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Abstract—In this paper, we present a game theoretic framework
for bandwidth allocation for elastic services in high-speed net-
works. The framework is based on the idea of the Nash bargaining
solution from cooperative game theory, which not only provides
the rate settings of users that are Pareto optimal from the point of
view of the whole system, but are also consistent with the fairness
axioms of game theory. We first consider the centralized problem
and then show that this procedure can be decentralized so that
greedy optimization by users yields the system optimal bandwidth
allocations. We propose a distributed algorithm for implementing
the optimal and fair bandwidth allocation and provide conditions
for its convergence. The paper concludes with the pricing of elastic
connections based on users’ bandwidth requirements and users’
budget. We show that the above bargaining framework can be
used to characterize a rate allocation and a pricing policy which
takes into account users’ budget in a fair way and such that the
total network revenue is maximized.

Index Terms—Bandwidth allocation, elastic traffic, game theory,
Nash bargaining solution, pricing.

I. INTRODUCTION

CURRENT high-speed networks have to support applica-
tions which have no way of predicting their traffic require-

ments in advance, but have stringent loss requirements and can
tolerate variations in transfer delays. These performance char-
acteristics mean that the sources can be made to modify their
data transfer rates according to network conditions. These ser-
vices are referred to aselastic services. Their source rates are
adjusted according to the network conditions so the network
can carry a variable number of bursty connections in an effi-
cient manner. Typical services, which share these properties, are
TCP/IP based services, ATM available bit rate (ABR) services,
or services using bandwidth-on-demand on a multiple access
system.

These applications are expected to ride “on top of” (at least
partially since some minimum bandwidth may be reserved)
bandwidth-guaranteed connections and utilize any residual
bandwidth. Since the available bandwidth will change de-
pending on the amount of “background” bandwidth-guaranteed
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services being carried, the incoming elastic sources will have
to continually change their rates based on some notification by
the network on the available bandwidth. Thus the notion ofrate
control of sources arises.

Since potentially there are many sources distributed in the
network which will be competing for the use of the available
bandwidth, there are several issues which arise and must be
dealt with. These are: 1) efficient bandwidth allocation to the
different sources taking into account their different needs and
performance requirements; 2) the crucial notion of fairness; 3)
the ability to implement the allocation scheme in a distributed
manner with minimal communication overheads; and 4) the
issue of pricing the bandwidth in such a way that the network
revenue will be maximized if the users are allocated bandwidth
according to 1) and 2) above.

In this paper, we propose a game theoretic framework, which
is very powerful, to address the above issues. In particular, by
drawing upon the Nash bargaining framework from coopera-
tive game theory [24], [25], we show that one can obtain a uni-
fied framework in which we can address issues of network ef-
ficiency, fairness, revenue maximization, and pricing. The ad-
vantage of such a framework is that we have precise mathemat-
ical characterization of the solutions and their properties, and
therefore a precise framework in which different solutions can
be compared.

The idea of using the Nash bargaining solution (NBS) in the
context of telecommunication networks is not new. This was
first presented in the context of packet-switched (data) networks
by Mazumdaret al. [22]. The properties of Pareto optimality
as well as the development of local optimization procedures
which lead to Pareto-optimal solutions (the local procedures
being greedy schemes) were studied in a series of papers by
Douligeris and Mazumdar [10], [8], [9] in the context of data
networks. This paper is thus an extension of those ideas as well
as a new approach in the context of elastic services in broadband
networks. Preliminary results have been presented in [29] and
[30].

The issue of rate control for elastic sources has been the focus
of much attention. In the ATM ABR context the primary con-
cern has been to develop algorithms which adapt quickly to con-
gestion while trying to be fair in a so-called sense
[5], [13], [16]. This notion of fairness is different from the no-
tion of the solutions in game theory. More recently,
[17], [18] and [21] have considered the problem of rate allo-
cation and charging based on knowledge of user utility func-
tions. All consider the issue of maximizing the social benefit,
which is the sum of the user utilities. In [17] it is also shown

1063–6692/00$10.00 © 2000 IEEE



668 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 5, OCTOBER 2000

that the socially optimizing solution can be obtained as the so-
lution to a user optimization problem. Furthermore, it is shown
that the solution obtained has the property ofproportional fair-
nessif the utility functions are logarithmic functions of the al-
located bandwidth. Allocating bandwidth based on user will-
ingness-to-pay is considered. Both [18] and [21] provide dis-
tributed algorithms for achieving the socially optimal rate allo-
cations. The pricing issues the authors consider are different; in
[17] users state their prices and the network allocates the band-
width accordingly, while in [21] the network charges a price
based on user bandwidth demands. The combination of flow
control and pricing has also been addressed in [6] and [26].

The utility function approach used in [17] and [21] suffers
from the point of view that user utilities or preferences are only
known in some qualitative sense. Thus, although reasonable as-
sumptions can be made on the behavior of utility functions,
such an approach cannot be used to provide concrete numer-
ical answers. Hence, the approach we take is to consider mea-
surable performance characteristics rather than abstract utility
functions. In the context of elastic services, one important mea-
sure is allocated rate. We propose a game theoretic framework
based on choosing this measure. We demonstrate that not only
is it possible to address the issues of fairness and efficiency, but
the framework also allows us to put the solution in proper con-
text.

Using the Nash bargaining framework from cooperative
game theory [24], [25] we show thatproportional fairness
(as introduced in [17]) is in fact an NBS. The bargaining
framework allows us to address the bandwidth allocation
problem with nonzero minimum bandwidth guarantees [known
as minimum cell rate (MCR) in the ABR context] while also
accounting for peak-rate requirements of sources [referred to
as peak cell rate (PCR) in the ABR context]. We then provide a
distributed algorithm implemented at network links (or nodes),
which achieves the desired bandwidth allocations that are
Pareto optimal and fair. This algorithm is based on the gradient
of the dual of the basic optimization problem which results
when computing the NBS [2]. The algorithm proposed in [21]
is also based on the dual of the social optimum problem with
second-order differentiability or assumptions on the user
utility functions. The performance functions we consider are
not in , and hence we provide a proof of the convergence of
our algorithm to the desired allocations.

We then address the issue of pricing and its relation to
bandwidth allocation. It is shown that based on a user’s
budget orwillingness-to-payand its bandwidth demands, a
bargaining framework can be developed to allocate the network
bandwidths to the users in a way which is optimal in the Pareto
sense and is fair to the users. Furthermore, based on this,
we can develop a pricing scheme based on the congestion in
the network for which network revenue is maximized when
the network operates at the allocations corresponding to the
bargaining solution. This pricing scheme has the following
property: a user is never charged more than its declared budget
but could be charged less than its budget if the amount of
congestion in the network links used by its connection is low.

The outline of this paper is as follows: In Section I, we present
the salient facts about the NBS which is the base for our frame-

work. Section II considers the optimal and fair rate allocation
problem for elastic connections which have both minimum and
peak rate constraints. We discuss both the centralized (system
optimality) as well as the user-based contexts. In Section III,
we propose a distributed algorithm to implement the solution
and analyze its behavior in terms of convergence. In Section IV,
we then show how the game theoretic framework we have in-
troduced leads to a very elegant framework for charging and
allocating bandwidth resources based on user budgets orwill-
ingness-to-pay. Technical proofs are deferred to the Appendix.

II. BASIC FRAMEWORK

In this section, we present the salient concepts and results
from cooperative game theory and the Nash bargaining (or arbi-
trated) solutions (NBS) which are used in the sequel. For details,
we refer the reader to the book by Muthoo [24] and the paper
by Nash [25].

The basic setting of the problem is as follows: There are
users (connections) which compete for the use of a fixed re-
source (bandwidth). Each user( ) has a perfor-
mance function and a desired initial performance which
is the minimal performance required by the user without any
cooperation in order to enter the game. Each performance func-
tion is defined on a subset of termed , which is the set of
game strategies of the users. In a context of network resource
allocation, could represent the space of allocated rate vec-
tors. The initial performance of each user represents a minimum
guarantee that the network must provide the user. Therefore, we
will assume throughout our framework that each user involved
in the game can achieve its initial performance. In other words,
there exists at least a vector in for which the performance
vector is superior or equal to the initial per-
formance vector .

Let be a nonempty convex closed and
upper-bounded set. In our context, the setdenotes the
set of achievable performance. Let such that

. Here denotes the initial
agreement point. Let denote the set
of achievable performance with respect to the initial agreement
point.

We first define the notion of Pareto optimality in the context
of multiple-criteria objectives which occurs in the typical game
setting with multiple players.

Definition 2.1: The point is said to be Pareto optimal
if for each , , then .

The interpretation of a Pareto optimum is that it is impos-
sible to find another point which leads to strictly superior perfor-
mance for all the players simultaneously. In general, in a game
with players (or equivalently for a set of objectives), the
Pareto-optimal points form an dimensional hypersurface,
which implies that there are an infinite number of points which
are Pareto optimal. From the definition of Pareto optimality, it
is clear that an optimal network operating point should be a
Pareto-optimal point. The question that arises is at which of the
(infinitely many) Pareto-optimal points should we operate the
system?

One way in which we can define suitable Pareto-optimal
points for operation is by introducing further criteria. From the
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perspective of resource sharing, one of the natural criteria is the
notion of fairness. This, in general, is a loose term and there are
many notions of fairness. One of the commonly used notions is
that of fairness which penalizes large users. From
the definition of fairness [3], it can be seen that it
corresponds to a Pareto optimum. However, it is not easy to
take into account the notions that users might have different
requirements within this framework. A much more satisfactory
approach is to use the fairness axioms from game theory as the
fairness criteria [25].

We now define the NBS, which encapsulates the above
requirements of yielding Pareto optima as well as being fair
in a precise sense. Except in trivial cases, it differs from the

solution.
Definition 2.2: A mapping is said to be an NBS

if:

1) .
2) is Pareto optimal.
3) satisfies the linearity axiom if ,

with , , then
.

4) satisfies the irrelevant alternatives axiom if ,
, and then

.
5) satisfies the symmetry axiom if is symmetric with

respect to a subset of indices (i.e.,
and , then if then

for ).

Remark 2.1:The items 3, 4, and 5 above are the so-called
axioms of fairness. The linearity property of the solution im-
plies that the bargaining solution is scale invariant, i.e., the bar-
gaining solution is unchanged if the performance objectives are
affinely (i.e., of the form ) scaled. The irrelevant-alter-
natives axiom states that the bargaining point is not affected by
enlarging the domain if agreement can be found on a restricted
domain. The symmetry property states that the bargaining point
does not depend on the specific labels, i.e., users with the same
initial points and objectives will realize the same performance.

Having defined the NBS, we define the optimal point as fol-
lows:

Definition 2.3: Let be given by . Then is the
(Nash) bargaining point and is called the set of the
(Nash) bargaining solutions.

The following result, due to Stefanescu [27], provides for a
characterization of the Nash bargaining point and will form the
basis for the results in the sequel.

Theorem 2.1:Let , be con-
cave upper-bounded functions defined onwhich is a convex
and compact subset of . Let .

Let s.t. . Denote by
and the subset

of strategies that enable the users to achieve at least their initial
performances.

Then there exists a bargaining solution and a unique bar-
gaining point . Moreover the set of the bargaining solutions
( ) is determined as follows:

Let be the set of users able to achieve a performance strictly
superior to their initial performance, i.e., is defined as

. Each vector in the bar-
gaining solution set verifies and solves the fol-
lowing maximization problem ( ):

Hence, satisfies that for and
otherwise.

Remark 2.2:From the assumption that there exists a
nonempty set of users who can achieve performance superior
to their initial performance, it implies that . Note that
for each , . The users in are not
considered in the optimization above.

It can be readily shown that if each function ( ) is
injective on , then the bargaining solution set is a singleton
and therefore there exists a unique NBS (in the space).

We now state an equivalent optimization problem, which will
also result in the NBS. The proof can be found in the Appendix.
We first need the following result whose proof is given in the
Appendix.

Lemma 2.1:Let be concave. Then
is concave. If is injective,

then is strictly concave.
Using the above, we can now formulate an equivalent opti-

mization problem, which we will consider in the sequel.
Theorem 2.2:In addition to the assumptions in Theorem 2.1,

let ; be injective on .
Consider the two maximization problems () and ( ):

Then:

1) ( ) has a unique solution; the bargaining solution set is
a singleton.

2) ( ) is a convex program and has a unique solution.
3) ( ) and ( ) areequivalent. Hence, the unique solution

of ( ) is the bargaining solution.
Remark 2.3: In [17], it has been shown that if the user utility

functions are logarithmic, then the maximization of the sum of
the utility functions leads to an allocation which has been termed
as proportionally fair by Kelly. In light of Theorem 2.2, this
corresponds to a NBS. However, the definition of a NBS does
not require the user objectives to be logarithmic functions. In
general, all that can be said in the case when the sums of user
utilities are maximized as considered in [17], [21] is that the
allocation will be a Pareto optimum. This optimum is referred
to as a social optimum.

Remark 2.4:Since the NBS is Pareto optimal, it im-
plies that there exists a set of weights such that

where

(1)
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This follows from the fact that every Pareto point can be ob-
tained as the solution to the maximization of the sum of the
weighted objectives (see [1]).

III. OPTIMAL AND FAIR BANDWIDTH ALLOCATION FOR

ELASTIC CONNECTIONS

It is natural to adopt a game theory approach to model and ad-
dress the issue of network resource allocation. In the context of
flow control in packet-switched networks, many schemes were
based on the use of game theory and gave a characterization for
some candidate points. Some of them considered Nash equi-
librium points [4], [10] and others considered Pareto-optimal
points [8], [9]. In [22], the Nash bargaining point was proposed
as a suitable solution for the design of an optimal and fair flow
control.

As in [22], we consider the Nash bargaining point as the de-
sired point for the operation of the network. This is due to the
Pareto optimality and fairness property associated with NBSs.
It is important to note that NBSs are not related to Nash equi-
libria which (except in the case of inessential games) are Pareto
inefficient [11], [1]. Nash equilibria are important in that they
arise in the context of greedy optimization.

The definition of a Nash bargaining point is highly dependent
on the consideration of an initial performance point (termed
in the previous section). It represents a minimum performance
that a user wants to achieve and the user will not enter the game
if it is not possible. In the context of elastic services, for each
connection (user) the initial performance can be viewed as a per-
formance achieved by the minimum rate (MR) they want guar-
anteed by the network.

First, we consider a centralized (or global) model in which
network resources are the available link capacities and each con-
nection aims at maximizing its allocated rate beyond its min-
imum desired rate. Given that there are many users who all share
the same objective, the network performs an allocation which is
fair to all the users while at the same time efficient from the
point of view of the network. As argued above, this corresponds
to finding the NBS for the allocation problem.

Then, we show that the NBS from the point of view of the net-
work can be achieved by solving a user-level greedy optimiza-
tion problem by suitable modification of the user objectives. The
required modification comes in the form of implied costs asso-
ciated with the global problem and these in turn play a role in
network revenue maximization.

A. Network Optimal Rate Allocations

We consider a static model for the centralized (network)
problem in which connections demand use of the network
and are identified by the routes (or paths) they take. We assume
there are links or nodes within the network. Each connection
is assumed to be elastic with a peak rate (PR) and an MR to be
guaranteed by the network. Connections compete for available
bandwidth resources within the network. These resources are
network link available capacities and they are assumed to be
fixed (nontime-varying). With respect to the abstract frame-
work already presented, the admissible rate vector spaceis

determined by network capacity constraints and the minimum
and peak rates of the connections. It is defined as follows:

MR PR and (2)

where is the vector of link capacities, PR is the vector of peak
rates of the connections, and is an incidence
matrix, i.e., is equal to 1 if the link belongs to the path
and 0 otherwise.

In the context of elastic services, it is natural to assume that
each connection aims to obtain an allocated bandwidth greater
than its minimum rate and as close to its peak bandwidth re-
quirement as possible. Therefore, with respect to the framework
described above, the performance functionfor a user is
simply defined as . Moreover, MR represents the initial (or
minimum) performance desired by user.

For simplicity and without loss of generality, we assume that
on each link the spare capacity is strictly superior to the sum of
the MR s of the connections crossing this link. If this assump-
tion is not valid, then our model and results are still valid for the
subset of connections to which we can allocate more than the
corresponding minimum rate. One can show that this assump-
tion ensures that has a nonempty interior.

With respect to the framework described in Section I, the NBS
of the centralized model is an optimal and fair rate allocation of
network available capacities to the connections. From The-
orem 1.1, the NBS is the solution of the following convex global
optimization problem :

MR

MR

PR

Proposition 3.1: Under the hypothesis that MR
; , there is a unique NBS for the centralized

problem which is characterized as follows:
There exist ( ) and ( )

such that:

• for each

MR PR MR (3)

• PR ;
• ;
• .

Proof: Now under the assumption that MR
; , the set is nonempty, convex, and com-

pact.
Define

MR

then is strictly concave.
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Noting that the constraints are linear in and is ,
it implies that the first-order Kuhn–Tucker [23] conditions are
necessary and sufficient for optimality.

Let denote the Lagrangian where
, ; , and ;
denote the Lagrange multipliers associated with the

MR, PR, and capacity constraints respectively.
Then

MR

PR

Then the first-order necessary and sufficient conditions are
given by

MR

and

MR

PR

Under the assumption MR , we see that the
constraints MCR are nonactive and hence for
all . Furthermore, if PR and

PR otherwise.
Hence, the result follows as stated.
Remark 3.1:The Lagrange multiplier has the interpreta-

tion as the implied cost associated with the network link. It
represents the marginal cost of a rate unit allocated for any con-
nection crossing link.

Having obtained the characterization of the optimal (in the
Nash bargaining sense) rates allocated in the centralized or net-
work framework we now address the issue of how we can de-
fine a local optimization problem (for each connection or user)
which yields the above allocations.

B. The User Problem

In the previous section, we formulated and solved the cen-
tralized network optimal rate allocation problem. In general,
this will involve centralized coordination amongst the connec-
tions. In a network distributed over a vast geographical area, this
will require much communication overheads. Thus, an impor-
tant issue is whether such a computation can be decentralized at
a user level in which the user tries to optimize its performance
greedily. In general, greedy procedures lead to Nash equilibria
[28] which, being Pareto inefficient, are not NBSs. Thus, clearly,
users must use modified criteria if the greedy optimization is to
lead to the NBS for the network.

The answer to the above question is in the affirmative. This
is well known in the theory of nonlinear programming as the
concept of tolls or penalties. This is also the approach used by

Kelly [17]. The basic idea is that if we think of the implied costs
as the penalties to be paid by the users, then local optimization
of the net user “goodput,” i.e., the desired performance minus
the penalty to be paid, will yield a Pareto-optimal point. This
will be the optimal of the weighted sum of the original objec-
tive functions, the weights being the penalties. Such an idea has
also been discussed in the context of packet-switched networks
in the thesis of Douligeris [7], where the decentralized proce-
dure attempts to arrive at the centralized or Pareto-optimal flow
control settings via the imposition of penalties.

In the decentralized model, each connection can optimize
only its allocated rate. The rate for the connection is bounded
from below by the MR and from above by the PR. It is assumed
that each user optimizes its rate without regard to the other users
(i.e., local optimization over for user ). However, offering
unrestricted access to each user or connection is not in the net-
work’s interest and thus the network penalizes or charges each
user for use of network resources. This is reflected in a penalty
in the user optimization criteria.

We introduce positive network parameters, denoted by
, which represent the penalty or cost in-

curred per unit of bandwidth or capacity by theusers, given
that they share the resources. Thes also can be interpreted as
the penalty per bandwidth unit that the network imposes on user

for consuming bandwidth within the network. We show how
the s are determined such that the corresponding rate alloca-
tions lead to the centralized NBS rate allocations.

The objective of each user is to maximize its net utility which
is, for a particular rate, the difference between the utility ob-
tained from the allocated bandwidthand the cost of accessing
the network given by .

Hence, let denote the following convex problem associ-
ated with user:

MR

MR

PR

The network aims to determine the optimal rate allocation to
users that maximizes its total “revenue” based upon “charging”

per unit of bandwidth to user. Hence, the network has to
solve the following convex problem ():

MR

PR

The following proposition shows that by appropriate choice
of network costs, the s, the NBS of the centralized model
maximizes each user’s net utility and the network total revenue.

Proposition 3.2: Let be the unique
NBS of the centralized problem . Let ,
where denotes the implied cost associated with link;

obtained from the solution to .
Then is the solution to the user optimization problem

MR (4)
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and is the solution to

(5)

where

MR PR (6)

and is the admissible bandwidth space as defined earlier.
Proof: From proposition 2.1, the solution to is given

by

MR

where

PR

Note by definition is just the implied cost for theth con-
nection which uses the route specified by the linksalong its
path, where the are the implied costs associated with link.

In order to show that for each , is the unique
solution of the strictly convex problem we introduce the
Lagrangian for the optimization problem .

Let

MR MR

PR

denote the Lagrangian.
Then the necessary and sufficient Kuhn–Tucker conditions of

are given by

MR
MR

PR

PR

The above holds for every . Once again
noting that MR , we obtain .

In a similar way, by considering the Lagrangian for the
problem ( ) we obtain that the necessary and sufficient
Kuhn–Tucker conditions are given by

for each

MR

PR

From above, by taking and , we see that
the solution in terms of satisfies the Kuhn–Tucker nec-

essary conditions for and . Sufficiency follows from
uniqueness.

Remark 3.2:The optimization problem (5) is just an instance
of the characterization of the Pareto points given in Remark 2.4
with weights .

To summarize the results so far, we have shown how the no-
tion of fairness can be used to obtain the optimal (in the Pareto
sense) network rate allocations and then shown how they could
be realized using a local procedure in which the implied costs
associated with the path taken by the connection play an impor-
tant role.

One problem in implementing the decentralized optimization
problem is that we need knowledge of the link implied costs,
which are only obtained from the solution to the global network
optimization problem. It can be argued that if that is the case
there is no benefit in considering the decentralized optimization
problem, since if we solve the global problem, then we can di-
rectly obtain the optimal and fair bandwidth allocations.

In the following section we show that the bandwidth allo-
cation problem can indeed be implemented in a distributed
manner, without solving the global problem directly.

IV. DISTRIBUTED ALGORITHM FOR FAIR BANDWIDTH

ALLOCATION

As mentioned above, the algorithm could easily be imple-
mented as a local procedure [optimization of ] once we
know the user implied costs . This is, however, only deter-
mined by solving the global problem, and hence there is no gain
in using the local interpretation unless we can devise a local way
of obtaining this solution.

In this section, we present a distributed algorithm for ob-
taining the optimal fair bandwidth allocations based on local
algorithms and measurements. The approach we use is drawn
from the so-called gradient projection methods [2] in optimiza-
tion theory. The algorithms proposed in [21] are also based on
the gradient projection method. However, in [21] they assume
that the utility functions are concave with bounded second-order
derivatives. In our context, such an assumption does not hold,
and hence we provide a proof of the convergence.

We present an algorithm based on the gradient projection of
a dual problem associated with the original problem.1 The
advantage of this is that in any realistic network the number of
links is usually much smaller than the number of users.
The dual problem is based on thelocal algorithms run at the
different nodes which are ingress nodes for a given link. The
important feature of such an algorithm is that the link updates
only require information on users who use that link, and hence
global information is not required. The complexity of such a
procedure is much less than if it is done at the user level in terms
of communication overheads. This is because at a given link
only the information about connections using that link is needed,
while at the user level, information about all other connections
which affect the given connection is needed.

1In [30], we also propose an algorithm which is based on the primal problem
as in [18], but which requires much more information exchange than the one we
present here.
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We now discuss the framework and algorithm below. The
proofs of the technical results are given in the Appendix.

We consider the convex problem (primal problem) equiv-
alent to since they have the same optimal solution (cf. The-
orem 2.2):

MR

MR
PR

Let be a subset of defined by connection bandwidth
constraints and let be the Lagrangian associated with and
defined over . and are defined as follows:

MR

The dual function to corresponding to is then
defined as follows:

(7)

Since the primal is separable and has a unique solution,can
be computed explicitly. Indeed, for each

MR

(8)

where for each , is defined on as fol-
lows:

PR if
PR MR

MR if
PR MR

(9)

The dual problem is the following:

Since is convex, is convex over , and there exists
such that for each . It im-

plies that there exists a Lagrange multiplier and therefore there
is no duality gap (see [2, Ch. 5]). Hence, has at least one
optimal solution.

Let be the set of solutions of the dual problem. This set
is also the set of Lagrange multipliers.is nonempty and can
be characterized in many ways ([2, Ch. 5]). The saddle point
characterization allows us to show thatis compact (see the
Appendix). From duality, is concave on . One can show

readily (Danskin’s theorem in [2]) that is also and the
partial derivatives are determined as follows:

A. Dual-Based Algorithm

We propose an algorithm that solves the dual problem
and which is based on a simple gradient-projection method. The
algorithm uses a constant step-size. We will show that by a suit-
able choice of the step-size the algorithm converges to, the set
of the solutions of the dual problem. Moreover, since the solu-
tion to the primal problem is unique, the corresponding primal
solutions converge to the unique Nash bargaining vector.

Let denote the step-size (or gain) associated with the
following recursion scheme of dimension.

For each and

(10)

where for defined in (9)

(11)

denotes the allocated bandwidth at iterationfor user , and
denotes the implied-cost vector at it-

eration with arbitrary. It can be taken to be 0.
Let denote the number of links crossed by userthrough

the network and define

PR MR (12)

Then defines bounds on how large we can choose the gain
.
We now state the main result on the convergence of the algo-

rithm defined above.
Proposition 4.1: Let be a sequence generated by (10)

such that and .
Let be the Nash bargaining allocation vector [solution of
].

(13)

The proof is given in the Appendix.

B. Network Implementation

In the following, we present an asynchronous distributed im-
plementation of the algorithm. The iterations can be run at each
network node using local information ( for link ) and infor-
mation sent by relevant users which use link. A user updates
its local variable ( for user ) using information received from
the links that this user crosses. After each update, a user sends
the new value to these links.
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Fig. 1. RM packet structure.

Fig. 2. Link updating and measurement process.

We propose a scheme using explicit-rate type of notification
modeled after ABR schemes.

We assume that elastic sources regularly send forward re-
source management (RM) packets in order to get feedback from
the network about the congestion state or resource availability.

The information necessary for the operation of the control
scheme is conveyed by the RM packets, which are of two
kinds: forward RM packets which are created by sources and
conveyed along their corresponding paths, and backward ones
which are created by destinations that turn around the forward
RM packets. The fields of an RM packet (Fig. 1) relevant to the
description of the control scheme are DIR (direction: forward
or backward), MR (connection minimum rate), PR (connection
peak rate), CP (congestion price), and ER (explicit rate). CP
is used by the network nodes to communicate the value of the
price variables ( for link ) they control. ER stands for the
maximal rate at which a given connection can transmit data.

There is a set of parameters associated with the control
scheme: a constant step-sizeused to update the price vari-
ables, feedback intervals (FI in Fig. 2), and some measurement
intervals (MI in Fig. 2). Each network link has its own feedback
interval and measurement interval. A link price is updated at
the beginning of each feedback interval and the total link input
rate is measured during the measurement interval, as shown in
Fig. 2.

If we interpret as the current data rate of connection
and as a function of the current network link price vector, then
in (10) the sum can be interpreted as the
current total input rate at link. It is important to note that the
new price for a link is computed when the information about
current total input rate (the above sum) is available at the link.
This helps determine the right values for the feedback and mea-
surement intervals associated with network links.

In the following, we describe the local procedures associated
with the allocation scheme.

Source Procedure:

• A source sends a forward RM packet and inserts the MR
and the PR in the corresponding fields. Then, it sends the
packet to the destination.

• At the reception of a backward RM packet, a source ad-
justs its transmission data rate according to the explicit rate
notification (ER) contained in the RM packet. We consider

that a source has a variable called allowed rate (AR) which
is updated as follows: AR ER. AR is the maximal rate
at which a source is allowed to transmit.

Destination Procedure:

• Upon the reception of a forward RM packet, a destination
creates a backward RM packet, puts zero in the CP field,
and sends it back to its corresponding source.

Network Node Procedure:For a particular output link:

• At the beginning of each feedback interval (Fig. 2), the
node updates the linkprice using the input rate measured
during the previous measurement interval, a constant
step-size , and the link available capacity . The fol-
lowing illustrates the price updating:

• Upon the reception of a backward RM packet, ER and CP
are modified using the current link price, the MR, and the
PR. The modifications are done as follows (ER is modified
using the new value of CP):

CP CP

ER
PR if CP

PR MR

MR
CP

if CP
PR MR

Once the modifications are completed, the backward RM
packet is relayed back to the source.

• A node, at regular intervals, measures (Fig. 2) the total
input rate at the link.

It can be readily see that the ER contained in a backward RM
packet does not increase when going through network nodes
in the backward direction. In addition, the implementation of
the scheme does not differentiate between network access nodes
and the other nodes as far as the update of ER is concerned.

For the good operation of the control scheme, it is important
to dimension for each link the feedback and measurement in-
tervals. Indeed, the feedback interval should be large enough to
allow the sources traversing a particular link to react to the new
price (after update) conveyed by the backward RM packets and
for a link to experience the result of the sources’ reaction. The
total input rate at a link should be measured during that period,
i.e., when the response of sources to the new price has reached
the link.

The rate of convergence is governed bywhich depends on
the knowledge of defined earlier. This is the only quantity
which needs to be broadcast to all nodes.

V. PRICING FRAMEWORK FORELASTIC SERVICES

We now address the issue of rate allocation together with the
pricing issue in the context of elastic-rate connections consid-
ering users’ bandwidth requirements and users’ budgets (will-
ingness-to-pay) for bandwidth above their guaranteed minimum
cell rates. As already shown in Proposition 2.2, if the network
charges according to the user-implied costs, the network rev-
enue is maximized when allocated rates are according to the
NBS. This key property will allow us to formulate a pricing
framework for the network to charge the users.
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The scenario we consider is the following.
Each user informs the network of its budget (or maximum

amount the user is willing to pay for the required bandwidth be-
yond the guaranteed rate) in a simple way. At connection setup,
a user communicates its budget for bandwidth allocated beyond
its MR. Users expect that the network will take their budgets
into consideration when allocating the available bandwidth to
all competing users. The budget may be declared by the user
or chosen from a given set of values provided by the network
operator. For example, the network can provide different tariffs
with the proviso that the user will not pay more than the selected
amount which determines the type of service the network may
guarantee. The choice of a user reflects the valuation based upon
the budget for an amount of bandwidth beyond guaranteed rate.
What the network operator undertakes is to provide a fair share
of the bandwidth based on the user budgets and bandwidth re-
quirements.

From the network viewpoint, it must set up a charging scheme
such that the user budget is never exceeded, and yet the net-
work maximizes its revenue when it allocates the bandwidth ac-
cording to the requirements above.

A. Model and Assumptions

We consider the model of users similar to the one described
in Section III-A. Each user (connection)has a minimum rate
MR and a peak rate PR. Each user chooses a parameter
which represents the total cost (budget) it is willing to pay for
the excess bandwidth beyond the minimum cell rate. As men-
tioned above, these could be from tariffs published by the net-
work (for example Gold, Silver, or Bronze services, which can
guarantee different levels of bandwidth such as providing PR or
some amount between MR and the PR depending on the net-
work conditions). One desirable property is that depending on
network conditions, a user must not be penalized for choosing
a larger budget if resources are not congested.

As in the centralized model (Section III-A), we adopt the fol-
lowing simplifying assumption (without loss of generality): on
each link, the spare capacity is assumed to be strictly superior
to the sum of the MRs of the connections crossing this link.

Bargaining theory also provides us with the necessary frame-
work to address fair and efficient bandwidth allocation subject
to both user bandwidth requirements as well as budgets. The
basic framework is one of asymmetric NBSs [24]. The idea is
that given that users have different budgets, they desire a cor-
responding proportional share of the bandwidth. At the same
time, from the point of efficiency, it is desired to operate the net-
work at allocations which correspond to a Pareto-optimal point.
Asymmetric NBSs are solutions which satisfy all the assump-
tions of the usual NBS except the property of symmetry. This
is because their allocated bandwidth must reflect their different
preferences in terms of their budgets.

Based on this we can now state the main result.
Proposition 5.1: Let denote the budget (or willing-

ness to pay) of user. Then the optimal and fair asymmetric
NBS is given by the unique solution to

MR (14)

and, in particular, the solution is given by the following:

• If then MR .
• If and then

MR PR MR (15)

where for each , .
• If , then PR .

Proof: The proof readily follows, as in Proposition 2.1, by
noting that the solution to MR is the same as
that of MR .

The rest of the details can be worked out as in Proposition 2.1
and are hence omitted.

Based on the above solution, there is a natural pricing struc-
ture that we propose. Let denote the price charged to user

( ). Let

MR (16)

where is some tariff function based on the willing-
ness-to-pay . It could be viewed as a fixed price for access
with an MR guarantee (as, for example, in Gold, Silver, or
Bronze services, or other differentiated services [15]).

The main property of such a price structure is that it contains
two components, the first being a fixed tariff associated with the
minimum guarantee (and budget) and the second being a con-
gestion-based price (which can be viewed as an “elastic price”)
on the actual bandwidth allocation costs. Exactly as in Propo-
sition 2.2, if the network charges useraccording to ,
then the network revenue is maximized. This is stated in the
following proposition.

Proposition 5.2: Let be the solution to the asymmetric
Nash bargaining problem. Thensolves

MR

PR

We conclude by discussing some properties of the above so-
lution.

• If a user has no budget for the share of bandwidth beyond
MR , then the allocated rate is MR.

• If a user has a budget for the share of bandwidth beyond
the minimum rate, then the allocated rate is greater than
the minimum rate.

• If the network resources along a user’s path are free (
, i.e., the links used are not congested),

then the allocated rate is the peak rate.
• If the network resources along a user’s path are not free

and the user’s budget exceeds the network path cost per
unit of bandwidth by more than a factor ofPR MR ,
then the user is allocated its peak rate.

• If the network resources along a user’s path are not free
and the user’s budget is less than the path cost per band-
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width unit, then the user is allocated a rate between the
minimum and peak rate proportional to the budget of the
user. As a result, if two users share the same resources and
one of them is willing to pay double of the other, then that
user receives double the share of bandwidth beyond min-
imum rate.

• If two users share the same resources, have the same
maximum excess bandwidth (difference between peak
and minimum rates), and are willing to pay the same
price, then they get the same share of excess bandwidth.

• In all scenarios, the user is never charged more than,
which is its budget or willingness-to-pay. The user will
be charged less than if the users budget is very high
in comparison to the path costs and so will not be overly
penalized.

• Finally, the pricing structure we propose provides the nec-
essary regulation to prevent users from inflating their bud-
gets.

VI. CONCLUSION

In this paper we have presented a game theoretic framework
for the allocation of optimal rates to elastic connections which
share common bandwidth. This framework puts into focus the
recent work of Kelly [17], [21] and allows us to go further in
showing how we can come up with a charging scheme and
a joint allocation and pricing policy which is efficient and
which presents nice fair properties. We have also provided a
distributed asynchronous algorithm to implement the solution
using an RM-based scheme found in the ATM ABR context.

Future work will address the issues of the algorithmic imple-
mentation in the context when randomness is introduced due
to measurements, as well as the fact that real situations involve
nonstatic scenarios.

APPENDIX

In this section, we present the relevant proofs of the results in
Section I and the proofs on the convergence of the distributed
algorithm presented in Section III.

We first state the following well-known result on the relation
between arithmetic and geometric means which is needed to
prove Lemma 1.1.

Lemma 6.1:Let be strictly positive real
numbers satisfying . Let be
positive real numbers. Then, (unless theare all equal)

Proof of Lemma 1.1:

1) Let and , and . Since is concave
and is an increasing function, the following inequalities
hold:

Let

It is easy to see that

Using the result of Lemma 6.1 above, it readily follows
that

Hence, is positive and is concave.
2) Let and such that . Let and

. Since is injective, . Using the
same arguments as above, invoking Lemma 5.1

Hence, is strictly positive and is strictly concave.
Based on Lemma 1.1, we can readily prove Theorem 1.2.

Proof of Theorem 1.2:

1) This follows from the fact that is injective for each
.

2) One can show that is nonempty, convex, and closed.
From Lemma 1.1, it follows that the objective function
is strictly concave. The objective function represents a
lower barrier for the such that . It is
upper bounded in excluding the elements satisfying

.
3) It can easily be shown that a solution of is a

solution of , and conversely, by writing down the
Kuhn–Tucker conditions.

We now prove the convergence of the algorithm presented in
Section III. We first show that the set of solutions to the dual
problem is compact.

Proposition 6.1: , the set of dual solutions, is a compact set
of .

Proof: Let be the unique solution of problem . Then,
is the set of all such that is a saddle point of
[2, ch. 5].
Let be an element of . Then, ,

. We know that there exists such that for
each , MR PR and for each

, . One can show that
and therefore and . Let

. Then

As a result, , .
So, is a bounded set. It is closed because it is equal to

. Hence, is a compact of .
We now evaluate the gradient of .
Proposition 6.2: is continuously differentiable on

and for each
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Proof: is concave and differentiable for each
. is continuous. For each , is the unique

vector minimizing over . Hence, the conclusion of the
proposition follows (Danskin’s theorem in [2]).

The following lemma shows that the gradient of the dual func-
tion is Lipschitz.

Lemma 6.2:The gradient of , denoted by , is Lip-
schitz on . Let denote the Lipschitz constant. For each

, let be the number of links utilized by
user . Then

PR MR

Proof: It can readily be seen from the definition of
for each , the Lipschitz constant of is
PR MR .

Let and be two elements of , and let denote the
norm of .

For each define

Then

Noting that , for each

PR MR

Hence

PR MR

Let be the number of links crossed by user. Since
, , the result follows. Note

denotes the Euclidean norm.
The next result shows that the sequence converges to a

point in .
Proposition 6.3: Let be a sequence generated by (10)

such that and . Then

as

Proof: Let . Since is over the
closed and convex set and the gradient of is -Lipschitz,
via [2, prop. 2.3.2, Ch. 2], every limit point of is an ele-
ment of . We now show that the sequence is bounded.
Since, is concave on , is a convex and closed set, and

nonempty and bounded, the following level set is compact:
(see [2, Appendix B, prop.

B.9]). Using the descent Lemma and the projection characteri-
zation, one can show that for each

Hence, is bounded. This implies that there exists a
convergent subsequence. Since the set of its limit points is in-
cluded in , the result of the proposition follows.

Remark 6.1:Note the above result only states that the set
of all limit points of are dual optimal. In general, there
is no unique limit. Also, a stepsize in the interval
guarantees an increase of the dual functionat each iteration.

Using the above result, the continuity of and the
uniqueness of the solution to the primal, the main result
readily follows.
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