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Abstract—Energy storage devices (ESDs) have the potential
to revolutionize the electricity grid by allowing the smoothing of
variable-energy generator output and the time-shifting of demand
away from peak times. A common approach to study the impact
of ESDs on energy systems is by modeling them as electric cir-
cuits in simulations. Although recent circuit models are becoming
more accurate, to obtain statistically valid results, extensive sim-
ulations need to be run. In some cases, existing datasets are not
large enough to obtain statistically significant results. The impact
of ESDs on energy systems has also been recently studied using
analytical methods, but usually by assuming ideal ESD behavior,
such as infinite ESD charging and discharging rates, and zero
self-discharge. However, real-life ESDs are far from ideal. We
investigate the effect of nonideal ESD behavior on system per-
formance, presenting an analytical ESD model that retains much
of the simplicity of an ideal ESD, yet captures many (though
not all) nonideal behaviors for a class of ESDs that includes all
battery technologies and compressed air energy storage systems.
This allows us to compute performance bounds for systems with
nonideal ESDs using standard teletraffic techniques. We pro-
vide performance results for five widely used ESD technologies
and show that our models can closely approximate numerically
computed performance bounds.

Index Terms—Analytical models, energy storage, performance
analysis, renewable energy sources.

I. INTRODUCTION

BOTH ELECTRICITY generation from renewable energy
sources and electricity demand are stochastic processes.

This makes them difficult to manage and control. Energy stor-
age devices (ESDs) can smooth out variations in generation
and demand, greatly simplifying grid operation. Therefore,
there has been a considerable amount of work in the design
of many types of ESD-based systems. Examples are off-
grid networks which use renewable energy to serve their
demands (stochastic energy source, stochastic demand) [1],
load shaping in on-grid networks (deterministic energy source,
stochastic demand) [2], and firming renewable energy sources
for electricity market (stochastic energy source, deterministic
demand) [3].
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The common approach to evaluate an ESD-based energy
system is numerical simulation, as in [4]–[6]. Simulation
methods are used to compute either active power [5] or
current-voltage (I-V) values [4], [6]. I-V simulations contain
more information than active power simulations about energy
system operation, because they allow the monitoring of both
current and voltage. However, I-V simulations are more com-
plex, because ESDs must be modeled by (complex) electric
circuits [7] that are sensitive to the choice of ESD technol-
ogy [8]. There has been recently extensive improvement on the
accuracy of ESD models used for simulation both for active
power [5] and I-V values [6], [9].

Although quite precise, design based on simulation is
feasible only when large datasets are available to allow com-
putation of tail bounds for small target failure probabilities.
Moreover, the simulation must be repeated to study the sen-
sitivity to any single parameter, which is computationally
expensive.

As an alternative to simulation, and inspired by the anal-
ogy between storing energy in an ESD and traffic buffering
in a packet network, several recent papers have adopted the
analytical techniques developed for teletraffic analysis to study
generic ESD-based energy systems. Examples include comput-
ing the loss of power probability in a distribution network [10],
using nonasymptotic Kesidis bounds for regulated traffic [11],
and using a network calculus framework [12], [13].

Arguably, the technique that is best suited for the anal-
ysis of ESD-based energy systems is the network calculus
approach [14]–[16] because it precisely matches the char-
acteristics of a smart grid system, that is, nonasymptotic,
nonstationary, and fluid flow. Unfortunately, the elegant map-
ping between teletraffic networks and smart grids makes
the strong assumption of an ideal ESD, that is, one that
looks like a RAM network buffer. In this paper, we show
that this mapping does not hold for nonideal ESDs, bring-
ing into question the validity of existing results. Our results
show that it is critical to model nonideal ESD behavior and,
in fact, our approach does this very well, specifically as
follows.

1) We provide a simple and general model for a class of
nonideal ESDs that includes battery technologies and
compressed air energy storage (CAES).

2) We use our model to compute analytical bounds on loss
of power and waste of power and show that our analyt-
ical performance bounds closely approximate numerical
simulations.
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3) We demonstrate that the choice of ESD technology as
well as its nonideal behavior both significantly impact
the performance of an energy system.

The remainder of the paper is organized as follows. In
Section II, we review some of the most widely used ESD
technologies along with their characteristics. We present the
system model in Section III. We show in Section IV how
to convert a complex nonideal ESD model to an ideal one.
In Section V, we employ network calculus to derive perfor-
mance bounds using our model. In Section VI, we show the
importance of accounting for nonideal ESD behavior, evaluate
our bounds, and compare the performance of different storage
technologies. Finally, we conclude our paper in Section VII.

II. BACKGROUND ON STORAGE SYSTEMS

Four ESD technologies are in common use today: mechan-
ical, thermo-dynamic, electrochemical, and electro-magnetic,
each with its own characteristics. These include the following.

1) ESD Size [B (Wh)]: This is the maximum amount
of energy that can be stored in an ESD. Some ESD
technologies require devices to have a maximum or min-
imum size. ESD size decreases over long time intervals
due to deteriorations. This must be accounted for, when
analyzing an ESD over a large time, e.g., in a lifetime
maximization problem [19]. However, ESD size can be
assumed to be fixed, if short-term performance metrics
are analyzed (such as in this paper).

2) Storage Charging and Discharging Rate Limit [αc and
αd (W)]: This is the limit on the charge or discharge
power. Typical discharge rates are many times greater
(10× for lead-acid and 5× for lithium-ion batteries) than
the charging rate.

3) ESD Efficiency (0 ≤ η ≤ 1): Due to inherent inefficien-
cies, each unit of energy stored is reduced to η units that
can be used at a later time. ESDs converting electrical
energy to other forms typically have lower efficiencies.

4) Self-Discharge [γ (W)]: Stored energy leaks over time.
The leak rate is γ , which can be a function of several
parameters such as state of charge, storage size, and tem-
perature, depending on the storage technology. We only
study ESD technologies that have small self-discharge.

5) Depth-of-Discharge (DoD) (0 ≤ DoD ≤ 1): While the
entire capacity of some ESDs can be used for energy
storage, battery life is extended if only a fraction of
available capacity is used. There is extensive work to
determine the relationship between battery lifetime and
DoD, see [20].

6) Temperature-Dependency: Operating temperature can
affect the charging and discharging rates and the lifetime
of a battery. The operation of other ESDs, however, is
nearly independent of the temperature.

7) State of Health (SOH) (0 ≤ SOH ≤ 1): This factor
reflects the general condition of the storage device with
respect to its initial condition. Unfortunately, there is
no unified definition for SOH; it is either expressed
in terms of capacity fade or charging power fade. As
SOH decreases (ESD is ageing), some of its imperfec-
tion parameters become more significant. For example.

TABLE I
NOTATIONS USED IN THIS PAPER

the charging rate, self discharge, and storage capacity
are affected by SOH, while the efficiency and discharge
rate are almost unchanged throughout the lifetime of an
ESD.

Our model will incorporate all of the above imperfec-
tion parameters except temperature dependency and SOH. This
is due to the fact that, despite the importance of these fac-
tors, it is not yet precisely known how temperature and SOH
impacts an ESD. This impact is highly nonlinear and appli-
cation dependent, and not yet properly modeled in spite of
extensive studies [21].

This paper evaluates a class of ESD technologies that we
will define precisely in the next section. This class includes
as follows.

1) Lead-Acid Battery (Electrochemical): This is a widely-
used battery because of its low price, high specific
power,1 simple manufacturing, and its lowest self-
discharge among all batteries. It has, however, a small
charging rate, a low specific energy, and a limited life
cycle.

2) Lithium-ion Battery (Electrochemical): This type of bat-
tery has a high energy density, a high energy efficiency,
and a low discharge rate. One of the main disadvantages
of this battery is its price, which can be 3× larger than
a lead-acid battery.

3) Compressed Air Energy Storage (Thermo-Dynamic):
This device stores energy in the form of compressed
air in a room and releases it to rotate a turbine for elec-
tricity generation. CAESs are relatively cheap, but they
have low energy and low power density. It has small
efficiency, but no restriction on DoD.

Due to the diversity of ESD technologies with unique con-
straints and characteristics, choosing the best ESD technology
for a given application is challenging. Some constraints of the
above technologies are listed in Table II.

Our goal is to build a single mathematical model suitable
for all ESD technologies. To do so, we first describe our sys-
tem model in the next section. We summarize the important
notations, which will be used in the rest of the paper, in
Table I.

1Specific energy (or power) is the energy (or power) provided per unit
volume or per unit mass.
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TABLE II
ESD CHARACTERISTICS IN ROOM TEMPERATURE AND AVERAGED OVER LIFETIME [2], [17], [18]

Fig. 1. System: A power source S equipped with an ESD to serve a demand
power D. The physical constraints of the ESD are αc, αd , η, γ , and DoD.
Note: [x]+ = max{0, x} for any x.

III. SYSTEM MODEL

Energy can be modeled as a continuous-time, fluid stochas-
tic process. That is, at any given time, energy arrival is not
a quantized value, unlike Internet packet traffic. Moreover,
events in an energy system are not restricted to occur at dis-
crete time instants (except maybe for specific applications).
However, we can still assume a discrete-time model (which
simplifies analysis) as long as the time granularity is chosen
such that the precision is kept above an acceptable threshold.
We consider a fluid-flow, but discrete-time model, where time
is slotted t = 0, Tu, 2Tu, . . ., with Tu being the time unit. We
consider a renewable energy source, which is meant to serve
a stochastic demand, using an ESD as a backup storage (see
Fig. 1) to smooth out demand or source fluctuations. Denote
by S(t) and D(t), respectively, the available power from the
energy source and the demand power at time t. To simplify
notation, we write D(s, t) and S(s, t) to, respectively, mean∑t

τ=s+1 D(τ ) and
∑t

τ=s+1 S(τ ) (e.g., S(t − 1, t) = S(t)).
In our system, renewable energy is preferentially used to

serve the demand, i.e., without going through the ESD. If, in
a given time slot t, the available renewable power is insuf-
ficient (i.e., S(t) < D(t)), the energy stored in ESD, if any,
can be used to make up the difference. Moreover, if the
available renewable power in a time slot t is larger than the
demand power (i.e., S(t) > D(t)), then the surplus energy
((S(t) − D(t))Tu) is stored in the ESD, if it is not yet full.
All incoming power exceeding ESDs charging rate limit αc

is dropped. Moreover, the ESD loses a fraction of 1 − η of
the total energy being stored in the ESD due to ESD effi-
ciency. The ESD cannot be discharged faster than αd. The
ESD lifetime constraint is met if only a DoD fraction ≤ 1
of the entire ESD is used.2 Finally, The energy stored in
the ESD is discarded with rate γ due to self-discharge. In
this paper, we simply assume that the self-discharge rate γ

is a subtractive term, independent of the state of charge and

2When converters are used, the values of η, αc, and αd have to modified
to also include the imperfections of the converters.

Fig. 2. Equivalent model of Fig. 1, when the ESD is ideal (αc, αd = ∞,
η, DoD = 1, γ = 0). For nonideal ESDs, we can still convert Fig. 1 to this
figure when replacing S, D, and B by their virtual processes S′, D′, and B′.

scales linearly with the ESD size. Note that modeling the
impact of self-discharge on the state of charge this way is
not valid for other storage technologies such as flywheels and
supercapacitors.

For an ideal ESD (i.e., αc, αd = ∞, η, DoD = 1, γ = 0),
the complicated ESD model in Fig. 1 reduces to the simple
model in Fig. 2, which is identical to a buffer in a network
where the input traffic S enters a finite queue of size B with
available (time-varying) service rate D. This enables elegant
performance analysis of energy systems by adopting standard
techniques from the rich literature on performance analysis of
teletraffic networks. This is the model that has been used in
recent analyzes of energy systems [10], [12], [13]. However,
ignoring the nonideal ESD behavior in the simple model brings
into question the validity of these results. Our plan of attack,
therefore, is to convert the complex system model of Fig. 1 to
an equivalent simple model with appropriately modified sys-
tem parameters (Fig. 2). This would allow the analytical results
that assume ideal ESD behavior to be suitably transformed
to take into account nonideal ESD behavior. We discuss the
equivalent model in more detail in Section IV.

IV. MODELING NONIDEAL ESDS

In this section, we show how to choose appropriate param-
eters so that the complex system model of Fig. 1 is converted
to the ideal (simple) model of Fig. 2. The starting point for our
model is the following state of charge evolution equation that
is representative of a large class of ESDs including batteries
and CAES. This is the class that we study

b(t) = min
(

B × DoD,
[
min ([S(t) − D(t)]+, αc) ηTu

− min([D(t) − S(t)]+, αd)Tu − γ Tu + b(t − Tu)
]

+

)

(1)

where b(t) is the state of charge of the storage in the system
depicted in Fig. 1 and where [x]+ = max{0, x} for any x. For
an ideal ESD (i.e., αc, αd = ∞, η, DoD = 1, γ = 0), (1)
reduces to

b(t) = min (B, [b(t − Tu) + S(t)Tu − D(t)Tu]+) (2)
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which is equivalent to the recursive backlog process in tele-
traffic theory with traffic arrival S, service rate D(t) at any time
t, and queue size B [22]. Unfortunately, unlike (2), (1) cannot
be mapped to a backlog process in teletraffic theory. In the
following, we incorporate the storage imperfections, by defin-
ing virtual power source and demand processes, to simplify
the nonideal storage model. To simplify notation, we drop Tu

from our formulation by assuming Tu = 1. Generalizing the
formulas for any Tu is a matter of additional notations. We
highlight again that the analysis of this paper is valid for any
ESD technology for which the state of charge can be expressed
by (1) and hence, in the following, when we mention a non-
ideal ESD, we mean one for which the state of charge equation
can be expressed by (1). Please see [23] for the proof.

Lemma 1 (Equivalent Simple Queue): Suppose that an
intermittent power source S serves a stochastic demand
power D. A nonideal ESD, with size B and parameters αc,
αd, η, γ and DoD, is used to provide power during a power
shortage (i.e., [D(t) − S(t)]+) and also to store the surplus
power (i.e., [S(t) − D(t)]+) at any time instant t (Fig. 1). The
state of charge of the ESD in this model is equivalent to that
of an ideal ESD model (Fig. 2), where power source S, power
demand D, and ESD size B are, respectively, replaced by a
virtual source S′, a virtual demand D′, and a virtual ESD size
B′, given by

S′(t) = S(t) − (1 − η) [S(t) − D(t)]+ − η [S(t) − D(t) − αc]+
(3)

D′(t) = D(t) − [D(t) − S(t) − αd]+ + γ (4)

B′ = B × DoD. (5)

Remark 1: The choices of nonnegative virtual processes,
which convert Figs. 1 and 2, are not unique. The specific
choices we made in (3)–(5) greatly facilitate the use of this
model in further analysis by separating the impact of imperfec-
tions from the original processes. In particular, (3)–(4) present
the imperfections as additional or subtracting terms to the
original source and demand processes.

In the next section, we will employ Lemma 1 to analyze a
nonideal ESD using network calculus [14]–[16]. We use this
approach because it correctly models the nonasymptotic, non-
stationary, and fluid flow aspects of the smart grid. Moreover,
it can be used to study a broad range of arrival processes
including Makovian, self-similar, and even heavy-tailed pro-
cesses [24]. The key aspect of network calculus is that it
models stochastic processes as bounds on the tail distributions.

V. USING NETWORK CALCULUS TO ANALYZE ESDS

In network calculus, stochastic processes are modeled by
envelopes, which can be of several types. One of the most
widely used ones is called statistical sample path enve-
lope [25], defined next. A nondecreasing function A is a
statistical sample path upper envelope for process A with
bounding function ε if it satisfies the following at any time
t ≥ 0 and for any x ≥ 0:

Pr

{

max
s≤t

(
A(s, t) − A(t − s)

)
> x

}

≤ ε(x). (6)

Likewise, A is a statistical sample path lower envelope for
process A with bounding function ε if at any time t ≥ 0 and
for any x ≥ 0

Pr

{

max
s≤t

(A(t − s) − A(s, t)
)

> x

}

≤ ε(x). (7)

Sample path envelopes for a given process can be computed
either from measurement traces of that process or from an
analytical model of that process (e.g., On-off Markov model).
We now describe how to compute sample path envelopes
from measurement traces consisting of multiple trajectories
Ai indexed by i.

The lower bounding function ε is computed as follows
(a similar approach can be used to compute ε): construct a
set Y with elements Yi,t chosen at time t ≥ 0 corresponding
to a trajectory Ai such that

Yi,t = max
0≤s≤t

(A(t − s) − Ai(s, t)
)
. (8)

Then, from (7), ε can be chosen to be the complimentary
cumulative distribution function (CCDF) of any distribution
that fits Y .

Note that for a given measurement trace, infinitely many
models can be proposed by varying A and computing the
corresponding bounding function ε. Thus, modeling a stochas-
tic process given a measurement trace using this approach
consists of three steps: 1) choose an envelope (A); 2) char-
acterize the bounding function for the tail bound distribution;
and 3) compute the parameters of that distribution.

A. Existing Performance Bounds for Ideal ESDs

Two metrics are widely used to characterize energy system
performance. Loss of power l(t) at time step t occurs if demand
is unmet at that time from the sum of renewable power and
stored energy. Waste of power w(t) at time step t is the amount
of power that is wasted in that time slot due to nonideal ESD
behavior or limited ESD size. The loss of power and waste of
power probabilities have been computed in recent work, under
the assumption of ideal ESD behavior [10], [12], [13], as follows.

Theorem 1 (Existing Performance Bounds for Ideal
ESDs [12]): Consider the same scenario as in Lemma 1 with
an ideal ESD. Suppose we are given a statistical sample
path lower (upper) envelope S (S) on the intermittent energy
source with a bounding function εs (εs). In addition, assume
that there is a statistical sample path upper (lower) envelope
D (D) on the demand power in the sense of (6) with a
bounding function εd (εd). Then, the loss of power l(t) and
the waste of power w(t) at time t, satisfy the following:

Pr{l(t) > 0} ≤ εd ⊗ εs

(

B − max
0≤τ≤t

(D(τ ) − S(τ )
)
))

(9)

Pr{w(t) > x} ≤ εd ⊗ εs

(

B + x − max
0≤τ≤t

(S(τ ) − D(τ )
)
))

(10)

where ⊗ is the min-plus convolution operator defined as

f1 ⊗ f2(u) = min
0≤s≤u

(f1(s) + f2(u − s)) (11)

for any nonnegative functions f1 and f2 and any constant u.
We will extend this theorem using Lemma 1 to derive

performance bounds for nonideal ESDs in the next section.
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B. Performance Bounds for Nonideal ESDs

The waste of power in an ideal ESD at time t maps simply
to the traffic loss (when an arrival is dropped because the
queue is full) in a teletraffic queue of size B, with input traffic
S(t), and a service rate D(t) [see (2)]. Thus, the nonrecursive
backlog formulation from [22] is used to characterize the waste
of power in an ideal ESD in [12]

wideal(t) = min
0≤u<t

(

max
u≤s<t

(
[S(s, t) − D(s, t) − BIt>0]+

)
,

S(u, t) − D(u, t) + BIu>0 − BIt>0
)
)

(12)

where for any expression x, Ix = 1 if x is true and Ix = 0,
otherwise.

The waste of power in an ideal ESD happens only due to
limited ESD size. However, the total waste of power in a non-
ideal ESD, consists of the power waste due to the storage
imperfections wαc,γ,η and the waste of power due to finite
storage size wB

wnonideal(t) = wαc,γ,η(t) + wB(t). (13)

wB is characterized by replacing the original processes with
the virtual ones (from Lemma 1) in (12) and wαc,γ,η satisfies

wαc,γ,η(t) ≤ S(t) − S′(t) + γ (14)

where S(t) − S′(t) accounts for all the power waste occur-
ring due to the ESD charging rate limit (αc), ESD inefficiency
(η), and depth of discharge (DoD). Equation (14) holds as an
inequality, since it assumes that the self-discharge is always
γ , meaning that the state of charge is never less than γ .

The loss of power event can be characterized using the con-
cept of the deficit state of charge. The deficit state of charge
bd is the energy required to fully charge the ESD and at any
time t and is given by

bd(t) = min(B, [bd(t − 1) + D(t) − S(t)]+). (15)

Importantly, the loss of power event occurs when the ESD
state of charge crosses zero or, equivalently, when the deficit
state of charge crosses B. Thus, from (15), the loss of power
event is equivalent to the traffic loss in a teletraffic system in
a queue with size B, traffic arrival D, and service rate S [12]

lideal(t) = min
0≤u<t

(

max
u≤s<t

(
[D(s, t) − S(s, t) − BIt>0]+

)

D(u, t) − S(u, t) + BIu>0 − BIt>0
)
)

. (16)

The loss of power in an ideal ESD happens only due to an
empty ESD. In a nonideal ESD, however, the loss of power
can happen either due to the empty ESD, lB, or due to the
limited discharge rate of ESD, lαd , which may prevent the
entire demand from being met. That is

lnonideal(t) = lαd (t) + lB(t). (17)

lB can be computed by simply replacing the original processes
with virtual ones in (16). lαd is the difference between the

power shortage and the discharge rate limit (i.e., [D(t)−S(t)−
αd]+), which [from (4)] is equivalent to

lαd (t) = [D(t) − S(t) − αd]+ = D(t) − D′(t) + γ. (18)

Using the above definitions, we can compute performance
bounds for nonideal ESDs as (please see [23] for the proof).

Theorem 2 (Performance Bounds for Nonideal ESDs):
Consider the same scenario as in Lemma 1. S′ and D′ are,
respectively, the virtual source and virtual demand as defined
in Lemma 1. Suppose we are given a sample path lower
(upper) envelope S ′ (S ′

) on S′(t) with a bounding function ε′
s

(ε′
s). In addition, suppose we are given a sample path lower

(upper) envelope D′ (D′
) on D′ with a bounding function ε′

d
(ε′

d). If for some constant ε′
0 and a function ε′

0 the following
hold at any time t ≥ 0 and for any x ≥ 0:

Pr{S′(t) − D′(t) > x} ≤ ε′
0(x) (19)

Pr{D′(t) − S′(t) > 0} ≤ ε′
0 (20)

Pr{S(t) − S′(t) + γ > x} ≤ ε′
w(x) (21)

Pr{D(t) − D′(t) + γ > 0} ≤ ε′
l (22)

then, the loss of power and the waste of power at time t satisfy
the following:

Pr{l(t) > 0} ≤ ε′
l + min

(

ε′
0

ε′
d ⊗ ε′

s

(

B′ − max
0≤τ≤t

(D′
(τ ) − S ′(τ ))

))

(23)

Pr{w(t) > x} ≤ min

(

ε′
w ⊗ ε′

0(x)

ε′
w ⊗

(

ε′
d ⊗ ε′

s

(
B′ + x − max

0≤τ≤t
(S ′

(τ ) − D′(τ ))
)
))

. (24)

Remark 2: Besides allowing the computation of perfor-
mance bounds for nonideal ESDs, our paper also improves on
the known results for the case of ideal ESDs in Theorem 1;
it provides tighter bounds because the first terms in the mini-
mization in two bounds of (23)–(24) (i.e., ε′

0 and ε′
w ⊗ ε′

0(x))
were not considered in [12]. These terms affect performance
greatly when the ESD size is small. In particular, for the case
of an energy system with no storage, Theorem 1 says that the
probabilities of loss of power and waste of power are upper
bounded by 1, whereas our theorem returns nontrivial bounds.

The performance bounds found in Theorem 2 hold for gen-
eral sample path envelopes and bounding functions. In the next
section, we compute bounds for the case where the source and
demand processes have simple exponential tail bounds.

C. Computing Bounds for Exponential Tail Bounds

It has been shown, in the literature of network calculus,
that even simple functions can characterize several complex
stochastic processes. In fact, the trivial function A(t) = rt as
a sample path envelope and an exponential decay rate ae−ξ t as
a tail bound can characterize a large class of processes called
exponentially bounded burstiness processes (EBB) [26], which
includes Markov modulated processes. In our work, we model
a more general class of processes than EBB by using affine
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functions of the form A(t) = [a ± rt]+ as envelopes with
exponential decay rates as bounding functions. Specifically,

S ′(t) = [ρ1t − σ1]+ ; ε′
s(x) = p1e−β1x (25)

S ′
(t) = ρ2t + σ2; ε′

s(x) = p2e−β2x (26)

D′(t) = [ρ3t − σ3]+ ; ε′
d(x) = p3e−β3x (27)

D′
(t) = ρ4t + σ4; ε′

d(x) = p4e−β4x (28)

for some ρj, σj, pj, βj, (1 ≤ j ≤ 4). In addition to our
assumptions on the choices of envelopes, we also assume

ε′
0(x) = p5e−β5x; ε′

w(x) = p6e−β6x (29)

for some p5, p6, β5, β6. Inserting the above choices in
Theorem 2, we can compute performance bounds for energy
systems with nonideal ESDs.

Recall that the bounds in Theorem 2 use the convolution
operation, and each convolution is a minimization over a free
parameter [see (11)]. Computing this minimum is challenging
for general functions. Although, for the case of exponential
distributions, one can use [27, Lemma 3] to compute these
convolutions, we decided to compute simpler suboptimal,
albeit good, values for the free parameter in the convolution
operation by choosing identical exponents in the convolv-
ing functions. With this simplification, and if, respectively,
ρ1 ≥ ρ4 and ρ3 ≥ ρ2 (a stability condition), we get

Pr{l(t) > 0} ≤ ε′
l + min

(

ε′
0, (p1 + p4)e

{
− β1β4

β1+β4
(B−σ1−σ4)

})

(30)

and

Pr{w(t) > x} ≤ min

(

(p6 + p5)e
− β5β6x

β5+β6

(

p6 + (p2 + p3)e

{
− β2β3

β2+β3
(B−σ2−σ3)

})

e−βwx
)

(31)

where βw = (1/β2 + 1/β3 + 1/β6)
−1.

D. Steps to Evaluate Bounds for Measurement Trace

We now describe the steps necessary to compute bounds on
loss of power probability and waste of power probability using
our approach. Recall that we are given measurement traces for
S and D and also the physical characterizations of the ESD.

First, compute the virtual source S′, demand D′, and ESD
size B′ using Lemma 1. Second, compute the rates in the sam-
ple path envelopes [i.e., ρj in (25)–(28)] by setting ρj (∀j) to
the long-term average power of its corresponding process (e.g.,
ρ1 = ∑T

t=1 S′(t)/T , where T is the time length of the mea-
surement trace). Third, verify that the stability condition is
met. That is, check that ρ1 ≥ ρ4 and ρ3 ≥ ρ2, which other-
wise and respectively, lead to the loss of power probability and
the waste of power probability to be trivially bounded by 1.
Fourth, compute the four bounding functions, with parameters
pj and βj, treating σjs as free parameters, as follows: For a
fixed σj, construct the set Y [see (8)] for the corresponding
virtual process and envelope (e.g., S ′

). Note that the elements

of Y must be nonnegative. Thus, set all negative elements of
Y to zero. To avoid the bias of the zero elements in the fitted
distribution, set pj to the ratio of the nonzero elements of Y
to the total number of elements. Then, βj is the parameter of
the exponential decay that is fitted to the nonzero elements
of Y . Fifth, use similar steps to compute p5, p6, β5, and β6.
Finally, by turning (25)–(28) to functions of the free parame-
ter σj, minimize them over that parameter to find the optimal
value of σj.

VI. EVALUATION

In this section, we validate our analysis using the widely
used wind turbine power traces from the U.S. West Coast,
with a 10-min time resolution (Tu = 10min), freely available
from NREL [28]. We use this data trace to compute our ana-
lytical upper bounds on the loss of power and waste of power,
following the steps described in Section V-D. We also com-
pare our bounds with results obtained by simulating the state
of charge of the ESD and computing the exact waste of power
and loss of power, respectively, from (13) and (17).

We assume that this wind power is used to serve a constant
demand of 0.1MW for loss of power. For evaluating the waste
of power, we use a higher demand of 0.5MW with an ESD
of size 10MWh, to keep the magnitude of the waste of power
numerically manageable. Note that the average available power
from our wind power trace is 0.6MW. We compare the perfor-
mance of the five ESD technologies in Section II: lithium-ion
battery, lead-acid battery, and compressed-air energy storage
(CAES). The physical constraints of these technologies are as
in Table II. Thus, the results of this section assume the same
temperature and SOH under which the parameters in Table II
are computed.

A. Impact of Imperfections

We use numerical simulations to investigate the impact of
ESD imperfections on energy system performance. For each
ESD technology, we compute the actual loss of power and
the waste of power probabilities by simulating the ESD state
of charge process, using (1), and computing the quantiles
(i.e., CCDF) of the performance metrics. We also show the
performance metrics of an ideal ESD to study the impact of
imperfections for each ESD technology.

Fig. 3(a) shows the loss of power probability as a function of
ESD size for each ESD technology. This graph demonstrates
the substantial impact of the physical constraints; nonideal
ESDs have significantly different loss of power probabilities
compared to an ideal ESD for the same storage size. This
vividly demonstrates the need for the analytical modeling of
ESD imperfections, especially for larger storage sizes. This
figure also shows the dramatic difference in behavior across
ESD technologies, again, especially for larger storage sizes.

Fig. 3(a) also highlights that the impact of efficiency on
the loss of power probability is negligible, because the loss
probability curve for CAES (the technology with the worst
efficiency among the three we studied) closely tracks that
of an ideal storage. Note that the main restrictive physical
imperfection of CAES is its efficiency. In contrast, the impact
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Fig. 3. Impact of ESD imperfections on Ploss and Pwaste for different ESD technologies. The Y-axes are both logarithmic. (a) Loss of power probability
(D(t) = 0.1MW). (b) Waste of power probability (D(t) = 0.5MW and B = 10MWh).

Fig. 4. Evaluating the accuracy of our analysis. (a) Loss of power probability (D(t) = 0.1MW). (b) Waste of power probability (D(t) = 0.5MW and
B = 10MWh).

of charging rate limit and DoD on the loss probability are
significant. This is inferred from the nonnegligible difference
between the Li-ion and lead-acid curves with that of an ideal
storage and noting that charging rate limit and DoD are the
main restrictive physical constraints of these two technologies.

Fig. 3(b) shows the tail bound distribution of the waste of
power probability. This graph highlights the fact that ignoring
the physical constraints of ESDs drastically underestimates
the required resources for all ESD technologies. Moreover,
the choice of ESD technology highly impacts the waste of
power. For the parameter choices we made in this example,
the overall waste of power arises from ESD inefficiency, self-
discharge, and limited storage size [see (13)]. The ideal storage
curve captures the contribution of the limited storage size to
energy waste. The difference between the ideal curve and the
other curves is due to ESD inefficiency and self-discharge. We
observe that the waste of power for ESD technologies in this
example is mainly due to their small efficiency. Thus, Li-ion
which has the largest efficiency has the smallest waste and
CAES which has the smallest efficiency has the largest waste.

The sharp drops that we observe for these three technologies
indicate that one of the sources of waste of power (e.g., storage
inefficiency) is bounded by a threshold.

B. Accuracy of Analytical Performance Bounds

Section VI-A computed performance bounds through
numerical simulations. Here, we evaluate the quality of our
analytical bounds from Theorem 2 in Fig. 4. Though not
shown here due to lack of space, we first used QQ-plots to
verify that simple exponential decay functions do adequately
characterize the stochastic wind power process. This allows us
to use (30)–(31) as performance bounds and to compare the
numerical and analytical performance bounds of the selected
ESD technology.

Fig. 4(a) compares the loss of power probability and
Fig. 4(b) the waste of power probability. Our analytical bounds
closely match numerical simulations, especially for loss of
power probabilities. This demonstrates the usefulness of our
analytical approach.
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VII. CONCLUSION

By smoothing out variations in the supply and demand pro-
cesses, ESDs are likely to play a significant role in all future
energy systems. Sizing and choosing the best ESD technology
is a critical task, that is usually accomplished using exten-
sive simulations. Apart from time complexity, dimensioning
through simulation requires large datasets which are often
difficult to obtain.

An analytical approach, in contrast, requires smaller datasets
and allows great flexibility in choosing design parameters. In
recent work, an elegant mapping between smart grids and
queuing systems in teletraffic theory has enabled the perfor-
mance analysis of energy systems drawing on a large and
sophisticated literature in this area [10], [12], [13]. A criti-
cal issue is that an analytical model should model nonideal
ESD behavior, rather than assuming them to be identical to
memory buffers in the Internet, as is the case in current work.

Our first main result is that by defining virtual source and
demand processes, we can use teletraffic analysis even for a
nonideal ESD. Our second main result is to extend prior work
using stochastic network calculus to compute upper bounds on
the loss of power and waste of power probabilities for nonideal
ESDs. Using numerical simulations over a large dataset of
wind power, we show that.

1) The storage imperfections have a significant impact on
the performance of energy systems.

2) Our analytical bounds for nonideal ESDs are quite tight.

Our work is important in that it provides a general frame-
work to analyze stochastic energy systems with ESDs for a
class of ESD technologies whose state of charge evolution can
be expressed by (1). This class includes important technologies
such as batteries and CAESes. Yet, we recognize that it does
not model some classes of ESD imperfections (most impor-
tantly SOH and temperature) that are still poorly understood
in the literature. In future work, we plan to incorporate these
into our nonideal ESD model and extend our analytical for-
mulation to a larger class of ESDs to include other important
ESD technologies such as supercapacitors and flywheels.
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