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Energy Storage and Regulation: An Analysis
Dariush Fooladivanda, Catherine Rosenberg, Fellow, IEEE, and Siddharth Garg

Abstract—Electric system operators rely on regulation services
to match the total system supply to the total system load in quasi
real-time. The regulation contractual framework requires that a
regulation unit declares its regulation parameters at the begin-
ning of the contract; the operator guarantees that the regulation
signals will be within the range of these parameters; and the
regulation unit is rewarded proportionally to what it declares
and what it supplies. We study how this service can be provided
by a unit with a non-ideal storage. We consider two broad classes
of storage technologies characterized by different state of charge
evolution equations, namely batteries and flywheels. We first
focus on a single contract, and obtain formulas for the upward
and downward regulation parameters that a unit with either a
battery or a flywheel should declare to the operator to maximize
its reward. We then focus on a multiple contract setting, and show
how to analytically quantify the reward that such a unit could
obtain in successive contracts. We quantify this reward using
bounds and expectation, and compare our analytical results with
those obtained from a dataset of real-world regulation signals.
Finally, we provide engineering insights by comparing different
storage technologies in terms of potential rewards for different
contract durations and parameters.

Index Terms—Frequency regulation, energy storage.

I. NOMENCLATURE

EST Energy storage technology
(S)RU (Storage) regulation unit
D, δ Contract and time-slot (ts) duration
ηc, ηd Charging and discharging efficiencies of the storage
ρ Depth of discharge of the storage
B′, B Capacity of the regulating storage, B = ρB′ (Wh)
∆c,∆d Max charging and discharging power limits (W)
Γ Self-discharge efficiency (Γ = e−δ/Tloss)
α, γ Charge/discharge time (α = B′

∆c
, γ = B′

∆d
) (hour)

β Discharge to charge ratio (= ∆d

∆c
= α

γ )
Cn Contract n
K Set of K time-slots (D = Kδ)
R, r Upward and downward regulation parameters (W)
an, bn Prices for each unit of upward and downward

regulation per unit of time in Cn
fn(·) Fixed part of regulation reward in Cn ($)
FT Fixed part of regulation reward over a period of

length T hours ($)
sk Received regulation signal at ts k (W)
Un State of charge (SoC) at the beginning of Cn (Wh)
b(k) SoC of the storage at the end of ts k (Wh)
ASC Annual storage cost ($)
ACC Annual capital cost ($)
ARC Annual replacement cost ($)
FRP Future replacement price ($/KWh)
AOMC Annual operation and maintenance cost ($)
OMC Fixed operation and maintenance cost ($)

The first and second authors are with the Department of Electri-
cal and Computer Engineering, University of Waterloo, Canada ({cath,
dfooladi}@uwaterloo.ca). S. Garg is with the Department of Electrical and
Computer Engineering, New York University, USA (sg175@nyu.edu).

CC Capital cost ($)
CRF Capital recovery factor
T, IR Planning horizon (year) and interest rate (%)
Ls Lifetime of storage technology s (year)

II. INTRODUCTION

ELECTRICAL grid operators have the responsibility to
maintain the target grid frequency. To achieve this goal,

operators need to balance demand and supply at all times using
services that operate at different time-scales [1]. Typically,
operators predict the demand a day ahead, and schedule some
slow-ramping generators with different characteristics (e.g.,
ramp rates) for supplying electricity a day in advance. Then,
using generators or flexible loads, quasi real-time adjustments
are made to maintain the grid’s reliability [1]-[2].

In this study, we focus on a regulation service which
balances demand and supply in quasi real-time. Typically,
this service is offered by conventional fossil-fuel generators
(e.g., natural-gas-fired steam turbines, etc.). These regulation
units (RU) can vary their supply rate in response to regulation
signals sent from every ten seconds to every few minutes.
With high penetration of intermittent resources in the near
future, conventional regulation services that use slow ramping
RUs, such as generators, might have difficulties coping with
high levels of fluctuations in supply and demand. Hence, the
participation of fast-response storage devices in regulation
services might be necessary to maintain the balance between
demand and supply [2]. Energy storage technologies (EST),
such as flywheels and batteries, can provide fast and accurate
frequency regulation services [3]-[6], and also enable energy-
recycling [7]. However, there are also challenges linked to
their limited capacity, charging and discharging power limits,
and self-discharge. We will refer to an RU that uses an EST
to provide regulation services as an storage regulation unit
(SRU).

The context of this study is the engineering and operation
of SRUs. We will consider two broad classes of ESTs, namely
flywheels and batteries. These two classes of ESTs have differ-
ent characteristics not only in terms of their parameters [21]-
[22], but also in terms of their state of charge (SoC) evolution
equations. In our previous study in [18], we used a single
simple SoC evolution model for energy storage technologies
(EST). While this SoC model is appropriate for batteries, it
does not accurately model the SoC evolution of flywheels.
Flywheels which are considered as a promising potential
storage technology for regulation services, are composed of
an induction motor-generator and an active power controller.
In [27], we obtain formulas for the flywheel SoC evolution
equations, and show that they significantly differ from the SoC
evolution model used in [18]. More precisely, the formulas
for the SoC evolution equations for flywheels account (a)
for frictional windage and magnetic losses from the bear-
ings and motor-generator components (i.e., the self-discharge
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phenomenon), and (b) for the inertia of the active power
controller inside the flywheel energy storage system. Clearly,
the significant differences on the SoC evolution equations of
the two classes of ESTs might yield significant differences
in their performances in regulation services. In this paper, we
use the accurate SoC evolution model for flywheels to provide
completely new analytical results for frequency regulation for
this class of ESTs.

We begin by describing the regulation service more pre-
cisely. Every D units of time, a new regulation contract,
negotiated a few units of time ahead, starts. At the beginning of
each contract, the operator and the RU agree on the regulation
parameters r and R in Watts (r,R ∈ R, r < R) for the
contract duration D = Kδ (where δ is the duration of a time-
slot). The operator will send regulation signals to the RU in
every time-slot and commits that the signal sk in time-slot
k ∈ {1, . . . ,K} will obey the following constraint:

r ≤ sk ≤ R .

There is no other constraint on the sequence of regulation
signals, sent by the operator. The RU commits to provide any
power in the range [r,R] in response to the regulation signals
sent by the operator. The RU must supply constant power sk
during time-slot k if sk is positive, and draw constant power
(−sk) from the grid if it is negative. Typically, the RU is
rewarded for its flexibility in terms of R and r, and for the
amount of energy that it effectively supplies/draws during the
contract. There is also a penalty to pay if the RU cannot fulfill
its commitments in terms of R and r. During the negotiation
phase, the RU needs to select its parameters r and R so as
to maximize its reward while keeping the risk of a regulation
failure close to zero.

The purpose of this paper is threefold, and covers both the
planning and operation of an SRU. First, from an operational
perspective, we aim to provide formulas on what the SRU
should declare in terms of its regulation parameters R and r
for both classes of storage technologies. The challenge here
stems from the fact that the regulation signals are not known
in advance. Second, from a planning perspective, our goal is to
help an SRU to determine, ahead of time, the storage technol-
ogy, sizing, and the contract duration that would maximize its
operational rewards and minimize its costs. Finally, in order to
answer the planning question above, our goal is to enable an
SRU to estimate, beforehand, the reward that can be obtained
in successive contracts. Note that in consecutive contracts, the
SoC at the beginning of a contract depends on the regulation
signals received during the previous contract.

The following contributions have been obtained for two
broad classes of non-ideal ESTs characterized by different SoC
evolution equations:

1) For a single contract, assuming the initial SoC is known,
and that the SRU wants to keep the risk of a regulation
failure equal to zero, we obtain simple formulas for the
values of the regulation parameters R and r that the SRU
should declare to the operator to maximize its reward.

2) We then provide means to analytically quantify, ahead of
time, the reward that an SRU could obtain in successive
contracts using analytical upper and lower bounds, and
an approximation method for the average reward.

3) We validate our approximations for the expected reward,
and then provide engineering insights by comparing the
potential rewards the EST can receive for different con-
tract durations and parameters.

The paper is organized as follows: Section III presents
the related work. The system model and the EST models
are introduced in Section IV. In Section V, we present our
analytical results first for a single contract and then for
N consecutive contracts. Numerical results are provided in
Section VI. In Section VII, we compare the two classes of
ESTs in terms of their minimum achievable reward. All the
proofs are presented in the Appendix.

III. LITERATURE BACKGROUND

In conventional power grids, grid frequency is maintained
by generators and flexible loads that can vary their supply
rate quickly. A comprehensive overview of the conventional
frequency regulation services is provided in [8]. Practical
installations and simulations have shown that there are several
benefits in using ESTs in regulation service [1]-[2], [9]-[13].

One of the key challenges in the context of frequency
regulation is the risk of regulation failure. In the context of an
SRU, this would happen if it is unable to meet its contractual
obligation of supplying or drawing a certain amount of power
if it is, for instance, fully charged or depleted. In [14], Lu et al.
show, via simulation, that there is indeed a risk of a regulation
failure when a flywheel provides regulation services by itself
without any control over its charging/discharging rate.

Several approaches have been proposed to address regu-
lation failures including: (a) combining SRUs with hydro-
power plants [1], (b) allowing SRUs to purchase (or sell)
electricity [15], (c) sending “energy neutral” regulation signals
[16], and (d) over-dimensioning [17]. While combining an
SRU with a hydro-power plant has been shown to reduce
the risk of regulation failure significantly [1], [14], it is not
always practical or feasible. Some independent system oper-
ators (ISO) (e.g., the New York and Midwest ISOs) allow
SRUs to purchase (or sell) electricity from the market to
charge (or discharge) their storage devices when needed [15].
Nonetheless, the risk of regulation failure still exists because it
is difficult to perfectly estimate when the storage will be fully
charged or discharged. The California Independent System
Operator (CAISO) has adopted a different approach, called
ACE smoothing, in which the slow moving component of the
regulation signal is fulfilled by conventional RUs, while SRUs
fulfill the remaining fast-changing component [7], [16]. This
fast-changing component tends to be energy-neutral since it
does not contain any long term trends [16]. Energy-neutral
regulation signals are optimal for ideal storage devices with
no charging or discharging losses, since they help maintain
their SoC close to or at the preferred level in consecutive
contracts. However, in the presence of losses, the risk of
regulation failure in a sequence of contracts is not zero.
Finally, conservatively over-dimensioning an SRU [17] can
also minimize the risk of regulation failure, but at the expense
of increased installation cost.

In [33], Ghiassi-Farrokhfal et al. propose an analytical
model for a class of ESTs that includes all battery technologies
and compressed air energy storage systems. Using teletraffic
techniques, the authors propose power performance bounds for
energy systems with non-ideal ESTs in firming-like scenarios.
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In our preliminary work [18], we computed the regulation
parameters R and r that an SRU with a non-ideal EST
governed by a simple SoC evolution equation should declare
to the operator at the beginning of a contract so as to
maximize its reward while ensuring that there is no regulation
failure. However, the simple SoC evolution equation used
in [18] did not account for self discharge, and as we will
discuss, is not suited for ESTs like the flywheel. This paper
extends the results in [18] by considering: (a) a more accurate
SoC evolution equation for batteries that takes self-discharge
into account, and (b) detailed SoC evolution equations for
flywheels that model the inertia of the active power controller
and core losses inside the flywheel energy storage system.
In addition, we have validated our analytically derived (but
approximate) expressions for average reward using actual
regulation signals from the Bonneville Power Administration
(BPA) dataset [19]. Finally, we include a cost analysis of
different ESTs in Section VII that was not part of [18].

We believe that this analytical study on the operational and
planning aspects of SRUs is the first of its kind. Extensive
work has been done on energy storage and frequency regu-
lation, but none of them propose formulas for the regulation
parameters R and r that an SRU with non-ideal storage should
declare to the operator, nor do they provide expressions for the
minimum, maximum, and average reward that an SRU can
expect over successive contracts as we do in this paper.

IV. SYSTEM MODEL

We consider an SRU that offers regulation services in a
region whose power system is controlled by an independent
system operator. We assume that the time is slotted in time-
slot (ts) of size δ, and that the duration of each contract is K
time-slots (i.e., D = Kδ). At the beginning of a contract, the
SRU selects the regulation parameters R and r so that it can
always respond to the regulation signals without any failure.
We assume that the operator always accepts the parameters
that the SRU proposes at the beginning of a contract.

A. EST Models
The SRU is using a non-ideal energy storage of size B′

(Watt-hour), with charging efficiency ηc, discharging efficiency
ηd, maximum charging and discharging power limits ∆c and
∆d (Watt), respectively, and depth of discharge (DoD) ρ.
Therefore, the available capacity for the regulation service is
equal to B = ρB′.

We define the charge time α (resp. discharge time γ) as
the ratio of the storage size to its maximum charging (resp.
discharging) power limit, and the discharge to charge ratio
β as the ratio of the discharging power limit of the storage
to its charging power limit. Note that, in this study, we do
not model the state of health of ESTs. We assume that the
values of the parameters α, β, and γ are constant for a given
technology, i.e., they do not change over the lifetime of the
storage. Hence, ∆c and ∆d are proportional to the storage
capacity, i.e., ∆c = B′/α and ∆d = B′/γ.

It is assumed that the energy stored in a EST decays
exponentially with a time constant Tloss, which can vary
significantly depending on the EST. This time constant is only
50 hours for flywheels while for batteries, Tloss is more than
one year. Let Γ denote the self-discharge efficiency of the
storage, and it is equal to e−δ/Tloss .

Different ESTs have different SoC evolution models [27].
To present the SoC evolution models for batteries and fly-
wheels, let us focus on one contract, and let b(k) denote the
SoC of the storage at the end of ts k. The SoC evolution
equation determines b(k) as a function of b(k − 1), the
regulation signal sk (in Watts), and the EST parameters.

Battery: For this technology, b(k) evolves as follows:

b(k) = Γ b(k − 1)− ηdδ[sk]+ + ηcδ[−sk]+ ∀k ∈ K (1)

where b(0) = U is the initial SoC, K = {1, . . . ,K}, and [x]+

is equal to x if x ≥ 0; otherwise, it is zero. By convention, in
this model, we have ηc ≤ 1 ≤ ηd. The SoC evolution equation
shows that the SoC at ts k is a function of the SoC at ts (k−1),
and the input power at ts k.

Flywheel: A flywheel energy storage is composed of a
flywheel, an induction motor-generator, and an active power1

controller. In [27], we approximate the impact of windage and
lamination losses (i.e., the self-discharge phenomenon) on the
SoC of the flywheel with a first-order differential equation with
time constant Tloss, and model the electrical sub-system (i.e.,
the combination of the active power controller and induction
machine) with a first order system. By doing this, we obtain
SoC evolution equations that account for the inertia of the
active power controller and core losses inside the flywheel
energy storage system.

Let Tcont denote the time constant of the electrical sub-
system which is the combination of the active power con-
troller and induction machine. The value of this time constant
depends on the inductance of the electrical machine and the
control gains of the active power controller. Our SoC evolution
equations for the flywheel energy storage are given below [27]:

b(k) = Γ b(k − 1) + Ek ∀k ∈ K (2)

where Ek is given by (3) where zk, zk−1, and zeff are given
by

zk = (ηc1sk≤0 + ηd1sk>0)

zk−1 = (ηc1sk−1≤0 + ηd1sk−1>0)

zeff =
(
zk1|sk|>|sk−1| + zk−11|sk|≤|sk−1|

)
and P and Q are defined as follows:

P = Tloss −
TlossTcont
Tcont − Tloss

, Q =
Tcont − Tloss
TlossTcont

.

By convention, in our model, we have ηc ≤ 1 ≤ ηd.
Our analytical results show the SoC evolution of the fly-

wheel is not only a function of the SoC at ts (k − 1) and the
input power at ts k, but also of the input power at ts (k − 1),
and that this dependence is complex and cannot be neglected.
In contrast, the stored energy in a battery at ts k is a function
of the stored energy at ts (k− 1) and the input power at ts k.
Clearly, such differences should have a significant impact on
the optimal values of the downward and upward parameters
that the SRU can declare at the beginning of a contract, and
on the reward that the SRU can obtain in successive contracts.

1Active power is the power that is dissipated in the resistance of the load.
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Ek =

{
G(sk, sk−1), if sksk−1 < 0 and sk

sk−sk−1
> e

−δ
Tcont

H(sk, sk−1), otherwise

G(sk, sk−1) = Γ

[
P (zk − zk−1)sk

(
sk − sk−1

sk

)Tcont
Tloss

+ skTloss
(
zk−1 − Γ−1zk

)
+

(
sk − sk−1

Q

)(
eδQzk − zk−1

)]

H(sk, sk−1) = zeffΓ

[
skTloss

(
1− Γ−1

)
+

(
sk − sk−1

Q

)(
eδQ − 1

)]
(3)

B. Frequency Regulation Market Mechanism

As mentioned earlier, the SRU is rewarded for its flexibility
in terms of R and r, and for what it actually supplies/draws
during the contract. To select the values of the regulation
parameters, we focus on the fixed part of the reward, and
assume that, in contract Cn, the SRU is paid a fixed price
an ≥ 0 (resp. bn ≥ 0) per Watt of upward regulation (resp.
downward regulation) for the contract duration D. Therefore,
the fixed part of the regulation reward in a contract Cn in
which the regulation parameters are Rn and rn is

f(Rn, |rn|) = (anRn + bn|rn|)D (in dollars) .

V. ANALYTICAL RESULTS

A. Single Contract

Let us consider a single contract. We assume that the SRU
knows its SoC at the beginning of the contract. The SRU has
to choose its parameters R and r so that it can respond to
all possible sequences of regulation signals {sk} without any
failure. Given regulation parameters R and r, we show what
the worst-case regulation sequences are from the SoC stand-
point. Then, we show how to choose the regulation parameters
to maximize the reward for these worst-case sequences.

Given a pair (R, r) 2, define the polyhedron F (R, r) as
follows3:

F (R, r) =
{
π ∈ RK |π = [s1, . . . , sK ]t, r ≤ sk ≤ R

}
.

The operator will send regulation signals {sk} to the SRU
ensuring that r ≤ sk ≤ R for all k ∈ K, i.e., any sequence
π ∈ F (R, r) can be sent to the SRU by the operator. The SRU
can provide any power in the range [r,R] in response to the
regulation signals {sk} if and only if the following constraints
are satisfied:

0 ≤ b(k) ≤ B ∀k ∈ K (4)
[−sk]+ ≤ ∆c ∀k ∈ K (5)
[sk]+ ≤ ∆d ∀k ∈ K . (6)

The only constraint imposed on the regulation signals is that
sk ∈ [r,R] for all k. Therefore, to satisfy the constraints (5)-
(6), the SRU needs to make sure that R ≤ ∆d and |r| ≤ ∆c.

We say that a pair (R, r) with 0 ≤ R ≤ ∆d and 0 ≤
|r| ≤ ∆c, is feasible (i.e., it can be selected by the SRU
without any risk of a regulation failure) if (4) is satisfied for
all π ∈ F (R, r). Our goal is to find the feasible pair (R?, r?)

2We assume that r ≤ 0 and R ≥ 0.
3The superscript “t” denotes the transpose operation.

that maximizes the reward f(R, |r|) = (aR+ b|r|)D. To do
so, we first find the worst-case sequences that can be sent by
the operator to the SRU given a pair (R, r).

Let us consider the two following sequences of regulation
signals:

π1 : sk = r ∀k ∈ K; π2 : sk = R ∀k ∈ K

Proposition 1 establishes that pair (R, r) is feasible if and only
if the value of b(K) obtained by the sequence π1 (resp. π2) is
less than or equal to B (resp. greater than or equal to zero) for
the two classes of ESTs that we study. The proof is provided
in the appendix.

Proposition 1. Given δ, K, ηd, ηc, Γ, and B, pair (R, r)
is feasible if and only if the sequences π1 and π2 yield 0 ≤
b(K) ≤ B.

Sequences π1 and π2 can be seen as worst-case sequences.
Using the SoC equations in (1) and (2), we can show that
constraint (4) is satisfied for sequences π1 and π2 iff

0 ≤ |r| ≤ B − ΓKU

ηcD
, and 0 ≤ R ≤ ΓKU

ηdD
(7)

where

D =

{
Tloss

(
1− ΓK

)
, for flywheels

Kδ, for batteries

Note that D ≤ Kδ irrespective of the values of Γ, K, and δ.
Pair (R, r) is feasible (i.e., (4) is satisfied for all π ∈

F (R, r)) if and only if (7) is satisfied, and 0 ≤ R ≤ ∆d

and 0 ≤ (−r) ≤ ∆c. Therefore, given B, U , K, δ, ∆d, ∆c,
Γ, ηc, and ηd, pair (R, r) is feasible if and only if :

0 ≤ R ≤ R , min

(
∆d,

ΓKU

ηdD

)
(8)

|r| ≤ r , min

(
∆c,

B − ΓKU

ηcD

)
. (9)

As long as f is increasing in its arguments, R and r are the
values of R and r that maximize f(R, |r|). Note that they do
not depend on the regulation prices a and b.

Engineering Insights: As mentioned earlier, we assume
that for a given technology, the parameters α and β are
constant. Hence, the only free parameter from the standpoint of
the SRU is the storage capacity B′. To understand the impact
of the storage capacity B′ and the initial SoC on the reward
f(R, |r|), let us present our analytical results in terms of the
storage parameters α, β, B′, ηc, ηd, Γ, and ρ. We assume that
U = xB where x ∈ [0, 1]. Given α, β, B′, ηc, ηd, Γ, ρ, δ, K,
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and x, the regulation parameters R and r that the SRU would
declare, can be written as follows:

R , B′min

(
β

α
, ρ
xΓK

ηdD

)
r , B′min

(
1

α
, ρ

(1− xΓK)

ηcD

)
.

Recall that Γ = e−δ/Tloss , and note that D = D for batteries
and is slightly less than D for flywheels as long as D < 3
hours. The results show that the reward f(R, |r|) is linearly
proportional to the storage capacity B′. We can also easily
compute the best value of x, i.e., the initial SoC, for both
classes of EST, given D, the EST parameters, and the per unit
upward and downward prices a and b. We will discuss the
impact of D in more details in Section VI.

Next, we focus on a multiple contract setting, and charac-
terize the reward that can be obtained in successive contracts.

B. Multiple Contracts
Let us assume that the SRU wants to bid for a set of

N consecutive contracts for a total duration of T = ND
time units. Our goal is to characterize a priori the reward
FT =

∑N
n=1 fn(Rn, |rn|) that the SRU can obtain over the

N contracts. The index n in fn(·) reflects the fact that the
prices for each unit of upward regulation (an) and downward
regulation (bn) might be different for each contract.

The regulation parameters Rn and rn are functions of Un,
the SoC at the beginning of contract Cn. We assume that U1 is
fixed and known a priori. Hence, R1 and r1 can be computed
by using (8) and (9). For n > 1, Un is equal to the SoC
at the end of contract Cn−1, and hence its value depends on
the sequence of regulation signals sent by the operator during
contracts C1, · · · , Cn−1. This sequence of regulation signals
is unknown a priori, and hence we do not know the SoC at
the beginning of Cn for n > 1. Therefore, the initial SoC Un
(for n > 1) as well as the reward FT are random variables
whose values depend on the sequences of regulation signals
being produced by the operator during the (N − 1) contracts.
We characterize the potential reward from the N contracts by
providing upper and lower bounds on FT , and by computing
an approximation of the average reward E{FT }.

1) Bounds: Let us begin with a single contract n, and
assume that we do not know the SoC Un at the beginning
of that contract. We only know that Un can take any value in
the range [0, B]. Proposition 2 derives an upper bound fn and
a lower bound fn for the reward fn(Rn, |rn|). To understand
the impact of the storage capacity B′ and the contract duration
D on the lower and upper bounds of the reward, we present
our analytical results in terms of the parameters α, β, B′, ηc,
ηd, ρ, Γ, δ, and K. The proof is provided in the appendix.

Proposition 2. Let an ≥ 0 and bn ≥ 0 denote the prices for
each unit of upward and downward regulation in contract n.
Given α, β, ηc, ηd, K, δ, B′, Γ, and ρ, the SRU’s reward
fn(Rn, |rn|) is bounded as follows:

fn ≤ fn(Rn, |rn|) ≤ fn
where:
Case 1) If D ≥ ρ α

ηc
, then

fn = ρ
DB′

D
min

{
Qn,

bn
ηc

}
, fn = ρ

DB′

D
max

{
Qn,

bn
ηc

}
.

Case 2) If γρ
ηd
≤ D < ρ α

ηc
, then

fn = DB′min

{
ρQn

D
,
bn
α

}
, fn = DB′max

{
Wn

α
,
ρQn

D

}
.

Case 3) If ρ α
(ηc+ηdβ)

≤ D < γρ
ηd

, then

fn =
DB′

α
min {bn, Pn, Zn}, fn =

DB′

α
max {Zn,Wn, Pn}.

Case 4) If D < ρ α
(ηc+ηdβ)

, then

fn =
DB′

α
min {bn, Pn}, fn =

DB′

α
max {(anβ + bn), Pn}.

where

Qn =
bn
ηc

(1− ΓK) + ΓK
an
ηd
, Wn = bn +

an
ηd

(
αρ

D
− ηc

)
Pn = anβ +

bnρα(1− ΓK)

ηcD
, Zn = anβ +

bn
ηc

(
ρα

D
− ηdβ

)
.

The reward FT over the N contracts is then bounded as
follows:

N∑
n=1

fn ≤ FT ≤
N∑
n=1

fn .

Our analytical results show that the upper and lower bounds
are proportional to the storage capacity. Therefore, the spread
between the upper and lower bounds over the N contracts (i.e.,
the uncertainty on the reward) is also proportional to B′.

To understand the impact of K and δ, we consider two bat-
tery technologies (Lithium-ion and Lead-acid) and a flywheel
technology. The ranges of values for α, γ, β, Γ, ρ, ηd, and ηc
for these technologies are shown in Table I. Note that we have
also computed results for a Sodium-Sulfur (NaS) battery. The
values of the parameters ηc, ηd, α, γ, β, ρ, Ls, and Ws for
different types of batteries (including NaS) can be obtained
from [20]- [26]. We decided not to report these results to not
clutter the figures. The results for NaS batteries are in between
the results for Lead-acid and Lithium-ion.
• Flywheel: We are in Case 1 since ρ αηc is of the order

of a few minutes (less than ten) and D is just slightly
less than D which is typically larger than 30 minutes.
Hence, the minimum reward during the period of T hours
is inversely proportional to D which means that shorter
contracts (larger than 10 minutes though) are favorable
for SRUs using flywheels.

• Battery: We recall that D = D, and in view of the values
of the battery parameters, we are in Case 2, 3 or 4 and
the relationship between the lower bound and D is not
straightforward.

2) Average Reward: The expected reward E{FT } over
the N contracts is equal to

∑N
n=1En where En denotes

the expected value of the reward in contract n (i.e., En =
E{fn(Rn, |rn|)}). We can easily compute E1 since U1 is
known a priori. As mentioned earlier, Rn and rn are a function
of Un, and Un is a random variable for n ≥ 2. Therefore, Rn

and rn are random variables whose potential values depend
on the past history. To compute the expected value En, let
Rn(x) (resp. rn(x)) denote Rn (resp. rn) given Un = x. We
can compute En by

En =

∫ B

0

fn(Rn(x), |rn(x)|) gn(x)dx, n ≥ 2 .
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TABLE I
STORAGE CHARACTERISTICS [20]-[22]

Storage technology Lead-acid Lithium-ion Flywheel

Charging efficiency ηc 0.75 0.85 0.95

Discharging efficiency ηd 1 1 1.05

Charge time α 8-16 h 2-4 h 1-3 min

Discharge time γ 48-96 min 24-48 min 1-3 min

Discharge to charge ratio β 10 5 1

DoD ρ 0.8 0.8 1

Self-discharge rate 2-4% per month 2-4% per month 2% per hour

Lifetime Ls (years) 4 8 10

Storage price Ws ($/KWh) 315 500 1000

where gn(·) denotes the probability distribution function of
Un over the range [0, B].

The distribution of Un over [0, B] is very complex, and it is
highly dependent on the distribution of the regulation signals
in contract Cn−1 over the range

[
rn−1,Rn−1

]
. It is not easy to

estimate the probability distribution function of the regulation
signals for a given contract since typically an operator works
with multiple RUs, and it distributes the required regulation
effort over the available RUs based on their flexibility and
characteristics. Even with a specific probability distribution
for the regulation signals, it is hard to compute the probability
distribution function of Un when the SRU is using a non-ideal
storage. To illustrate this, let us assume that the regulation
signals in contract n are uniformly distributed in

[
rn,Rn

]
.

We can show that Un is distributed according to an Irwin-Hall
distribution when the SRU is using an ideal battery with Γ =
ηd = ηc = 1. However, it is hard to analytically determine the
probability distribution function of Un for a non-ideal storage.

We propose a method to approximate the average reward
E{FT } over the N contracts. We do this in two steps. In
the first step, we compute an estimate for E{Un} assuming
that the initial SoC in each contract n is uniformly distributed
between its minimum and maximum values. In the second
step, we propose an approximation for En which is a function
of E{Un}. Using the proposed approximation for E{Un}, we
approximately compute En for all n > 1.
STEP 1 : Let X̃ represent an approximation of the real-valued
variable X . We approximate E{Un} by

Ẽ{Un} =
Xn + Yn

2

where Xn and Yn denote the minimum and maximum SoCs
at the end of contract n, averaged over all initial SoCs at the
beginning of contract n. The distribution of the initial SoC is
approximated as a uniform distribution between its minimum
and maximum values. The values of Xn and Yn are given in
Table II.
STEP 2 : We approximate En by

Ẽn =D

[
an min

(
∆d,

ΓKE{Un}
ηdD

)
+bn min

(
∆c,

B − ΓKE{Un}
ηcD

)]
. (10)
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Fig. 1. The expected value of the reward E{FT } (in $) as well as the lower
and upper bounds on FT , as a function of B′ for D = 1 h when α = 10 h
(Lead-acid), α = 3 h (Lithium-ion), α = 2 min (Flywheel), T = 10 h,
K = 12, and an = bn = 1 $/(h MW).
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Fig. 2. Lead-acid: Our approximation of the average reward E{FT }, the
lower and upper bounds on FT , and the average and realization of reward
obtained from simulations, all as a function of B′. The system parameters
are indicated in Figure 1.

Using the approximation of E{Un}, we can iteratively com-
pute Ẽ{Un} for all n. After computing Ẽ{Un} for all n, we
can easily compute Ẽn using (10). Finally, we compute our
approximation of E{FT } which is equal to E1 +

∑N
n=2 Ẽn.

Next, we validate our approximation on the average reward.
Then, using the proposed approximation and the lower and
upper bounds, we provide some engineering insights on the
selection of a storage technology, its sizing, and the impact of
the parameters B′, K, and δ on the reward.

VI. NUMERICAL RESULTS

We focus on a period of T = 10 hours, and consider the
three storage technologies discussed earlier, i.e., Lead-acid,
Lithium-ion, and Flywheel. We take K = 12, U1 = B

2 , and α
to be equal to 10 hours, 3 hours, and 2 minutes for Lead-acid,
Lithium-ion, and Flywheel, respectively. The other parameters
are given in Table I. Note that the proposed formulas can be
used to quantify the reward for any other battery technology
that obeys the SoC evolution equation given in (1). In this
study, we focus on the regulation market in eastern ISOs in
the United States (e.g., PJM and NYISO) [28], and assume
that an = bn for all the N contracts. More precisely, we take
an = bn = 1 $/(h MW), and compute the reward using real-
world regulation signals obtained from the BPA dataset [19].
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TABLE II
THE HEURISTIC PARAMETERS X(n+1) AND Y(n+1) FOR CONTRACT (n+ 1)

Conditions X(n+1) Y(n+1)

Case 1: D ≥ ρ αηc 0 B

Case 2: γρ
ηd
≤ D < ρ α

ηc
0

ΓKE{Un}+ ηcD∆c, if Yn ≤ Zc
Gn, if Yn ≥ Zc

Case 3: ρ α
(ηc+ηdβ)

≤ D < γρ
ηd

0, if Xn ≤ Yn ≤ Zd
Hn, if Xn ≤ Zd ≤ Yn

ΓKE{Un} − ηdD∆d, if Zd ≤ Xn ≤ Yn

ΓKE{Un}+ ηcD∆c, if Xn ≤ Yn ≤ Zc
Gn, if Xn ≤ Zc ≤ Yn
B, if Zc ≤ Xn ≤ Yn

Case 4: D < ρ α
(ηc+ηdβ)

0, if Xn ≤ Yn ≤ Zd
Hn, if Xn ≤ Zd ≤ Yn

ΓKE{Un} − ηdD∆d, if Zd ≤ Xn ≤ Yn

ΓKE{Un}+ ηcD∆c, if Xn ≤ Yn ≤ Zc
Gn, if Xn ≤ Zc ≤ Yn
B, if Zc ≤ Xn ≤ Yn

Zd = ηdD∆d
ΓK

, Zc = B−ηcD∆c
ΓK

, Gn = 1
Yn−Xn

[
B(Yn −Xn)− 0.5ΓK(Zc −Xn)2

]
, Hn = 1

Yn−Xn

[
0.5ΓK(Yn − Zd)2

]
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Fig. 3. Lithium-ion: Our approximation of the average reward E{FT }, the
lower and upper bounds on FT , and the average and realization of reward
obtained from simulations, all as a function of B′. The system parameters
are indicated in Figure 1.

To validate our approximation of the average reward, we
have used regulation signals from a real-world dataset from
the BPA, where imbalance generation is dispatched every 5
minutes and is analogous to an automatic control generation
(AGC) signal [19]. We note that in the contractual framework,
the regulation signals would actually depend on the regulation
parameters declared by SRU. Therefore, we had to translate
the raw regulation signals we obtained from the dataset to lie
between r and R. For clarity, the exact process we followed
is described below.

We use the data available in [19] to generate regulation
signals for 2 months. We divide the period (i.e., 2 months)
into blocks of length 10 hours. Starting with the first contract,
C1 (and assuming U1 = B

2 ) we compute R1 and r1. We then
translate the first K signals (we call them {d1, · · · , dK}) using
linear shifting and scaling operations such that each regulation
signal is in the range

[
r1,R1

]
4. Using these regulation signals

and the battery evolution equations, we can determine U2, and
repeat this process till we know the reward over n successive
contracts. Using this technique, we have computed the reward
for 140 realizations for different values of the storage capacity.

4Let dmax = max{dk} and dmin = min{dk}. We first shift the signals
into the range [0, dmax− dmin], scale them to lie in the range [0,R1− r1]
and shift them back to lie in the range [r1,R1].

Figure 1 compares the three ESTs (Lead-acid, Lithium-
ion, and Flywheel) in terms of the minimum, maximum and
average reward as a function of battery capacity. In addition,
Figure 2 and Figure 3 compare the rewards estimated using
the proposed analytical techniques to those obtained from sim-
ulations using the BPA dataset for Lead-acid and Lithium-ion.
A similar plot for Flywheel is excluded for space constraints,
but we note that for Flywheel our heuristic approximation of
average rewards aligns almost perfectly with simulation data.

We observe that (a) Flywheel provides not only greater
rewards than Lead-acid and Lithium-ion, but also provides
more predictable rewards, i.e., has a lower spread between the
minimum and maximum rewards, and (b) our approximation
of the average reward (line marked Heuristic) provides very
accurate estimates of the average reward obtained from sim-
ulations (line marked Simulation). We have obtained similar
results for different values of K and δ.

The SRU can also influence the operator to negotiate a
contract duration D which is favorable to its storage tech-
nology. To understand the impact of varying D (equivalently,
varying δ if K is fixed) on the SRU’s reward, we compute
our approximation of E{FT } as well as the lower and upper
bounds on FT , as a function of D for B′ = 20 MWh
and K = 12. Our numerical results in Fig. 4 show that
(a) the reward is a non-increasing function of D, which can
be explained by the engineering insights provided in Section
V, (b) as observed before, the Flywheel provides a greater
average reward and a lower spread between the minimum and
maximum rewards than the other two technologies, and (c)
the reward for Flywheel is particularly sensitive to contract
duration and increases by as much as 500% when D is reduced
to 10 min from 1 hour. We have also studied the impact of
varying K on FT while keeping δ fixed, and have observed
that the impact of varying K on reward is similar to that of
varying δ. The details are omitted due to space limitations.

VII. COMPARISON OF ENERGY STORAGE TECHNOLOGIES

The objective of this section is to show how our framework
could be used to perform some (simple) offline cost analysis
to compare the usefulness of different storage technologies to
deliver regulation services. Capital costs, lifetime, and opera-
tion and maintenance (O&M) costs can significantly affect the
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Fig. 4. The expected value of the reward E{FT } (in $) as well as the lower
and upper bounds on FT , as a function of D for B′ = 20 MWh. All other
system parameters are the same as in Figure 1.

operational rewards of using ESTs for ancillary services. To
develop guidelines on how to select the appropriate EST for an
SRU, we assume that a regulation unit is planning to install an
SRU with capacity B′ to participate in regulation services over
a horizon of length T years, and that the system operator has
guaranteed minimum upward and downward regulation prices
a and b5, respectively, over the planning horizon6. We use the
cost-benefit analysis method proposed in [29]-[30] to compare
different ESTs in terms of their costs and rewards.

Given EST s with capacity B′, the annual storage cost
(which we refer to as ASCs) can be computed by the following
formula given in [29]- [30]

ASCs = (ACCs + ARCs + AOMCs)

where ACCs, ARCs, and AOMCs, are the annual capital cost
(i.e., the annual cost of financing the capital required to set up
the installation), annual replacement cost, and annual operation
and maintenance cost, respectively. The annual capital cost
ACCs is equal to (CRF× CCs) where CCs and CRF are the
capital cost and capital recovery factor, respectively. CCs is
equal to (Ws ×B′) where Ws is the storage price (in dollars
per KWh) at the installation time, and CRF can be calculated
as

CRF =
IR(1 + IR)T

(1 + IR)T − 1
.

where IR is the interest rate.
The storage element may have to be replaced one or more

times during the planning horizon of the SRU depending on
its lifetime. This cost can be annualized as follows [30]:

ARCs = CRF
[
B′ × FRPs(Ls)

(1 + IR)Ls
+
B′ × FRPs(2Ls)

(1 + IR)2Ls
+ · · ·

]
where Ls and FRPs(t) are the lifetime (in years) and the
future replacement cost in the t’th year of the planning horizon
T , respectively. The number of terms in the factor of the
equation above is equal to the number of times storage units
are replaced during the planning horizon of the SRU. For an
EST with lifetime Ls, there should be bT/Lsc terms in the
equation above, i.e., the storage should be replaced bT/Lsc

5This can be generalized to any known sequence (maybe different values
every year).

6For the analysis in this section, we will ignore affects such as currency
fluctuations and inflation.
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Fig. 5. The annual benefit (in M$) as a function of the storage capacity when
an = bn = 30 $/(hour MW), δ = 1 minute, IR = 2%, and D = 1 hour.

times during the SRU life. The values of the parameters Ls
and Ws are provided in Table I.

In recent years, EST prices have steadily decreased. This
trend is expected to continue. We assume that the storage
price decays exponentially. More precisely, we assume that
the storage price changes by a factor of 5% per year (i.e.,
FRPs(t) = 0.95× FRPs(t− 1) where FRPs(1) = Ws) [32].

Similar to the study in [31], we only consider fixed main-
tenance costs, and set the annual O&M cost AOMCs to
3% of the capital cost, i.e., AOMCs = 0.03 × CCs. This
approximation reflects the fact that flywheels have higher
O&M costs since the capital cost is equal to (Ws × B′) and
the storage price for flywheels is higher than the storage price
for batteries.

For our numerical results, we take a planning horizon of
length T = 20 years, and δ = 1 minute, IR = 2%, and D = 1
hour. Having fixed the storage capacity to B′, we compute for
each technology s, the minimum reward over one year (call
it Reward(s)) assuming that the operator will always accept
what the SRU can declare. We then compute the annual benefit
(Reward(s)− ASC(s)). The results are shown in Fig. 5.

Our numerical results show that, flywheels can bring an
annual benefit that is significantly greater than the other two
technologies. These observations can be explained by the
fact that flywheels have higher lifetime and rewards, despite
their higher capital and O&M costs. Note that the benefits
obtained for Lead-acid are always negative, i.e., Lead-acid
batteries should not be used to offer regulation services (at
least for the set of parameters that we tried). The proposed
framework enables SRUs to perform some offline cost analysis
and to compare different technologies under different sets of
parameters.

VIII. CONCLUSION

In this study, we analytically quantify the reward that an
SRU could obtain in successive contracts using analytical
upper and lower bounds, and an approximation method for
the average reward. We consider the following three storage
technologies, namely two battery technologies (Lithium-ion
and Lead-acid) and a flywheel technology, and study the
impact of the storage parameters and the contract duration on
the expected reward in multiple contracts. Finally, we compare
these technologies in terms of the reward that they can obtain
for different values of some critical parameters.
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APPENDIX A
PROOF OF PROPOSITION 1

Claim 1. Given r,R ∈ R and k ∈ K, the maximum (resp.
minimum) value of b(k) over all π ∈ F (R, r) is obtained by
the worst case sequence π1 (resp. π2) of regulation signals.

Proof : The SoC of a battery at time-slot k is a function of
the SoC at time-slot (k−1) and the input power at time-slot k
[27]. In contrast, the SoC of a flywheel energy storage is not
only a function of the SoC at time-slot k and the input power
at time-slot k, but also the input power at time-slot (k − 1)
[27]. Clearly, the maximum (resp. minimum) value of b(k)
over all π ∈ F (R, r) is obtained by the sequence π1 (resp.
π2) for batteries. While the result is trivial for batteries, it is
not obvious for flywheels. To prove the claim for flywheels,
let us introduce the SoC evolution equation derived in [27].

Consider a flywheel energy storage system with the param-
eters ηc, ηd, Tloss, and Tcont. At time instant tk = kδ, the
SoC can be computed by b(k) =

∑k
i=0EiΓ

(k−i) where

Ei =

∫ ti

ti−1

(
P̂min (τ)× zeff(τ)

)
e
−(ti−τ)
Tloss dτ

P̂min (t) =

[
si − (si − si−1) e

−(t−ti−1)

Tcont

]
, t ∈ [ti−1, ti]

Note that E0 = U denotes the initial SoC of the flywheel.
The charging/discharging efficiency zeff(t) is equal to ηc if

P̂min (t) is non-negative; otherwise it is equal to ηd. Therefore,
Ei is maximized if and only if P̂min (t) is maximized. P̂min (t)
is maximized if and only if si = R for all i ∈ K. Hence, the
maximum value of b(k) over all π ∈ F (R, r) is obtained by
the sequence π1. Similarly, the minimum value of b(k) over
all π ∈ F (R, r) is obtained by the sequence π2.

Claim 1 shows that (4) will be satisfied for all π ∈ F (R, r)
if (4) is satisfied for the sequences π1 and π2. The converse is
trivial. Hence, (R, r) is feasible if and only if (4) is satisfied
for the sequences π1 and π2.

Given k ∈ K, the SoC at ts k for the sequences π1 and π2

can be written as follows:

π1 : b(k) = U +AkA(ηc|r|), ∀k ∈ K
π2 : b(k) = U −AkA(ηdR), ∀k ∈ K

where

Ak =

{
1−Γk

1−Γ
, for Γ < 1

k, for Γ = 1
.

A is equal to Tloss(1− Γ) and δ for flywheels and batteries,
respectively. This shows that b(k) is increasing (resp. decreas-
ing) in k for the sequence π1 (resp. π2) since Ak is increasing
in k. Hence, the constraint (4) is satisfied for the sequences
π1 and π2 if and only if the value of b(K) obtained by the
sequence π1 (resp. π2) is less than or equal to B (resp. greater
than or equal to zero). This completes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

Given K, δ, ηc, ηd, B, and Γ, let us define the linear
functions P (Un) = ΓKUn

ηdD
and Q(Un) = B−ΓKUn

ηcD
where

Un ∈ [0, B]. The SRU’s reward for contract n depends on the

values of the parameters ∆c, ∆d, K, δ, ηc, ηd, and B, and
on the value of Un in contract n. We consider the following
cases:

Case 1: Let us assume that ηc∆c ≥ B
D

and ηd∆d ≥ B
D

(i.e.,
D ≥ ρα

ηc
). We can verify that the optimal value of fn(Rn, rn)

is determined by (anP (Un) + bnQ(Un)) ×D irrespective of
the value of Un, and the reward is bounded as follows:

BD

D
min

{
Qn,

bn
ηc

}
≤ fn(Rn, rn) ≤ BD

D
max

{
Qn,

bn
ηc

}
where Qn = bn

ηc
(1− ΓK) + ΓK an

ηd
.

Case 2: Let us assume that ηd∆d ≥ B
D

and ηc∆c <
B
D

(i.e.,
γρ
ηd
≤ D < ρα

ηc
). Let us define Zc = (B −∆cηcD)/ΓK . Given

∆c, ∆d, K, δ, ηc, ηd, and B, depending on the value of Un
in contract n, the SRU’s reward for contract n is determined
by one of the following cases:
• If Zc ≤ Un ≤ B, then P (Un) ≤ ∆d , Q(Un) ≤ ∆c, and
fn(Rn, rn) = (anP (Un) + bnQ(Un))×D.

• If 0 ≤ Un ≤ Zc, then P (Un) ≤ ∆d , Q(Un) ≥ ∆c, and
fn(Rn, rn) = (anP (Un) + bn∆c)×D.

Let Wn =
(
bn + an

ηd

(
αρ

D
− ηc

))
. The reward in contract n

is bounded as follows:
• If Zc ≤ Un ≤ B, then D∆c min

{
ραQn
D

,Wn

}
≤

fn(Rn, rn) ≤ D∆c max
{
ραQn
D

,Wn

}
.

• If 0 ≤ Un ≤ Zc, then bn∆cD ≤ fn(Rn, rn) ≤WnD∆c.
Note that in this case, we have Wn ≥ bn.

Case 3: Typically, discharging power limits are greater than
the charging power limits ∆d ≥ ∆c, and ηc ≤ ηd [20], [21].
Therefore, it is impossible to have ηd∆d <

B
D

and ηc∆c ≥ B
D

.
Case 4: Let us assume that ηd∆d <

B
D

, ηc∆c <
B
D

, and
Zc ≤ Zd where Zd =

(
ηd∆dD/Γ

K
)

(i.e., ρ α
(ηc+ηdβ) ≤ D <

γρ
ηd

). Given ∆d, ∆c, K, δ, ηc, ηd, and B, depending on the
value of Un in contract n, the SRU’s reward for contract n is
determined by one of the following cases:
• If Zd ≤ Un ≤ B, then P (Un) ≥ ∆d , Q(Un) ≤ ∆c, and
fn(Rn, rn) = (an∆d + bnQ(Un))D.

• If Zc ≤ Un ≤ Zd, then P (Un) ≤ ∆d , Q(Un) ≤ ∆c, and
fn(Rn, rn) = (anP (Un) + bnQ(Un))D.

• If 0 ≤ Un ≤ Zc, then P (Un) ≤ ∆c , Q(Un) ≥ ∆d, and
fn(Rn, rn) = (anP (Un) + bn∆c)D.

Let Pn =
(
anβ + bnρα

ηcD

(
1− ΓK

))
and Zn =(

anβ + bn
ηc

(
ρα

D
− ηdβ

))
. The reward in contract n is

bounded as follows:
• If Zd ≤ Un ≤ B, then ∆cDmin {Zn, Pn} ≤ fn(Rn, rn) ≤

∆cDmax {Zn, Pn}.
• If Zc ≤ Un ≤ Zd, then ∆cDmin {Zn,Wn} ≤ fn(Rn, rn) ≤

∆cDmax {Zn,Wn}.
• If 0 ≤ Un ≤ Zc, then ∆cDmin {bn,Wn} ≤ fn(Rn, rn) ≤

∆cDmax {bn,Wn}.
Case 5: Let us assume that ηd∆d <

B
D

, ηc∆c <
εB
D

, and
Zc > Zd (i.e., D < ρ α

(ηc+ηdβ) ). Given ∆d, ∆c, K, δ, ηc, ηd,
and B, depending on the value of Un in contract n, the SRU’s
reward for contract n is determined by one of the following
cases:
• If Zc ≤ Un ≤ B, then P (Un) ≥ ∆d , Q(Un) ≤ ∆c, and
fn(Rn, rn) = (an∆d + bnQ(Un))D.
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• If Zd ≤ Un ≤ Zc, then P (Un) ≥ ∆d , Q(Un) ≥ ∆c, and
fn(Rn, rn) = (an∆d + bn∆c)D.

• If 0 ≤ Un ≤ Zd, then P (Un) ≤ ∆d , Q(Un) ≥ ∆c, and
fn(Rn, rn) = (anP (Un) + bn∆c)D.

Therefore, the reward in contract n is bounded as follows:
• If Zc ≤ Un ≤ B, then ∆cDmin {(anβ + bn), Pn} ≤
fn(Rn, rn) ≤ ∆cDmax {(anβ + bn), Pn}.

• If 0 ≤ Un ≤ Zd, then ∆cDmin {(anβ + bn), bn} ≤
fn(Rn, rn) ≤ ∆cDmax {(anβ + bn), bn}.

The results can be presented in terms of the storage parameters
(i.e., α, β, γ, ηc, ηd, and ρ). This completes the proof.
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