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Abstract

Understanding the nature of the information flowing into
and out of a system or network is fundamental to determin-
ing if there is adherence to a usage policy. Traditional meth-
ods of determining traffic type rely on the port label carried
in the packet header. This method can fail, however, in the
presence of proxy servers that re-map port numbers or host
services that have been compromised to act as backdoors or
covert channels.

We present an approach to classify server traffic based
on decision trees learned during a training phase. The trees
are constructed from traffic described using a set of features
we designed to capture stream behavior. Because our classi-
fication of the traffic type is independent of port label, it pro-
vides a more accurate classification in the presence of mali-
cious activity. An empirical evaluation illustrates that mod-
els of both aggregate protocol behavior and host-specific
protocol behavior obtain classification accuracies ranging
from 82-100%.

1. The Need for Authentication of Server
Flows

Understanding the nature of the information flowing into
and out of a system or network is fundamental to determin-
ing if there is adherence to a usage policy. Without this un-
derstanding, administrators of systems or networks can not
know if information is being compromised, if their system
resources are being used appropriately, or if an attacker is
using a service for unauthorized access to a host. In this pa-
per we address the problem of server flow authentication
– the on-going identification of server type for a stream of
network packets. Specifically, we address the question of
whether we can correctly identify the TCP application pro-
tocol of a flow based on features that measure the behavior
of the flow.

The traditional method of determining the client-server
protocol is by inspecting the source and destination port
numbers in the TCP header. The mappings between port
numbers and their corresponding service are well known
[2]. For example, HTTP server traffic uses port 80, and
SMTP server traffic uses port 25. In essence, we rely on
a correct labeling of the traffic to accurately determine its
type. The binding between the port label and the type of
traffic is a binding by convention. This label is also used as
a basis for firewall filtering and intrusion detection [26, 29].

The problem lies in that there are several different attack
scenarios for which the port number may not be indicative
of the true nature of the server traffic.

Proxies: These servers are used to consolidate access to
a particular service for a group of users. For exam-
ple, web proxies are used to handle all HTTP client
requests to external servers. However, there are also
proxies that exist for the specific purpose of evading
firewall filtering rules for set of applications [13]. In
this case, the proxy takes traffic that would normally
be dropped by the firewall and remaps the port num-
bers to make the traffic appear to be HTTP traffic. Be-
cause HTTP traffic is routinely allowed to pass through
firewalls, the user of this proxy is able to circumvent
the network policy.

Server Backdoors: When a server has been compromised,
the attacker often places a “backdoor” in one or more
of the running services [7]. The purpose is provide the
attacker with a portal that he/she can use to regain ac-
cess at a later time. Traffic from this portal will have
the same port number label as legitimate traffic for the
compromised service. The attacker may replace the bi-
nary of an authorized service � with a binary that can
function as both � and Telnet. When a packet is re-
ceived from a particular source IP, the rogue server
knows to execute Telnet, otherwise it executes service
� .



User-Installed Servers: This category includes the instal-
lation of unauthorized Telnet, HTTP, or other servers
for some illicit purpose. It also represents the increas-
ing numbers of peer-to-peer file sharing networks [20].
These servers are initiated by the user and can be
configured to use almost any port. This category also
includes the recent appearance of “super worms” -
worms that propagate via e-mail and carry their own
mail server [12]. Once installed, these worms utilize
their rogue mail server to forward unsolicited e-mail
messages i.e., Spam. Without prior knowledge of a
port to service mapping, the true nature of the traffic
cannot be determined.

Each of these scenarios represents an instance where the
port number label fails to accurately indicate the type of
traffic. Worse yet, it is precisely these scenarios where an
accurate identification of the traffic would reveal a compro-
mised service or policy violation. Thus, there exists a need
to classify traffic associated with a particular service, what
we will henceforth refer to as a server flow, using a method
other than a mere label that is easily modified, ambiguous,
or conceals unauthorized activity.

Significant effort has been invested in the design of tools
for detecting the presence of unauthorized services on a
host. These range from file system integrity tools that de-
tect modification to server application files (e.g., Tripwire
[15]) to tools that look for artifacts of successful intrusions
(e.g., ChkRootKit [22]). Successful use of these tools re-
quires proper configuration and, in some cases, a suspicion
that an attack has occurred. But, the fact that a machine run-
ning these tools was compromised casts doubt on the infor-
mation these tools report. For example, if a Linux system
has been root-kitted by a Loadable Kernel Module (LKM)
[21], it may be impossible to detect this from inside the
compromised host [32]. This raises the distinct possibility
that an unauthorized service can go undetected indefinitely.

For situations where we cannot trust the results from a
compromised system, or the operator is unaware of a suc-
cessful attack, it would be beneficial to have an external au-
ditor for the purpose of ensuring proper server operation
and/or detecting unauthorized services. The identification
method used by this auditor should eschew port number la-
bels. Rather, the identification should be indicative of the
proper behavior of a given server flow.

In this paper, we investigate how server flows can be
classified based on their behavior. The result is a system
that monitors network traffic to check conformity with ex-
pected network services and to detect service anomalies.
The remainder of this paper is organized as follows. Section
2 investigates whether behavioral characteristics of server
flows can be measured. Section 3 discusses how features
measuring these characteristics can be used for server iden-
tification. Section 4 presents an empirical evaluation that

illustrates that we can discriminate among servers based
on characteristics of their flow behavior. Section 5 dis-
cusses how our classification method can be integrated with
network intrusion detection systems. Methods an attacker
might use to subvert our classification system are presented
in Section 6. Related work is presented in Section 7. Fi-
nally, conclusions and future work are discussed in Section
8.

2. Understanding the Nature of Server Flows

The key issue in the behavioral authentication of server
flows is what characteristics or features of the traffic should
be monitored. In environments where there are concerns
about user privacy, or where encryption is used to hide the
data carried in network packets, we cannot rely on the con-
tents of the payload as a source of features. Rather, we ex-
amine the packet header and the operational characteristics
of the traffic itself to define our feature set.

For the purposes of our analysis and experiments, we fo-
cused on the HTTP, FTP, Telnet, SMTP, and SSH applica-
tion protocols. These protocols are well understood, stable,
widely implemented, and represent the vast majority of user
traffic [14].

Based on our initial observations, we concluded that fea-
tures based on the TCP state flags (URG - Urgent, ACK -
Acknowledgment, PSH - Push, RST - Reset, SYN - Syn-
chronize, and FIN - Finish) [3] can operationally differenti-
ate server flow behavior. For example, HTTP traffic gener-
ally contains far fewer packets with the PSH flag than does
Telnet traffic. Specifically, for each of the flags, we calculate
the percentage of packets in a window of size � packets with
that flag set. In addition to these six features we calculate the
mean inter-arrival time and the mean packet length for the
window of � packets. During monitoring, these features are
used by the classification method to determine whether the
previous � packets match the learned behavior of the server
flows. In the next section we describe how we form a clas-
sifier for server flows.

3. Classification of Server Flows

In this section we describe how we can view behav-
ioral authentication of server flows as a supervised ma-
chine learning problem. In supervised learning, the learner
is given a set of observations each labeled as one of �
classes. The learner’s task is to form a classifier from the
training set that can be used to classify previously unseen
(and unlabeled) observations as one of the � classes. A crit-
icism of many anomaly detection systems based on data
mining/machine learning is that they assume that they are
dealing with a supervised learning problem. That is, the
learner will be given examples of both normal and attack



data [5]. It is unrealistic to think that one will receive la-
beled attack data for a particular host because the act of
generating labeled data is human intensive. In such cases,
one applies unsupervised learning to form a model of ex-
pected behaviors. During monitoring one looks for anoma-
lies with respect to the learned model.

However, server authentication can be naturally cast as
either a supervised learning task or an anomaly detection
task. To cast the problem as a supervised learning problem
we must choose � possible server applications, collect train-
ing data for each, and then apply a supervised learning algo-
rithm to form a classifier. Given a new server flow we can
then classify it as one of these � types of servers. To cast
the problem as an anomaly detection problem we look at
each service individually. For each of the � server applica-
tions of interest we form a model of normal behavior. Given
a new server flow, we compare the new flow to each of the
models to determine whether it conforms to any of these
models. Casting the problem as an anomaly detection prob-
lem uses the same framework as user behavioral authenti-
cation [16, 17]. In user authentication the goal is to iden-
tify whether the user is behaving normally with respect to a
learned profile of behavior.

In this paper we have chosen to investigate server flow
authentication based on the supervised learning framework,
because we assume a policy exists specifying the services
that are to be run on a given host. A drawback of this as-
sumption is that if an attacker replaces or alters an exist-
ing service it may not behave like any of the permitted ser-
vices, and this may not be readily detectable. However, it is
unlikely that it will behave identically to any of the permit-
ted services, but we plan to examine this conjecture in fu-
ture work.

4. An Empirical Evaluation

Our experiments are designed to investigate whether we
can classify server flows based on features of behavior. We
first describe the data used in the experiments and the super-
vised learning algorithm we chose. We then present exper-
imental results with learning aggregate flows and by-host
flows using both synthetic and real network traffic.

4.1. Data Sources

The first data set chosen for our experiments is the 1999
MIT Lincoln Labs Intrusion Detection Evaluation Datasets
[1]. Although created for a specific evaluation exercise,
these datasets have subsequently been widely used for re-
search into other later intrusion detection systems not part
of the original evaluation [18, 19, 36].

The data represent five weeks of simulated network traf-
fic from a fictional Air Force base. Weeks one through three

constitute the training data used by anomaly-based intru-
sion detection systems to model behavior. The data in week
one and week three are attack-free. There are five network
trace files for each week – one for each business day rep-
resenting network usage from approximately 8:00 AM to
5:00 PM. Each file is in libpcap format (readable with tcp-
dump), then compressed using gzip. On average, each week
consists of roughly 1 GB of compressed data representing
22 million network packets. We used data from week one in
our training sets and data from week three in our test sets.
Note that we do not use the attack data, since our purpose
is to evaluate whether we can classify server behavior – not
whether we can detect intrusions. Our assumption is that the
intrusion has already occurred and that an attacker has im-
plemented one of the scenarios described in Section 1.

In addition to the Lincoln Labs data, we include experi-
ments using data obtained from our own network. The pur-
pose here is to test the applicability of our method on “real
world” network traffic. In particular, we are interested in
classifying traffic from some of the newer peer-to-peer file
sharing protocols – something that the Lincoln Labs data
sets do not contain. Some concerns have been raised about
the artificial nature of the Lincoln Labs data [4], and thus
an additional objective was to identify any marked differ-
ences between experiments with these two data sets.

4.2. Decision Tree Classifier

We chose to use decision trees because they provide a
comprehensible representation of their classification deci-
sions. Although techniques such as boosting [11, 30] or sup-
port vector machines [6] might obtain slightly higher clas-
sification accuracy, they require more computation during
classification and further they obscure the decision making
process.

A decision tree is a tree structure where each internal
node denotes a test on a feature, each branch indicates an
outcome of the test, and the leaf nodes represent class la-
bels. An example decision tree is shown in Figure 1. To clas-
sify an observation, the root node tests the the value of fea-
ture A. If the outcome is greater than some value x, the ob-
servation is given a label of Class 1. If not, we descend the
right subtree and test the value for feature B. Tests continue
until a leaf node is reached. The label at the leaf node pro-
vides the class label for that observation.

We chose to use the C5.0 decision tree algorithm [27] – a
widely used and tested implementation. For details regard-
ing the specifics of C5.0 the reader is referred to [27, 28].
Here we provide only the key aspects of the algorithm re-
lated to decision tree estimation, particularly as it pertains
to feature selection. The most important element of the de-
cision tree estimation algorithm is the method used to es-
timate splits at each internal node of the tree. To do this,
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Figure 1. Decision tree abstraction showing
how the values associated with certain fea-
tures determine the class label. In this exam-
ple, observations whose value for feature A
is greater than x are assigned a class label
of Class 1. Other classifications are based on
the values of features B and C

C5.0 uses a metric called the information gain ratio that
measures the reduction in entropy in the data produced by a
split. In this framework, the test at each node within a tree
is selected based on splits of the training data that maxi-
mize the reduction in entropy of the descendant nodes. Us-
ing this criteria, the training data is recursively split such
that the gain ratio is maximized at each node of the tree.
This procedure continues until each leaf node contains only
examples of a single class or no gain in information is given
by further testing. The result is often a very large, complex
tree that overfits the training data. If the training data con-
tains errors, then overfitting the tree to the data in this man-
ner can lead to poor performance on unseen data. There-
fore, the tree must be pruned back to reduce classification
errors when data outside of the training set are to be clas-
sified. To address this problem C5.0 uses confidence-based
pruning, and details can be found in [27].

When using the decision tree to classify unseen exam-
ples, C5.0 supplies both a class label and a confidence value
for its prediction. The confidence value is a decimal number
ranging from zero to one – one meaning the highest confi-
dence – and it is given for each instance.

4.3. Aggregate Server Flow Model

Our first experiment was designed to determine the ex-
tent to which FTP, SSH, Telnet, SMTP, and HTTP traffic
can be differentiated using a decision tree classifier. We
used the data from week one of the Lincoln Labs data to

tcpPerFIN > 0.01:
:...tcpPerPSH <= 0.4: www (45)
: tcpPerPSH > 0.4:
: :...tcpPerPSH <= 0.797619: smtp (13)
: tcpPerPSH > 0.797619: ftp (38)
tcpPerFIN <= 0.01:
:...meanIAT > 546773.2:

:...tcpPerSYN <= 0.03225806: telnet (6090)
: tcpPerSYN > 0.03225806:
: :...meanipTLen > 73.33: ftp (21)
: meanipTLen <= 73.33:
: :...tcpPerPSH > 0.7945206: smtp (8)

Figure 2. Portion of a decision tree generated
by C5.0.

build our training dataset. The set was created by first ran-
domly selecting fifty server flows for each of the five proto-
cols. Each server flow consists of the packets from a server
to a particular client host/port. The largest flow contained
roughly 37,000 packets, and the smallest flow contained 5
packets. The 250 flows represented a total of approximately
290,000 packets. We refer to this as an aggregate model
because the collection of flows came from many different
servers.

The fact that this data is certified as attack-free meant
that we could have confidence in the port numbers as indica-
tive of the type of traffic. We used the server port to label
each of flows in the training set. Each server flow was then
used to generate data observations based on our feature set.
The result is a data set consisting of approximately 290,000
thousand labeled observations. We repeated this process for
each of seven packet window sizes. The window size is an
upper bound on the number of packets used to compute the
means and percentages. If an individual flow contains fewer
packets than the packet window size, the number of avail-
able packets is used to calculate each observation.

Each of the seven training sets was then used to build
a decision tree using C5.0. We constructed test sets in the
same manner – fifty server flows from each protocol were
randomly selected from week three of the Lincoln Labs
data. These were then passed to our feature extraction al-
gorithm using the same seven window sizes.

Before describing how a tree is used to classify a flow,
we give an example of a portion of a decision tree generated
by C5.0 in Figure 2. In this example, the root node tests the
percentage of packets in the packet window with the FIN
flag set (tcpPerFIN). If this percentage exceeds 1%, a test
is made on the percentage of packets with the PSH flag set
(tcpPerPSH). If this value is less than or equal to 40%, the
observation is classified as “www”, indicating HTTP traffic.
The numbers in parenthesis indicate the number of train-



Window Size FTP SSH Telnet SMTP WWW
1000 100% 88% 94% 82% 100%
500 100% 96% 94% 86% 100%
200 98% 96% 96% 84% 98%
100 100% 96% 96% 86% 100%
50 98% 96% 96% 82% 100%
20 100% 98% 98% 82% 98%
10 100% 100% 100% 82% 98%

Table 1. Classification accuracy of the aggregate model decision trees on unseen individual server
flows. Each value represents the percentage of correctly classified flows out of the fifty flows for
each protocol

ing observations classified with this leaf node. Other tests
can be seen involving the mean inter-arrival time (meanIAT)
and mean packet length (meanIPTLen).

During testing, the class label for a given flow was cal-
culated by summing the confidence values for each obser-
vation in the flow. The class with the highest total confi-
dence was assigned to that flow. The classification results
are shown in Table 1. For each of seven window sizes, we
report the percentage of correctly classified server flows out
of the set of fifty flows for each protocol. As can be seen
in the table, the classification accuracy ranges from 82% to
100%.

In general, the classification accuracy was lower for
SMTP server flows than for other protocols. We examined
the misclassified flows in more detail and discovered that
these flows were generally 2-4 times longer than correctly
classified flows. Longer SMTP server flows represented
longer periods of interaction, and thus contain increasing
numbers of observations classified as Telnet or FTP. In these
few cases, our feature set is not adequate for discriminating
between the behaviors of these flows.

It is more desirable to use a smaller window size be-
cause this decreases the time to detect that a service is be-
having abnormally. Indeed for SSH we see that too large a
packet window size (1000) hurts classification accuracy. For
FTP, SSH and Telnet, a window size as small as ten pack-
ets achieves 100% classification accuracy.

Because the proposed method would be used to monitor
traffic in real time, we did a rough calculation of classifica-
tion time. The average length of time used by C5.0 to clas-
sify an entire flow was 70mS.1 Training is done offline so
computation time is of lesser importance, but note that the
average length of time used by C5.0 to create each decision
tree was 22 seconds. Finally, we need to address the stor-

1 The hardware platform used for building the decision trees and classi-
fying observations was a 500Mhz Dual Pentium III PC with 772MB
of RAM running Red Hat Linux (kernel version 2.4.18).

age requirements for maintaining a window of � values to
compute the value of each of the features. We can approx-
imate the value created by storing all � values by retaining
only the mean for each feature, �	��
 and using the follow-
ing update rule for each new packet:

� �����������
�����������

�

In future work we will investigate whether this technique
significantly degrades performance.

We conclude from our experimental results that the be-
havior of server flows for the five protocols can be differ-
entiated using a decision tree classifier built on aggregate
flows. We will later discuss how this method can be used to
compliment an intrusion detection system.

4.4. Host-Specific Models

Our second experiment addresses whether creating mod-
els for specific hosts provides better performance than the
aggregate model. There are three advantages to using host-
specific models:

1. By creating models for individual server flows, we can
monitor these flows for changes in behavior.

2. A host-specific model can capture the implementation
subtleties of a particular service running on a host. This
resolution is missing in the aggregate model consisting
of many server flows.

3. The training examples in an aggregate model will be
dominated by the server generating the most traffic.
This may dilute examples from other servers. The host-
specific model solves this problem.

We first identified a set of hosts in the Lincoln Labs data
that each ran three or more server protocols. Training data
for each host was collected by randomly selecting server
flows from week one for each of the protocols running on



Host FTP SSH Telnet SMTP WWW
172.16.112.100 95% – 100% 90% 100%
172.16.112.50 92% 100% 84% 100% –
172.16.113.50 100% – 100% 100% –
172.16.114.50 100% 95% 100% 95% 95%
197.218.177.69 100% – 100% 100% –

Table 3. Classification accuracy of host model decision trees on unseen server flows. Each row re-
ports the host address and the percentage of correctly classified flows for each protocol. Fields with
a “–” indicate there was no traffic of this protocol type for this host.

Host Training Flows Test Flows
172.16.112.100 20 20
172.16.112.50 30 25
172.16.113.50 35 23
172.16.114.50 10 20
197.218.177.69 25 35

Table 2. Number of flows used for each pro-
tocol in training and test sets for each host
model

these hosts. The number of flows used in each model was
chosen such that each protocol was represented by the same
number of flows. Table 2 lists the number of training and
test flows per host.

Based on our results using the aggregate models, we
chose a packet window size of 100 for generating observa-
tions. The selection was driven by the fact that SMTP accu-
racy was greatest using this window size with the aggregate
models, and other protocol classifications accuracies were
between 96% and 100%. We then trained a decision tree for
each host that could be used to differentiate the server flows
coming from that host. Test data was collected from week
three in the same manner as the training data.

The results in Table 3 indicate that, in general, the host
specific models achieve approximately the same classifica-
tion accuracy as the aggregate models. One difference ob-
served is that classification accuracy varies by protocol. For
example, the classification accuracy of Telnet flows for host
172.16.112.50 is 84% whereas the classification of Telnet
flows in the aggregate models averaged 96.2%. Examina-
tion of the packets in the misclassified Telnet flows revealed
an interesting phenomenon. We often observed large time
gaps between packets. The time gaps indicate lapses in user
activity where the Telnet server is not echoing characters
or supplying responses to commands. In our framework, a
single large gap can radically alter the values for the mean
inter-arrival time of packets, thus resulting in misclassifica-

tion of the subsequent observations. We refer to this as the
Water Cooler Effect – the user temporarily leaves the in-
teractive session, then resumes a short while later. We are
investigating the sensitivity of our classifiers to this effect.
One possible solution would be to subdivide flows based on
some time gap threshold and use the interactive sub-flows
to build our classifiers.

4.5. Models from Real Network Traffic

In this section we present experiments with real network
traffic. We collected a number of server flows using the pro-
tocols described. We augmented this set to include flows
from hosts acting as Kazaa servers. Kazaa [20, 31] is a
peer-to-peer file sharing system that is growing in popular-
ity [8, 33]. Peer-to-peer network traffic was not part of the
Lincoln Labs dataset.

Our goal was to determine if there was a significant dif-
ference in classification accuracy when using synthetic ver-
sus real traffic. We observed classification accuracies by
protocol ranging from 85% to 100% for both the aggregate
and host models. The peer-to-peer traffic was classified cor-
rectly for 100% of the unseen flows. This is an especially in-
teresting result because Kazaa flows carry a port label that is
user-defined. Thus, we are able to correctly classify peer-to-
peer flows behaviorally – without the use of the port num-
ber. These results indicate that our classification method is
effective for real network traffic. The range of accuracies
match those observed with the synthetic data. Thus, we can
identify no appreciable difference in the per-flow behavior
in the synthetic Lincoln Labs data versus those in real net-
work traffic.

5. Classification for Intrusion and Misuse De-
tection

The two types of classification models presented here
give rise to new functionality in the context of intrusion and
misuse detection. Aggregate models try to classify a flow
based on the general behavior of many flows of a given type.
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Figure 3. Network placement of the host and aggregate classifiers. Host classifiers monitor specific
server flows for deviations from expected behavior. Aggregate classifiers monitor user traffic to de-
termine if flow behavior matches generalized behavior of other flows of the same type.

The question the aggregate model tries to answer is: “What
other flows does this flow resemble?” In contrast, host mod-
els are based on the previously observed behavior of flows
for a specific host. Given an unseen flow, the host models
try to answer the question: “Does this flow resemble previ-
ous server flows from this host?”

Intrusion/misuse detection systems and firewalls try to
identify actions a priori as being harmful to the system or
network. An IDS may passively monitor traffic and alert
in the presence of some attack condition. Firewalls actively
drop network packets that violate some network policy. Our
classification method attempts to identify activities indica-
tive of intrusion or misuse after such an event has occurred.
Working in concert with a priori mechanisms, we can at-
tempt to determine at any moment in time whether there is
an impending attack or artifacts of a successful attack.

Figure 3 shows how our classification methods can be
integrated into a network with an existing IDS. The or-
ganization uses servers to provide network services (inter-
nally, externally, or both) to some community of users. Our
host-flow classification system monitors the output of these
servers directly. The purpose is to determine if currently ob-
served flows continue to behave as expected. If an attacker
manages to take control of a particular service, he/she will
need to interact with the server in such a way as to exactly
match the previous behavior. A trojaned web server that be-

haves like a Telnet sever when communicating with a se-
lect group of host addresses would not match the expected
host model, and thus be detected.

The network carries additional user traffic to servers that
are external to the organization. This traffic is monitored
with the aggregate model. Here, we classify the flow gener-
ally and compare this to the port label. Observation of traf-
fic that resembles Telnet to some non-standard server port
may be an indication of an installed backdoor. Traffic la-
beled as web traffic (with a server port of 80) that behaves
more like Telnet traffic may indicate the presence of a proxy
used to evade firewall rules. A peer-to-peer client operat-
ing at some user-defined port may be a violation of the net-
work policy. In each of these cases, the aggregate classifier
can indicate if a given flow behaves in a manner consis-
tent with its port label. It may not be necessary to monitor
every flow – the system could be configured to randomly
select a flow and attempt to classify it. If this flow gener-
ally matches a flow that is unusual or undesirable for a port
range, it can be identified and investigated.

Our method can operate on its own physical system, or
it may be part of the IDS or firewall. This decision will be
driven by the number of flows the system will be expected to
monitor. Following the construction of the models, the sys-
tem makes simple and rapid classifications.



6. Subverting Classification

Given the presence of a monitoring system described
above, we examined ways in which an attacker could ma-
nipulate a session in order to affect classification of a server
flow. We’ve previously seen one such example, albeit an in-
nocuous one, in our discussion of the Water Cooler Effect.
Here, the user suspends interaction thus causing variation
in the arrival time of packets and hence a potentially large
fluctuation in the mean inter-arrival time measured across
the packet window for the server flow. An attacker can do
the same thing. However, it is not clear that he/she would
be able to cause a particular classification to be chosen. It
is more likely that he/she will alter the observations as to
cause some indeterminant class to be chosen. If a host clas-
sifier is being used, the deviation from the expected behav-
ior would trigger an alarm.

Another method might involve the use of extraneous
TCP flags in packets sent to the server. An example might
be the use of the URG flag in HTTP packets. The distri-
bution of TCP flags in the corresponding server flow may
or may not be affected, based on the implementation of the
server on that host. As with the effects of timing, we are in-
vestigating the sensitivity of classifiers to this manipulation
in future work.

7. Related Work

Previous work in flow identification has employed a vari-
ety of techniques and feature sets. Dunigan and Ostrouchov
used Principle Component Analysis (PCA) on two features
(packet inter-arrival time and length) to create signatures
for a variety of flow types [10]. Their reported classification
accuracies are comparable to our method. However, their
method requires off-line analysis. In contrast, our method
performs classification in real time.

Tan and Collie used a modified neural network built on
a single feature (total number of bytes transmitted) [35].
They confined their analysis to the classification of Telnet
and FTP protocols. Their reported classification accuracies
were generally lower than our method for these protocols.

Daniels [9] reports using a decision tree built with a sin-
gle feature (first one hundred bytes of a packet) to classify
flows. However, classification accuracy was found to be in-
adequate for practical use.

There are a number of commercial products that attempt
to identify flow type [23–25, 34]. These are primarily used
in the context of bandwidth allocation. For example, a net-
work administrator creates a policy stating that web traf-
fic must not exceed a certain percentage of total bandwidth
and uses one of these products to selectively drop traffic
when that policy is violated. Many details of the classifica-
tion methods used by these products are not publicly avail-

able because they are proprietary. Thus, we are unable to
compare our method to those used in these products. It is
unclear whether any of these products can correctly classify
flows in the presence of malicious activity (as described in
Section 1). One company, Packeteer [25], reports that their
product uses information “from all seven layers of the pro-
tocol stack” to create an application signature that is used
to classify flows. As stated previously, such a system may
or may not be appropriate in an environment where pay-
load encryption is used or where there are concerns about
user privacy.

We have also identified a component of the Snort IDS
[29] that is used to classify server flows. However, this sys-
tem relies on the port number and detection of the TCP 3-
way handshake. As stated previously, in the presence of a
proxy or compromised service, this system is unlikely to
classify a flow correctly.

With respect to our feature set, the NATE (Network
Analysis of Anomalous Traffic Events) [36] system is also
based on TCP flags. NATE uses principle component anal-
ysis to identify that the TCP state flags can detect certain
types of attacks. Our method differs in two respects. First,
the NATE system attempts to model differences between
normal traffic and attack traffic. They do not attempt to
model differences in behavior between protocols. The sec-
ond difference involves NATE’s use of clustering to identify
anomalies. This method must be done off-line, thus limit-
ing the usefulness of the system in environments requiring
near real-time detection. In contrast, once a decision tree has
been created, our system can monitor packets in real-time.

8. Conclusions

We have presented a novel approach for defining a set of
features to model operational behavior of server flow traffic.
We demonstrated through the use of the C5.0 decision tree
algorithm that our features can differentiate the behavior of
server protocols with an accuracy of 82% to 100%. We illus-
trate empirically that aggregate models can classify an un-
seen server flow as belonging to a family of previously seen
flows, and that host models can determine whether flows
from a given server match the behavior of previously seen
flows from that server. These classifiers can augment tradi-
tional intrusion detection systems to detect artifacts of suc-
cessful attacks. Our techniques of classification are inde-
pendent of packet labellings and are thus immune to tech-
niques that modify port numbers to conceal activity.

The decision tree classifiers can be sensitive to fluctua-
tions in the inter-arrival time of packets. This was exempli-
fied in what we call the Water Cooler Effect. We plan to in-
vestigate how this sensitivity can be mitigated to increase
the classification accuracy for certain protocols.



We intend to further examine the use and augmenta-
tion of our feature set to model additional types of server
flows. Application of our technique will be expanded to
other transport protocols, particularly those used by peer-
to-peer file sharing systems. Other feature sets are in de-
velopment to model UDP traffic, ICMP traffic, and selected
routing protocols.
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