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� The average hourly energy consumption of a circulating pump is 0.7425 kW.
� The peak power and valley power of circulating pump are 0.5274 kW and 0.9612 kW.
� The peak time and valley time of circulating pumps are 9:00 and 17:00.
� Circulating pumps contribute 8.48% peak load of all neighborhoods.
� The peak load can be reduced by 8.48% by controlling circulating pumps.
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Based on an extensive dataset containing aggregated hourly energy consumption readings of residents
during March 2011 and October 2012 in South Ontario, Canada, this paper estimates the energy con-
sumption of circulating pumps of residential swimming pools (CPRSP) non-intrusively, and quantifies
the impact of CPRSP on the power system. The main challenges are that, first, widely used non-
intrusive appliance load monitoring (NIALM) methods are not applicable to this work, due to the low
sampling rate and the lack of the energy consumption pattern of CPRSP; second, temperature-based
building energy disaggregation methods are not suitable for this work, as they highly depend on the accu-
rate base load estimation and predefined parameters. To overcome these issues, in this paper, first it is
found that, during the pool season, for homes with and without swimming pools, the ratio between their
base loads is approximately equal to the ratio between their temperature-dependent energy consump-
tions, then a novel weighted difference change-point (WDCP) model has been proposed. The advantages
of the WDCP model are that, on one hand, it doesn’t depend on the base load estimation and predefined
parameters; on the other hand, it has no requirement on the data sampling rate and the prior information
of energy consumption patterns of CPRSP. Based on the WDCP model it is shown that, the average hourly
energy consumption of CPRSP is 0.7425 kW, and the minimum and the maximum hourly energy con-
sumptions are 0.5274 kW at 9:00 and 0.9612 kW at 17:00, respectively. At the peak hour 19:00, July
21, 2011, CPRSP contributes 20.36% energy consumption of homes with swimming pools, as well as
8.48% peak load of all neighborhoods. As a result, the peak load could be reduced by 8.48% if all CPRSP
are stopped during the peak hour.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Peak load in a given year refers to the highest amount of elec-
tricity being consumed in an hour in the system under considera-
tion, which determines the size of the generators, transmission
lines, and transformers for a utility [1]. Peak load may exceed the
maximum supply levels that the electrical energy industry can
generate, resulting in energy outages and load shedding, and peak
load management has received significant attention in recent years
[2–5]. On the residential front, a lot of efforts have focused on
studying how air conditioners (ACs) - typically the most electricity
consuming home appliance - could be controlled to reduce their
activities during the peak hour while the users’ comfort remain
at an acceptable level [6–8].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2017.03.023&domain=pdf
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Nomenclature

ACs air conditioners
CPRSP circulating pumps of residential swimming pools
WDCP weighted difference change-point
NIALM non-intrusive appliance load monitoring
IALM intrusive appliance load monitoring
EvOT energy consumption vs. outdoor temperature
RPT the reference point temperature
U the no-pool season
X the pool season
B base load
Pmax peak load
Hmax the peak hour
R the aggregated energy consumption
T the temperature-dependent energy consumption
N the temperature-independent energy consumption
P the CPRSP energy consumption
r the ratio of base load of homes with and without swim-

ming pools during pool season

k0 the gradient of the linear regression on weighted differ-
ence of energy consumption vs. outdoor temperature

k1 and k2 gradients of two-phase piecewise linear regression on
weighted difference of energy consumption vs. outdoor
temperature

A the angle between the two lines of two-phase piecewise
linear regression

Superscripts
p data from homes with residential swimming pool
n data from homes without residential swimming pool

Subscripts
U data during non-pool season
X data during pool season
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This paper considers a class of pumping system that has not
been studied much, namely circulating pumps of residential swim-
ming pools (CPRSP) and shows that it might have a significant
impact on peak load in some neighborhoods in South Ontario,
Canada. Current studies on the energy consumption of pumps
mainly focus on the water pumping system which is widely used
for irrigation. One issue of the water pumping system is the high
energy consumption, applying renewable energy such as solar
energy is a popular way to overcome this issue [9,10], and at pre-
sent many efforts have focused on the photovoltaic water pumping
system [11–14]. This paper chooses CPRSP to analyze its impact on
peak load because:

� Residential swimming pools are standard backyard accessories
in central-Canadian middle-class homes. There are over
700,000 residential swimming pools in Canada. In Ontario
alone, the estimated number of residential swimming pools is
311,000.

� CPRSP are the second largest electrical load of homes with
swimming pools, right after AC, and peak load occurs in sum-
mer in Ontario when swimming pools are in use.

� CPRSP are used to circulate water through filters in swimming
pools to keep it clean. The activity period of CPRSP is typically
8–12 h a day, regardless of the weather or residents activities.
Therefore, controlling the activity periods of CPRSP might be
easier than for AC since it would result in very little impact
on user comfort.

There are a few works on the analysis on the energy consump-
tion of CPRSP [15,16]. In these works, end-uses have been recorded
directly through specific meters for each use, which can be consid-
ered as an intrusive appliance load monitoring (IALM) issue.
However, this paper estimates the CPRSP energy consumption
non-intrusively from the aggregated energy consumption measured
by single smart meter installed in the residential house. Generally,
non-intrusive appliance load monitoring (NIALM) methods or
energy disaggregation methods are used for such issue. Compared
with IALM which measures each appliance’s energy consumption
with a specific meter, NIALM has many advantages, such as lower
cost of installation and maintenance, smaller space requirements
and greater reliability [17]. Currently there are plenty of NIALM
methods [17–29]. Among these methods, most of them are
event-based, meaning that appliances are monitored by detecting
the change of some steady-state [19,23–25] or transient-state
features [17,21,29] related to current or voltage, and then
corresponding energy consumptions are estimated by supervised
[17,20] or unsupervised [19,23] methods, depending on whether
prior information is available. However, all of these NIALM
methods cannot be used for the CPRSP energy consumption, due
to the very low sampling frequency (hourly data) and no prior
information on CPRSP in this work. Although most of steady-
state signatures based NIALM methods do not emphasize the
importance of the sampling frequency, an implicit assumption is
that the sampling frequency needs to be high enough to capture
most of state changes of major appliances [19,20,24,30], or the
prior information of use patterns of appliances must be available
[18]. From another aspect, the estimation of the CRPSP energy
consumption can be converted to estimations of base load and
the temperature-dependent energy consumption, and some
temperature-based building energy disaggregation methods such
as degree days [31,32] and change-point models [33,34] may be
used. However, degree days methods highly depend on the
reference temperature point (RTP), which is usually chosen
empirically, and an inappropriate RPT will greatly reduce the
accuracy of degree days methods [31]. Meanwhile, to use
change-point models, three key issues need to be identified: the
number and locations of change points, as well as the gradient of
each linear regression. However, for some the energy consumption
vs. outdoor temperature (EvOT), these parameters are determined
empirically, making the estimation unreliable.

To estimate the energy consumption of CPRSP non-intrusively,
this paper proposes a novel weighted difference change-point
(WDCP) model. Compared with other NIALM methods, the pro-
posed WDCP model has no requirement on the sampling rate
and prior information of energy consumption patterns of CPRSP.
Meanwhile, compared with typical building energy consumption
disaggregation methods such as basic change-point models and
degree-day methods, the proposed WDCP model doesn’t
depend on the base load estimation, as well as user defined
parameters. The contributions of this paper can be summarized
as follows.

First, based on a dataset containing hourly energy consumption
readings of labeled 1005 residential buildings in South Ontario,
Canada from March 2011 to October 2012, this paper finds that,
during the pool season, for homes with and without swimming
pools, the ratio between their base loads is approximately equal



Fig. 1. The schematic overview of the whole paper.
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to the ratio between their temperature-dependent energy
consumptions.

Second, a novel WDCP model has been proposed, based on
which it is shown that, the average hourly energy consumption
of a poop pump is 0.7425 kW, the minimum and the maximum
hourly energy consumptions are 0.5274 kW and 0.9612 kW, and
corresponding hours are 9:00 and 17:00, respectively. Meanwhile,
during the peak hour 19:00, July 21, 2011, CPRSP contributes
20.36% energy consumption of homes with swimming pools, and
8.48% peak load of neighborhoods. Therefore, if all CPRSP all
stopped during the peak hour, the peak load will be reduced by
8.48%.

The remainder of this paper is organized as shown in Fig. 1.
Related works are given in Section 2. Material and methods are
shown in Section 3. Section 4 gives the analysis of the impact of
CPRSP on peak load, and the comparisons of the proposed WDCP
model with other methods. In Section 5, the features and the gen-
eralness of the proposed model are discussed. Finally, Section 6
gives the conclusion and the future work.
2. Related works

The estimation of the CRPSP energy consumption can be con-
verted to estimations of base load and the temperature-
dependent energy consumption, and some temperature-based
building energy disaggregation methods such as degree days and
change-point models may be used. Degree days methods (cooling
and heating) calculate the number of days with the temperature
greater or less than the reference temperature point (RTP), to esti-
mate the influence of temperature change on a building [31,32].
Degree days methods highly depend on RPT, which is usually cho-
sen empirically, and an inappropriate RPT will greatly reduce the
accuracy of degree days methods [31]. Change-point models are
to fit piecewise linear regression models with unknown change
points to a dataset whose distribution is suspected to change at
change points. Change points models have been widely used in
fields such as global surface temperature anomaly analysis [35]
and crime analysis [36]. For the building energy disaggregation
issue, change-point models are popular steady-state data-driven
models, which disaggregate the temperature-dependent and
temperature-independent energy consumptions based on piece-
wise linear regression on EvOT [33,34]. To use the change-point
model, three key issues need to be identified: the number and loca-
tions of change points, as well as the gradient of each linear regres-
sion. However, for some EvOT, these three parameters are difficult
to be obtained automatically, which need to be determined
empirically. For example, in [33], the heating season gradient and
the cooling season gradient are defined as the 90th percentile fits
of the heating and cooling phase, while base load is obtained from
10th percentile fits. Obviously corresponding results highly depend
on user’s definitions.

From another point of view, estimating the energy consumption
of CPRSP from the aggregated energy consumption can be consid-
ered as a NIALM issue, which is to disaggregate an individual appli-
ance energy consumption from the aggregated energy
consumption obtained by an main smart meter in a building.
NIALM is not a novel concept, in 1989, Hart has presented the con-
cept, prototypes, research directions, as well as the advantages and
disadvantages of NIALM [17]. Compared with intrusive appliance
load monitoring (IALM) which measures each appliance energy
consumption with a specific meter, NIALM has many advantages,
such as lower cost of installation and maintenance, smaller space
requirements and greater reliability. NIALM is a very hot topic in
recent years, and currently there are plenty of NIALM methods
[17–29]. For NIALM methods, features selection and load disaggre-
gation are two key issues. At present two types of features of appli-
ances are usually used: steady-state signatures [18,19,23–25] and
transient signatures[17,21,29]. Steady-state signatures of appli-
ances are signatures when appliances are in stable states, such as
the active power, the reactive power, and the power factor angle.
Steady-state signatures can be obtained using meters with low
sampling frequencies (e.g. 1 Hz). However, such signatures are
not unique, and many appliances may have similar steady-state
signatures, bringing difficulties for appliances identification [37].
Compared with steady-state signatures, transient signatures can
provide more unique features. Transient signatures of appliances
are the signatures captured during the state of appliances change,
such as turn-on or turn off [17]. For different appliances, transient
signatures such as current waveform signatures, current harmonic
signatures and active power waveform may be unique, making it
can be used for appliances identification. However, to capture dis-
tinctive transient signatures, a high sampling rate is required,
therefore some specific designed meters need to be installed
[38]. Meanwhile transient signatures are more susceptible to
noises. To overcome this issue, some works combines the two
types of signatures to improve the identification accuracy. In
[21], the turn-on transient energy signature and traditional
steady-state power signatures are used to improve the recognition
accuracy and to reduce computational requirements. After obtain-
ing signatures, superwised and unsuperwised learning or classifi-
cation models can be used for load disaggregation. Superwised
learning models require appliances information (e.g., an appliances
signatures database) as prior. For example, Lin et al. [29] employ
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transient signatures (current waveform signatures, current
harmonic signatures, active and reactive power signatures, and
geometrical properties of V-I curves), and use quadratic 0–1 pro-
gramming to identify appliances based on an appliances signatures
database. Compared with superwised learning methods, unsuper-
wised learning methods disaggregate energy without prior infor-
mation, and Hidden Markov Models have been widely used
[19,23,28]. For example, Aiad and Lee [28] use Factorial Hidden
Markov Model with the active power as the input, and they also
consider interactions among devices. Although can work without
prior, the accuracy of unsuperwised learning methods will
decrease dramatically with the increase of potential appliances
[23].
3. Material and methods

3.1. Dataset setup

To quantify the energy consumption of CPRSP, and measure the
impact of the use of CPRSP on power system, a utility in South
Ontario has monitored the hourly energy consumption of 31,000
meters from March 2011 to October 2012. The dataset contains
these readings as well as the meter locations and the types of
buildings in which the meters are installed, (e.g., residential, com-
mercial and industrial). Meanwhile, hourly weather data is
obtained fromWeather Canada (weather.gc.ca), and linear interpo-
lation is carried out when some weather data is lost. From the
dataset it can be seen that the peak hour occurs on July 21, 2011,
which is Thursday. As statistical properties of load during week-
days are usually different from that during weekends [5], this
paper only considers data during weekdays. As in Ontario Canada,
residential swimming pools are typically install outdoor, for 1110
residential meters in a specific neighborhood, ground truth data
is manually added on building features observed using satellite
imagery, and Google Earth is used to label whether a home has a
swimming pool or not manually. Two examples of the way to label
data are given in Fig. 2, where the house in left figure (Coordinates:
4219050:600N 8253042:100W) has no pool while the house in the right
figure (Coordinates: 4219040:900N 8253035:900W) has a pool. Finally,
after ignoring some images with uncertainty, altogether 1005 res-
idential buildings have been labeled, among which 346 with swim-
ming pools and 659 without swimming pools.

In Canada, CPRSP are used to circulate the water through filters
in the swimming pools to keep it clean. Previously CPRSP were run
continuously for the whole season. Due the consideration of the
electricity cost, timers are installed to reduce the activity period
of CPRSP. Nowadays, the activity period of CPRSP is typically 8–
12 h a day, regardless of the weather or residents activities. There-
Geographic coordinates

The corresponding house

Fig. 2. Two examples of the way to label data using Google Earth, where the house in le
2016-11-6).
fore, from a statistical point of view, the use pattern of CPRSP can
be assumed to be daily cycle during X.

To estimate the CPRSP energy consumption, some definitions
using in this paper are given as follows:

No-pool season U and pool season X: in Ontario generally peo-
ple use their pools fromMay to September. However, since it is dif-
ficult to know exactly when pools are being opened and closed, to
make it no ambiguity, the non-pool season U is defined from
November 15, 2011 to February 29, 2012. Similarly, the pool sea-
son X is defined from July 1, 2011 to August 30, 2011, as well as
from July 1, 2012 to August 30, 2012, during which all pools are
expected to be opened. Note that in other locations, definitions
of U and X would be probably different.

Base load B: generally base load refers to the energy consump-
tion for the basic daily tasks and is supposed to be continuous 24 h
a day. In this paper, base load is defined as the total energy con-
sumption of homes excluding the energy consumption related to
the outdoor temperature (e.g. the energy consumption by AC or
heaters), as well as the CPRSP energy consumption if swimming
pools exist.

Based on definitions of U;X and B, the average hourly energy
consumptions of homes with and without swimming pools during
U and X can be written as:

Rp
U ¼ Tp

U þ Np
U

¼ Tp
U þ Bp

U

ð1Þ
Rn
U ¼ Tn

U þ Nn
U

¼ Tn
U þ Bn

U

ð2Þ
Rp
X ¼ Tp

X þ Np
X

¼ Tp
X þ Bp

X þ Pp
X

� � ð3Þ
Rn
X ¼ Tn

X þ Nn
X

¼ Tn
X þ Bn

X

ð4Þ

where R is the aggregated energy consumption, T and N are
temperature-dependent and temperature-independent energy con-
sumptions, respectively, B is base load, and P is the CPRSP energy
consumption. All of them are hourly average values. Superscripts
p and n indicate homes with or without swimming pools, subscripts
U and X indicate it is in U or X. Eq. (3) means that for homes with
residential swimming pools, during X, the temperature-
independent energy consumption Np

X consists of two components:
Bp
X and Pp

X. In other situations as depicted in Eqs. (1), (2) and (4),
the temperature-independent energy consumption N is equal to
the corresponding B.
The corresponding house

The swimming pool

Geographic coordinates

ft figure has no pool while the house in the right figure has a pool (Accessed date:
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(b) 2011.12.25 - 2011.12.31 without pool

Fig. 3. Raw profiles of energy consumptions of homes without swimming pools during one week, where blue curves are raw profiles, while red curves in a and b are profiles
of a single home without the swimming pool during different periods. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 4. Raw profiles of energy consumptions of homes without swimming pools during one week, where blue curves are raw profiles, while green curves in a and b are
profiles of a single home with a swimming pool during different periods. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 5. Daily average energy consumption profiles of homes with and without
CPRSP over the whole period, where green points, red points and blue points are
daily average energy consumption of homes with CPRSP, without CPRSP, and
differences between them. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Peak Load Pmax and Peak hour Hmax: peak load Pmax refers to
the highest amount of electricity being consumed in an certain
hour, and peak hour Hmax is the corresponding time.

As profiles of energy consumptions of homes with and without
swimming pools are available, one may consider that the CPRSP
energy consumption could be obtained from the difference
between them. Figs. 3 and 4 give raw profiles of energy consump-
tions of homes without swimming pool, where data in Figs. 3a and
4a are from August 27, 2011 to September 02, 2011 (pool season),
and data in Figs. 3b and 4b are from December 25, 2011 to Decem-
ber 31, 2011 (no-pool season). In Figs. 3 and 4, blue curves are raw
profiles. In Fig. 3a and b, the red curves are profiles of a single home
without the swimming pool during different periods. In Fig. 4a and
b, the green curves are profiles of a single home with a swimming
pool during different periods.

From Figs. 3 and 4 it can be seen that although overall distribu-
tion of profiles of energy consumptions is periodic daily, the distri-
bution of that of a single home is complex, and the CPRSP energy
consumption could not be obtained from differences between
energy consumption profiles of different periods.

Fig. 5 gives daily average energy consumption profiles of homes
with and without swimming pools over the whole period, where
green points, red points and blue points are daily average energy
consumption of homes with CPRSP, homes without swimming
pools, and differences between them. From Fig. 5 it can be seen
that during U, values of blue points are around 5 kW h. However,
they should be close to 0 if they are considered as the CPRSP energy
consumption. The reason is that homes with residential swimming
pools are usually richer and bigger than homes without swimming
pools, making the fact that excluding the CPRSP energy consump-
tion, the energy consumption of homes with swimming pools is
still larger than that of homes without swimming pools, due to
the different lifestyle such as additional TVs and a second refriger-
ator, as discussed by Fisher[16].



Fig. 6. The flowchart of the straightforward method to estimate the CPRSP energy consumption.

Fig. 7. The basic three-phase change-point model.
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3.2. CPRSP energy consumption estimation based on the change-point
model

As the base load is temperature-independent, it can be consid-
ered remaining the same during U and X. Therefore, if Np

U and Np
X

are obtained, then Pp
X can be estimated by:

Pp
X ¼ Np

X � Bp
X

¼ Np
X � Bp

U

¼ Np
X � Np

U

ð5Þ

According to the above analysis, the flowchart of a straightfor-
ward method of estimating the CPRSP energy consumption is given
in Fig. 6, which includes three steps. In the first step, the energy
consumption of homes with swimming pools Rp is divided into
three groups, the energy consumption during the no-pool season
Rp

U, the energy consumption during the pool season Rp
X, and the

energy consumption during the rest season. In the second step,
Rp

U is disaggregated into two parts, the temperature-independent
energy consumption Np

U, and the temperature-dependent energy
consumption Tp

U. Meanwhile, Rp
X is also disaggregated into two

parts, the temperature-independent energy consumption Np
X, and

the temperature-dependent energy consumption Tp
X. In the third

step, the CPRSP energy consumption Pp
X can be obtained by:

Pp
X ¼ Np

X � Np
U ð6Þ

To disaggregate the temperature-independent and
temperature-dependent energy consumptions, degree days meth-
ods [31,32] and change-point models [33,34] are usually used.
However, in degree days methods, RTP must be predefined, and
an inappropriate RPT will significantly reduce the estimation accu-
racy[31], therefore in this paper the change-point model is used.

The change-point model is to fit a piecewise linear regression
model with unknown change points to a data set whose distribu-
tion is suspected to change at change points. According to ASHRAE
(the American Society of Heating, Refrigerating, and Air-
Conditioning Engineers) [31], a whole change-point model is
shown in Fig. 7, where the red1 line with the gradient below 0 indi-
cates a temperature-dependent heating period, the green line with
the gradient close to 0 indicates a temperature-independent period,
and the blue line with the gradient above 0 indicates a temperature-
dependent cooling period. Using the change-point model, it is easy
1 For interpretation of color in ‘Fig. 7’, the reader is referred to the web version of
this article.
to aggregate temperature-independent and temperature-
dependent energy consumptions, as well as analyze the influence
of the outdoor temperature on the energy consumption. Note that
for some EvOT, change-point models may have only one or two types
periods, meanwhile each type period may have occur multiple times
[33].

Change-point models estimate the base load by obtaining
regression parameters on the temperature-independent period at
the bottom of EvOT. Fig. 8 gives EvOT of houses with swimming
pools over the whole period, where blue points, red points and
green points indicate U;X and the transition period, respectively.

From Fig. 8 it can be seen that EvOT of houses with swimming
pools during U has the temperature-dependent hearting period
and maybe have the temperature-independent period, and during
X it has the temperature-dependent cooling period and maybe
have the temperature-independent period. However, during U
and X the temperature-independent periods are ambiguous, which
means that reliable Np

U and Np
X cannot be obtained using the

change-point model based on such EvOT, as discussed in [33],
therefore the basic change-point model is not suitable to estimate
the CPRSP energy consumption.
3.3. Weighted difference change-point model based CPRSP energy
consumption estimation

To estimate the CPRSP energy consumption Pp
X, an assumption

is given:
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A 1. For homes with and without swimming pools, the ratio of
their base loads is approximately equal to the ratio of their
temperature-dependent energy consumptions during X:

Bp
X

Bn
X

¼ Tp
X

Tn
X

¼ r ð7Þ

where r is the ratio.
Proof. According to Eq. (3):

Rp
X ¼ Tp

X þ Pp
X þ Bp

X

¼ Tp
X þ Pp

X þ r � Bn
X

¼ Tp
X þ Pp

X þ r � Rn
X � Tn

X

� �
¼ Pp

X þ r �Rn
X þ Tp

X � r � Tn
X

� �
ð8Þ

Rewriting Eq. (8), Pp
X can be obtained:

Pp
X ¼ Rp

X � r �Rn
X

� �� Tp
X � r � Tn

X

� � ð9Þ
If and only if A.1 holds, then:

Tp
X � r � Tn

X ¼ 0 ð10Þ
And then the CPRSP energy consumption can be obtained by:

Pp
X ¼ Rp

X � r �Rn
X|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

the weighted difference

ð11Þ

Note that as the CPRSP energy consumption Pp
X is temperature-

independent, if and only if A.1 holds, Rp
X � r �Rn

X vs. outdoor tem-
perature should be temperature-independent, in other word, it
should be close to a linear horizontal distribution. Therefore, if a
specific r can be obtained which makes Rp

X � r �Rn
X vs. outdoor

temperature close to a linear horizontal distribution, then A.1
holds. h

The estimation of r can be formatted as an optimum issue:

min
r

k0 � k1 � k2ð Þ
1þ k1 � k2

����
����

� �
; k1 � k2 – � 1 ð12Þ

s:t: 0:3 6 Lcp � Lmin

Lmax � Lmin
6 0:7 ð13Þ

where k0 is the gradient of the linear regression on Rp
X � r �Rn

X vs.
outdoor temperature, k1 and k2 are gradients of the two lines of the
two-phase piecewise linear regression on Rp
X � r �Rn

X vs. outdoor
temperature. Eq. 13 is the constraint on the location of the
change-point of the two-phase piecewise linear regression, where
Lmin , Lmax and Lcp are the minimum temperature, the maximum tem-
perature, and the temperature of the change point. Eq. (13) is used
to make the location of the change point around the middle of the
whole dataset, to make the result robust.

Eq. (12) consists of two items, k0j j and k1�k2
1þk1�k2

��� ���. The first item k0j j
indicates the overall direction of Rp

X � r �Rn
X vs. outdoor temper-

ature, and minimizing k0j j will make it horizontal. The second item
k1�k2

1þk1�k2

��� ��� is the measurement of linearity of Rp
X � r �Rn

X vs. outdoor

temperature, which is actually the indicator of the angle A between
the two lines of two-phase piecewise linear regression on
Rp

X � r �Rn
X vs. outdoor temperature, where

A ¼ arctan
k1 � k2

1þ k1 � k2

����
����

� 	� 	
� 180

p
ð14Þ

The idea of k1�k2
1þk1�k2

��� ��� is that if A is close to 0, then the two-phase

piecewise linear regression could be replaced by a linear regres-
sion, which means good linearity of Rp

X � r �Rn
X vs. outdoor

temperature.
Note that Eq. (12) cannot be solved by general optimization

methods such as least squares, as Rp
X � r �Rn

X vs. out temperature
changes with r. In this paper, the interior-point algorithm [39] is
used to search the optimum of r, meanwhile Sizer [40] is used to
obtain parameters of the change-point in the two-phase piecewise
regression. Results are shown in Table 1 and Fig. 9.

Table 1 gives estimated r; k0 and A for each hour, and Fig. 9 gives
corresponding EvOT, where red points and green points indicate
the energy consumption of homes with and without swimming
pools, and blues points are results of the WDCP model. Due to
space limitation, only results of Hour 1, Hour 7, Hour 13 and Hour
19 are given in Fig. 9.

From Fig. 9 it can be seen that, during different hours, EvOT of
homes with pools, as well as EvOT of homes without pool are dif-
ferent, respectively. For example, except Hour 7, EvOT of homes
with pools (red points) and EvOT of homes without pool (green
points) at Hour 1, 13 and 19 are loose, and it is difficult to deter-
mine such distributions are linear or not. As a result, linear regres-
sions on such distributions are unreliable. In contrast, EvOT of
Rp

X � r �Rn
X (blur points) are much more compact, and regressions

on such distributions should be more reliable. From Table 1 it can
be seen that, the maximum absolution of k0 is 1:544� 10�6, and
the maximum absolution of A is 1:104�, which indicate that
Rp

X � r �Rn
X vs. out temperature is horizontal and linear, therefore

assumption A.1 holds, and the WDCP model can be used to esti-
mate the CPRSP energy consumption. Furthermore, compared with
distributions of red points and green points, the distribution of
blue points is more compact, therefore the linear regression on
such distribution should be more robust and reliable. As the pro-
posed method relies on the weighted difference between change-
point models, it is so-called the WDCP model.

4. Results

4.1. The impact of CPRSP on peak load

Energy consumption profiles of all homes can be obtained from
the dataset directly. It can be found that the peak load occurs at
19:00, July 21, 2011, and in this section the energy consumption
during July 21, 2011 is analyzed.

To reflect the impact of the use of CPRSP on homes with
swimming pools, Fig. 10 gives profiles of the hourly average



Table 1
The estimated r; k0 and A for each hour.

Hour 1 2 3 4 5 6

r 1.2607 1.2580 1.2426 1.2585 1.2077 1.1830

k0 (10�6) �1.083 1.544 �0.660 1.500 0.426 0.956

A �ð Þ 0.3181 0.3378 0.2351 0.4421 0.3035 0.3525

Hour 7 8 9 10 11 12

r 1.1337 1.2019 1.1975 1.2348 1.2148 1.1906

k0 (10�6) �0.5501 0.2801 �1.867 0.2876 �0.3710 �1.864

A �ð Þ 0.5474 0.3485 0.6971 0.3576 0.9300 0.8241

Hour 13 14 15 16 17 18

r 1.1684 1.1243 1.0731 1.0852 1.0492 1.0627

k0 (10�6) �0.5909 �0.3059 �0.1884 0.6736 �0.5141 0.6413

A �ð Þ 0.6748 1.095 0.9304 0.3913 0.3571 0.1962

Hour 19 20 21 22 23 24

r 1.0752 1.0921 1.1367 1.1576 1.1790 1.2100

k0 (10�6) �0.3636 0.5799 �0.3517 �0.9815 0.3793 �0.2516

A �ð Þ 1.043 0.974 0.6039 1.104 0.3028 0.4419
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Fig. 9. Results of the proposed WDCP model at Hour 1, 7, 13 and 19, where red points and green points indicate the energy consumption of homes with and without
swimming pools during the pool season, and blues points are results of Rp

X � r �Rn
X . (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)
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energy consumption of CPRSP, homes with swimming pools,
and homes without swimming pool. From Fig. 10 can be seen
that, during the peak hour, energy consumptions of CPRSP
and homes with swimming pools are 0.9538 and 4.6840,
respectively. Therefore, CPRSP contributes 0.9538/4.6840 ⁄
100% = 20.36% energy consumption of homes with swimming
pools during the peak hour. By comparing the two profiles, it
can be seen that the overall trends of the two profiles are sim-
ilar, but the trend of the profile of CPRSP is smoother. For
example, peak hours of CPRSP and homes with swimming pools
are 19:00 and 17:00, respectively, which are close to each
other. Note that energy consumptions of CPRSP at 17:00,
18:00 and 19:00 are nearly constant.

Furthermore, even excluding the CPRSP energy consumption,
the energy consumption of homes with swimming pools is larger
than that of homes without the swimming pool. The reason is that
homes with residential swimming pools are usually richer and big-
ger than homes without swimming pools, as discussed by Fisher
[16].

To reflect the impact of the use of CPRSP on the peak load,
Fig. 11 gives the profile of the total hourly energy consumption
of CPRSP (labeled as CPRSP), the profile of the rest energy
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Fig. 11. The impact of the use of CPRSP on power system.
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consumption (labeled as Rest), as well as the ratio of the energy
consumption of CPRSP and the total energy consumption at each
hour (labeled as CPRSP/All). As shown in Fig. 11, during the peak
hour (19:00), the total energy consumption of all homes is
3891.24 kW h, and the total energy consumption of CPRSP is
330.01 kW h. Therefore, during the peak hour,
330.01/3891.24 ⁄ 100% = 8.48% energy is consumed by CPRSP.
Therefore, if all CPRSP all stopped during peak hour, the peak load
will be reduced by 8.48%.

4.2. Comparisons with other methods

Currently there is no other NIALM algorithm for the CPRSP
energy consumption estimation. However, as discussed in Sec-
tion 3, an alternative method is that first obtaining base load of
U and X, and then calculating the difference between them. In this
section, two temperature-based energy disaggregation methods,
namely Birt et al. [33] and Shin and Do [32], are employed as com-
parisons. Birt is a multiple-phase change-point model method.
Compared with the basic change-point model which regresses on
the whole dataset, Birt carries out three separate three-phase
piecewise regressions on 10th percentile data, median data, and
90th percentile data, receptively, and base load is defined based
on the change point with the lowest energy consumption on
10th percentile data. In this paper the Birt method is used on U
and X separately to obtain the base load of each period. To test
the robustness of this method, regressions are carried out based
on 5th;10th;15th, and 20th percentile data, and results are labeled
as Birt5, Birt10, Birt15 and Birt20, respectively. Shin is a cooling
degree-day method, and RTP is determined by a two-phase
change-point model, in which one phase is forced to be
temperature-independent to obtain the base load. Using the Shin
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method, the base loads during U and X can be obtained, then the
CPRSP energy consumption can be estimated from the difference
of them. Fig. 12 and Table 2 give estimated profiles of CPRSP energy
consumptions using different methods.

As shown in Fig. 12 and Table 2, the estimated peak time and
valley time of CRPSP are similar among different methods. How-
ever, there are significantly differences among the estimated peak
powers and valley powers using these methods. As the ground true
of the CPRSP energy consumption is not available, the effectiveness
of the proposed WDCP model cannot be verified directly. However,
these methods can be compared from four aspects.

First, results of Birt5, Birt10, Birt15 and Birt20 are significantly
different, indicating that the Birt method highly depends on user
defined parameters, therefore corresponding results are unreliable.
Meanwhile, in the Shin method, one phase is forced to be
temperature-independent to obtain base load. However, as shown
in Fig. 8, U and X have no stable temperature-independent periods,
making such method also unreliable. In contrast, the WDCP
method has no such issue as it does depend on the base load esti-
mation and user defined parameters.

Second, as the estimated CPRSP energy consumption is the
average of all homes with swimming pools, and the activity period
of CPRSP is typically 8–12 h a day, regardless of the weather or res-
idents activities [16], therefore the profile of the CPRSP should
change smoothly with time in a day round. However, compared
with the result of WDCP, results of other methods are with much
stronger volatility.

Third, the power of CPRSP is usually between 0.35 kW h and
1.45 kW h [41]. Suppose the average power of CPRSP is
0:35þ 1:45ð Þ=2 ¼ 0:9 kW h, and all CPRSP open and run simultane-
ously during the power time of CPRSP, then the peak power of
CPRSP should be close to 0.9 kW h. As shown in Fig. 8 and Table 2,
the peak power estimated by WDCP is 0.9612 kW h, while results
of other methods are larger than 1.2 kW h, and results of Birt15
and Birt20 are even larger than 1.4 kW h, therefore results of
WDCP are more reasonable.

Fourth, in [15], Danny gives the impact of major appliances such
as space heating, space cooling, and pool pump on the total average
annual electrical loads for 204 residences in Central Florida. The
main goal of that work is to obtain load profiles for major
Ho
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Fig. 12. CPRSP energy consumption es
appliances, and to identify ways in which the residential peak load
might be reduced. It is shown that during the peak hour 17:00 in
July, a typical pool pump consumed 0.94 kW h in average. Based
on WDCP, the peak time is 17:00 and the peak power is 0.9612,
both are very close to results given in [15]. However, in [15],
end-uses have been recorded directly through specific meters for
each use, thus figures are accurate and not based on estimations.
Therefore validity of the proposed WDCP model can be proved.

5. Discussion

5.1. Features of the energy consumption estimation of CPRSP

Compared with typical NIALM isses, three factors make the
energy consumption estimation of CPRSP unique: hourly sampling
data, no prior information, as well as specific EvOT of U and X.
First, Although most of steady-state signatures based NIALMmeth-
ods do not emphasize the importance of the sampling frequency,
an implicit assumption is that the sampling rate needs to be high
enough to capture most of state changes of major appliances
[19,20,24,30], or the prior information of use patterns of appliances
must be available [18]. NIALM needs to captures state changes
(events) of major appliances, and they would fail if an appliance’s
state has changed multiply times during two successive samples
[19,30]. However, in this work only hourly data is available, and
the sampling rate is too low to capture events of major appliances,
[18] proposes discriminative disaggregation sparse coding based
on hourly data, however, the prior dictionary of use patterns of
appliances is required. Second, prior information such as opera-
tional states or training dataset of CPRSP are not available, e.g.,
CPRSP work under different operational models with different
powers, and some energy effective CPRSP may run permanently,
and such types of appliances cannot be detected by generic NIALM
methods. Third, the power of CPRSP is usually between 0.35 kW h
and 1.45 kW h [41], which is not significantly higher than other
residential appliances. Therefore, the state of CPRSP cannot be
identified by the absolute value of the aggregated load.

Another important issue is that, when using change-point mod-
els [33,34], the base load is assumed as a constant during different
seasons, because it is temperature-independent. However, such
ur
14 16 18 20 22 24

timation using different methods.



Table 2
Results of different methods.

Birt5 Birt10 Birt15 Birt20 Shin WDCP

Peak power 1.2590 1.2960 1.4330 1.4975 1.2423 0.9627
Peak hour 16:00 16:00 17:00 17:00 16:00 17:00

Valley power 0.2933 0.4267 0.4259 0.4294 0.4453 0.5304
Valley hour 9:00 9:00 9:00 9:00 9:00 9:00

Average power 0.6988 0.8010 0.8475 0.8942 0.7196 0.7425
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assumption is not reliable, as base load may be different during dif-
ferent seasons. These differences may not have a great impact on
the qualitative analysis, but can reduce the accuracy of quantita-
tive analysis. However, the WDCP model avoids this issue by only
using data during X, meanwhile avoids estimating base load
directly.

5.2. The generalness of the WDCP model

Although the proposed WDCP model is designed based on fea-
tures of CPRSP, it can be used for other appliances. For example,
the energy consumption of ACs has been widely studied [42,43].
However, these methods are either based on complex models with
many predefined parameters [42] or questionnaires [43]. Using the
proposed WDCP model, if in a region, first, not all residential
homes have AC; second, energy consumption profiles of homes
can be obtained; third, homes with AC can be identified by the
external sections of AC; then the energy consumption of AC can
be calculated by the WDCP method with a slight modification:

Ba

Bn
� T 0

a � Ta

Tn
ð15Þ

where Ba and Bn are base loads of homes with and without ACs, T 0
a is

temperature-dependent energy consumptions of homes with ACs,
Ta is the energy consumption of ACs, Tn is the temperature-
dependent energy consumption of homes without AC. In Eq. (15),
Ba; Bn; T

0
a and Tn can be obtained by the basic change-point model.

If Eq. (15) satisfies A.1, then the energy consumption of ACs Ta

can be obtained using the WDCP model.

6. Conclusion and future work

This paper analyzes the energy consumption of CPRSP and the
impact of CPRSP on the power system during March 2011 and
October 2012 in South Ontario, Canada. First this paper shows that
temperature-based energy disaggregation methods and NIALM
methods are not suitable for this work. Second, this paper shows
that during the pool season, for homes with and without swim-
ming pools, the ratio between their base loads is approximately
equal to the ratio between their temperature-dependent energy
consumptions. Third, a novel WDCP model has been proposed.
Based on the WDCP model, the average hourly energy consump-
tion of a poop pump is 0.7425 kW, which contributes 20.36%
energy consumption of homes with swimming pools, as well as
8.48% peak load of all neighborhoods. Therefore, the peak load
could be reduced by 8.48% if all CPRSP all stopped during peak
hour.

In this paper, the energy consumption of CPRSP is estimated
based on hourly aggregated measurements without additional
prior information of CPRSP. In theory, higher sampling rate of mea-
surements and more prior information of appliances will improve
the accuracy and the generalness of the model. However, at pre-
sent there is few studies that consider the relationship among
the data sampling frequency, appliances’ prior information, the
model accuracy, and the model generalness in a unified
framework. In future this work would try to establish more
linkages among these factors.
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