∗ − m)

= (t + ασ0(t))(m
∗ − m)

> 0

Since f low
m∗,r∗(t) > f low

m,r(t), the intersection between f low
m∗,r∗(t) and the line

with slope PL at the right-hand side of the geometric representation lies at

the right of the intersection between f low
m,r(t) and the same line. Thus, we have

T ∗
2 > T2. Again note that, because of the continuous nature of the above

change in m, the value of m∗can be chosen such that T ∗
2 remains less than

T ∗
1 . Under this assumption, the value of T ∗

0 defined as min(T ∗
1 , T ∗

2 ) will be

equal to T ∗
2 .

Now we show that r∗T ∗
2 > rT2. To show this, we note that the values of

C−f low

m∗,r∗
(T ∗

2
)

PL
− (T − T ∗

2 ) and
C−f low

m,r(T2)

PL
− (T − T2) are both equal to zero, and
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thus equal to each other. So we have:

C −
(

S0 + m∗T ∗
2 − αr∗σ0(T

∗
2 )

)

PL

− (T − T ∗
2 ) = (33)

C −
(

S0 + mT2 − αrσ0(T2)
)

PL

− (T − T2)

(34)

Using m∗ = PL − r∗ and m = PL − r, and simplifying the above equality,

we obtain:

r∗T ∗
2 + αr∗σ0(T

∗
2 ) = rT2 + αrσ0(T2)

The above equality can be written as follows:

r∗T ∗
2 (1 + α

σ0(T
∗
2 )

T ∗
2

) = rT2(1 + α
σ0(T2)

T2

)

or,

r∗T ∗
2

rT2

=
(1 + ασ0(T2)

T2

)

(1 + α
σ0(T ∗

2
)

T ∗

2

)

Since σ0(t)
t

is a assumed to be a decreasing function of t and T ∗
2 > T2,

the right-hand side of the above equality is greater than one and so is the

left-hand side. As a result, we have r∗T ∗
2 > rT2. Since T ∗

0 = T ∗
2 and T0 = T2,

this implies that r∗T ∗
0 > rT0. This result is again in contradiction with
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the assumption that the values of m and r are the optimal solutions to the

problem.

Appendix C

In this appendix, we prove Theorem 3. In proving this theorem, we

assume regulation signals and the system residual capacity can be approx-

imated by continuous signals. This is a reasonable assumption as the time

span between regulation signals, ∆t, is much smaller than other time scales

in the problem. With this approximation, Eq. 4 becomes:

S(t) = S0 + ∆t

⌊t/∆t⌋
∑

j=1

xj = S0 +

∫ t

0

x(τ) dτ = S0 + mt + r

∫ t

0

v(τ) dτ (35)

In this continuous form, variance of S(t) is given by σ2
S(t) = r2σ2

0(t), where:

σ2
0(t) = 2 t

∫ t

0

Rv(τ) dτ − 2

∫ t

0

τRv(τ) dτ (36)

To show the above equation, one can expand variance of S(t) in 35 via

a double integral and use change of variables to obtain the final result. An

alternative way to obtain Eq. 36 is to show that Eq. 36 is equivalent to Eq.

8 when ∆t ≪ t.

Now we show that if Rv(τ) > 0 for all τ then function g(t) = σ0(t)
t

will be

a decreasing function of t. Since g(t) is always positive we can equivalently

show that f(t) = g2(t) =
σ2

0
(t)

t2
is a decreasing function of t. To show that
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f(t) is a decreasing function of t, we show that its derivative is negative for

all t > 0. Let h(t) = σ2
0(t). Then, f(t) = h(t)

t2
, and the derivative of f(t) will

be:

f ′(t) =
h′(t)t2 − h(t)(2t)

t4
=

th′(t) − 2h(t)

t3
(37)

The denominator in Eq. 37 is always positive when t > 0. Thus, to show

f ′(t) < 0 it suffices to show that the numerator is negative for t > 0. By

taking derivative of Eq. 36, we obtain h′(t) = 2
∫ t

0
R(τ)dτ . Substituting the

values of h(t) and h′(t) in the nominator of Eq. 37, we obtain:

th′(t) − 2h(t) = 2t

∫ t

0

R(τ)dτ − (4t

∫ t

0

R(τ)dτ − 2

∫ t

0

τR(τ)dτ)

= 2(

∫ t

0

τR(τ)dτ −
∫ t

0

tR(τ)dτ) (38)

Note that τ ≤ t for all τ ∈ (0, t), and thus for positively-valued functions

R(τ), τR(τ) ≤ tR(τ), τ ∈ (0, t). This implies that the right-hand side of Eq.

38 is negative, as desired.

Appendix D

In this appendix, we prove Theorem 3. We first note that the optimization

problem 5 in the deterministic case becomes:

68



max
m,r,T0

r T0 (39)

s.t. m, r, T0 ≥ 0, T0 ≤ T

m − r ≥ 0 (40)

m + r ≤ PL (41)

S0 + (m + r)T0 ≤ C (42)

C−[S0+(m−r)T0]
PL

≤ T − T0 (43)

We consider two cases:

Case 1. Q ≤ 1: We first show that in this case T2 ≥ T1 in any optimal

solution of the problem. To show this we use proof by contradiction. We

first note that if T2 < T1 in an optimal solution, then m + r must equal to

PL. Otherwise, one can fix r and increase T0 (here equal to T2) by slightly

increasing the value of m such that T2 increases and still remains less than

T1. This contradicts the assumption that the solution is optimal. Now we

note that Q ≤ 1 and m + r = PL imply T1 ≤ T2. To show this we note that

if m+ r = PL then T1 will be given by the intersection between the line with

slope PL at the left-hand side of Fig. 1 and the horizontal line at the top of

the diagram. Since Q ≤ 1 this intersection is always at the left-hand side of

the line with slope PL at the right-hand side of the figure, and thus T1 ≤ T2.

This contradicts the original assumption that T2 < T1.

Note that T2 ≥ T1 implies T0 = T1 , and that the inequality in 42 holds
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at equality.

Next, we show that if T2 ≥ T1 then m − r = 0. This is simple to verify.

Because if m − r > 0, one can increase the value of T0 (which is equal to T1

in this case) by fixing the value of r and slightly decreasing the value of m

such that T1 increases and still remains less than T2. Again, this contradicts

optimality of the solution. Given m − r = 0, we can replace r by m in 41

and arrive at:

m ≤ PL

2
(44)

This inequality provides the upper limit of m provided in the first part

of Theorem 4.

To obtain the lower limit, we note that inequality 42 holds at equality

when Q ≤ 1, and thus:

T0 =
C − S0

2m
(45)

Plugging the value of T0 in 43, we obtain:

m ≥ PC

2

1

1 − PC

PL

(46)

Finally, from Eq. 45 and the fact that r = m, it can be seen that at any

optimal solution, the value of objective function is equal to C−S0

2
.

Case 2. Q > 1: Using procedures similar to the ones presented above,

it can be shown that when Q > 1, T2 ≤ T1 and m + r = PL. The proofs are
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similar and are not presented them for the sake of brevity. Note that T2 ≤ T1

implies T0 = T2 and thus the inequality in 43 holds at equality.

Setting r = PL − m in 40 implies:

m ≥ PL

2
(47)

Also, we can set r = PL − m in 43 to obtain:

T0 =
TPL − C + S0

2(PL − m)
(48)

Plugging the value of T0 in 42, we arrive at:

m ≤ PL

2

3PC

PL
− 1

PC

PL

(49)

Inequalities 47 and 49 provide, respectively, the lower and upper limits of

m in the second part of Theorem 4.

From Eq. 48 it can be seen that the value of objective function at all

optimal solutions is equal to PLT−C+S0

2
.
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Figure 1: Geometric representation of a typical single-shot charging process.
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Figure 2: Three different regimes for solving the optimization problem 14.
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Figure 3: Optimal value of the regulation service as a function of line peak power PL.
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Figure 4: Optimal value and duration of the regulation service as a function of system
residual capacity.
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Figure 5: Optimal value of the regulation service as a function of the correlation time of
the regulation signals.
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Figure 6: Optimal value of the regulation service as a function of the variance of the base
regulation signal σv.
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Figure 7: Geometric representation of a typical dynamic charging process.
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Figure 8: Regulation service as a function of the number of updates.
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Figure 9: QQ plot of the PJM regulation traces versus standard normal.
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Figure 10: Autocorrelation functions of the regulation traces obtained from PJM. The
data is provided for four different days.
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Figure 11: Testing the single-shot charging scheme using PJM regulation traces.
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Figure 12: Testing the dynamic charging scheme using the PJM regulation traces.
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