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Abstract

We consider several scheduling problems for packet based systems with time-varying channel conditions. Design-

ing scheduling mechanisms that take advantage of time-varying channel conditions, which are different for different

users, is necessary to improve system performance; however this has to be done in a way that provides some level

of fairness among the users. Such scheduling mechanisms are termed opportunistic. We generalize the opportunistic

scheduling mechanisms in the literature on three fronts. First, we formulate and solve an opportunistic scheduling

problem with multiple general long term QoS constraints and a general system objective function. The solution of this

opportunistic scheduling problem is an index policy. Then, we generalize this problem to include multiple interface

systems in which several users can be served simultaneously. Apart from the long term QoS constraints specified by

each user, multiple interface systems are constrained with other physical limitations imposed by the system. We show

that the structure of the optimal opportunistic scheduling policy is carried over to the problem with general constraints

and multiple interfaces. We also study the stability of the multiple interface systems and propose a throughput optimal

scheduling rule for such systems. We then formulate an opportunistic scheduling problem with short term processor

sharing fairness constraints as an optimization problem where fairness is guaranteed over a finite time window. In its

most general form, this problem cannot be solved analytically. Hence observing the form of the optimal policies for

special cases, we propose a heuristic scheduling policy. We illustrate the effectiveness of the policies via simulation.
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I. INTRODUCTION

Wireless channels, in contrast to their wireline counterparts have time-varying location-dependent characteristics

and different wireless users experience different channel conditions at a given time. These channels are affected by

user shadowing, interference and path losses due to changing environments and due to user mobility. In CDMA based

systems, wireless channels are affected by co-channel interference due to other users. Also, in the case of satellite

systems, the channel conditions vary due to the weather conditions and satellite movements. In prior works [3, 7], it

has been argued that the variations in the channel conditions should be exploited to increase the system throughput.

The basic idea behind exploiting the channel variations is to schedule a user having the best channel condition at a

given time. Such scheduling mechanisms are called opportunistic. If the service requirements of all the users are

flexible, such opportunistic scheduling mechanisms can result in reduced interference, higher spectrum utilization, and

increased system throughput. Use of opportunistic scheduling schemes can give throughput gain of more than 100%

with respect to non-opportunistic scheduling such as round robin. The effectiveness of opportunistic scheduling has

been accepted by the research community and such methods have been incorporated in the design of new generations

of wireless systems such CDMA-HDR (IS-856). This is an example of a high data rate system that takes advantage of

time-varying channel conditions through the use of an opportunistic scheduling mechanism.

The problem of packet scheduling for single interface systems with time-varying channel conditions can be illus-

trated as follows (see Figure 1). Consider a base station with fixed transmission power and a packet based downlink

scheduling mechanism. The wireless channel for each user differs depending on the location, the surrounding envi-

ronment, and mobility. Assume that each user reports its downlink channel condition to the base station in a periodic

fashion. Thus the base station knows the current channel condition and hence the data rate it can offer to each user

on the downlink channel if only that user is served at the given time. After finishing a packet transmission, the base

station must choose the next (single) user to whom it will send the next packet (that can be done by inspecting the

current potential transmission rates of the different active users).

For single interface systems, we formulate a multiple constraint opportunistic scheduling problem with long term

QoS constraints (i.e., constraints that are based on long term averages). We show that the solution is an index policy in

Section III-A. We also discuss relevant system considerations in the same section.
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Fig. 1. Single interface opportunistic scheduling
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Fig. 2. Multiple interface opportunistic scheduling

There are systems of interest which cannot be modeled in the above framework. Among them are the multiple

interface systems where the user channel conditions are time-varying over all the interfaces and the base station has

the freedom to serve several users on several interfaces simultaneously. For example, in multi-carrier CDMA systems

every user has a time-varying channel on each carrier. In OFDM systems, fading and shadowing are different for each

carrier. In multiple beam satellite systems, a satellite can transmit simultaneously to different ground terminals over

different channels. Depending on the specifics of the system, the number of interfaces can vary from two to more than

thousand.

To describe the scheduling problem in such systems, consider Figure 2. All the transmissions on different interfaces

start and end at the same time. Each user has different channel conditions over different interfaces. Assume that

each user reports its channel condition on every interface to a single base station. The base station must schedule

several users for transmission over multiple interfaces in a way that satisfies the physical constraints. The physical

constraints can differ from system to system taking into account the different technologies used at the base station,

but these physical constraints must be satisfied at all times. We do not assume that the different interfaces use the

same technology, but we do assume that the base station has complete knowledge of the current channel state for each

user on each interface. This excludes the case in which each interface is managed by a different base station. It is

not necessary that all users have all the interfaces. If a particular user does not support a particular kind of interface,

the data transmission rate for that user over that kind of interface is always assumed to be zero. Thus, without loss

of generality we assume that all users support all interfaces. These kind of systems have received much less attention

so far. In Section III-B we formulate an opportunistic scheduling problem over multiple interfaces and show that the
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solution is again an index policy. We also give a throughput optimal scheduling rule that guarantees stable user queues

for such systems in Section III-C.

Opportunistic scheduling mechanisms have to take into account some notion of fairness. Most of the studies in

the literature so far have focused on long term fairness constraints. However wireless channels are correlated and

non-stationary; users in deep fades experience a bad channel for prolonged periods of time. Hence long term policies

may lead to long starvation period for such users. A good scheduling policy must guarantee fair share of the network

resources to each user over some finite time window. There is a need for a policy which takes into consideration the

short term requirements of the users because usually networking protocols have some timers associated with them. All

these timers at different protocol layers interact with each other in an unpredictable manner. An expiration of a timer

is a bad event for an end-to-end connection. Such an event is usually interpreted as an indication of congestion or loss

of connectivity. Hence we would like to give a strict guarantee on the maximum starvation period, i.e., the maximum

period between two successive service offerings to an active user. Usually this guarantee will be the same for all the

users. If the minimum possible data rate for a user is strictly greater than zero then a guarantee on the maximum

starvation period would automatically correspond to a minimum data rate for that user. We define, in Section IV-A, a

short term fairness constraint and formulate an opportunistic scheduling problem with this constraint. As this problem

is very complex to solve under general conditions, we consider some simple cases in Section IV-B. With the insights

from the optimal opportunistic scheduling policies for these special cases we design a heuristic policy for the general

opportunistic scheduling problem in Section IV-C.

This paper is organized in the following way. In Section II, we discuss previous relevant work in this area. In Sec-

tion III we formulate and study opportunistic scheduling problems with long term fairness constraints. In Section IV

we formulate and study an opportunistic scheduling problem with short term fairness constraints. In both these sec-

tions we present numerical results. We conclude in Section V. The results in this paper have been presented in two

conferences ( [5] and [6]).

II. PREVIOUS WORK

The problem of exploiting the channel state variations to increase the throughput of wireless systems has been

in focus in recent years. The typical representative term used to describe systems using opportunistic scheduling is
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multi-user diversity. Opportunistic scheduling schemes have been studied in the literature mostly for single interface

systems, with a single form of long term fairness constraints.

Multi-user diversity has a similar effect to that of a space or a time diversity, enabling some improvement in the

system performance. This multi-user diversity has been described from an information theoretic viewpoint in [15]

and the references contained therein. In [3] the authors present a similar opportunistic scheduling scheme for the

Qualcomm/HDR system. These schemes provide asymptotic proportional fairness among the users. In [16] the authors

suggest to increase or even introduce random variations in the channel conditions using multiple dumb antennas so

that the multi-user diversity can be fully exploited. They analyze such a system and give the asymptotic bounds for the

total channel capacity. But the simulations with practical system parameters do not confirm these results due to various

practical limitations (for more details please refer to [4]). The main drawback of all these approaches is that individual

QoS requirements cannot be taken into account in designing the scheduling policy.

In [10,12] the authors extend wireline scheduling policies to wireless networks and present wireless fair scheduling

policies which give short term and long term fairness bounds. While this approach provides fairness guarantees, it

assumes that the channel quality is either good or bad. In [8] the authors present a scheduler called WCFQ (Wireless

Credit-based Fair Queuing) to provide (only) statistical fairness bounds on the fraction of the processor share received

by each user. Their approach is based on CBFQ (Credit Based Fair Queuing), a scheduler for wired systems. WCFQ

trades off fairness for throughput to exploit the channel time variations by mapping channel conditions into a cost

function. In [13] the authors present and study a practical scheme to exploit channel time variations in 802.11 based

ad-hoc networks. While maintaining the same level of fairness, they provide a modification of the 802.11 protocol to

obtain a better throughput than that of the original 802.11 protocol.

In [1, 14], the authors study throughput optimal scheduling rules. If there exists any scheduling rule which can

guarantee stable queues then a throughput optimal scheduling rule also guarantees stable queues. Thus, throughput

optimal scheduling rules have the largest system stability region in the space defined by the average incoming rates.

Throughput optimal scheduling rules in time-invariant case are studied in [2]. In [11], the authors study a specific case

of multi-beam satellite systems, propose a throughput optimal scheduling rule, and extend results to wireless networks.

In [7], the authors introduce three different QoS constraints, which they call Resource Sharing Fairness Constraint,

Performance Based Fairness Constraint, and Minimum Performance Fairness Constraint. They provide optimal op-
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portunistic scheduling mechanism for these special constraints. They also present one way of achieving soft short term

fairness. In [14] the authors present a technique to extend the throughput optimal scheduling rules to guarantee min-

imum data rate constraints. Most of these results except [9] consider only the single interface case. Specifically, it is

inherently assumed that only one user will be scheduled at a given time. In [9] the authors consider a throughput maxi-

mization problem with deterministic and probabilistic GPS-like (Generalized Processor Share) fairness constraints for

multiple interface systems. But their approach is limited to a specific objective and specific constraints.

Our work not only generalizes the previous studies on many fronts but also unifies many of the results found in the

literature and puts all of them into a single framework.

III. OPPORTUNISTIC SCHEDULING WITH LONG TERM QOS CONSTRAINTS

In this section we study opportunistic scheduling problems with long term QoS constraints.

A. Opportunistic Scheduling over a Single Interface with Multiple Constraints

To formulate our scheduling problem for a time-varying channel over a single interface with multiple QoS con-

straints, we make the following simplifying assumptions.

1) We assume that the system operates on a timeslot by timeslot basis. The width of each timeslot is fixed and the

channel conditions do not vary during a timeslot. In real systems, the physical frame size can be selected from a

finite discrete set. Hence depending on the current data rate, the transmission of a physical frame can take more

than one timeslot. However in our model we assume that the physical frame transmission size can be varied

according to the transmission rate so that transmissions begin and end exactly at timeslot boundaries. This is

also assumed in [1, 7, 11, 14–16].

2) In real systems, the users send the necessary channel state information to the base station in a periodic fashion.

Hence we assume that the base station knows at the beginning of each timeslot the exact channel state and the

exact data rate with which it can transmit to each user.

3) We assume that at most one user can be served in a timeslot.

4) We also assume that all the users are greedy (i.e., each user always has data to receive on the downlink).

Assumptions 1, 2 and 4 are valid throughout the paper while assumption 3 is not always valid.
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Constraints and Objectives: The QoS requirements for different users can be different and each user can potentially

specify its own requirements. In general, these requirements can be grouped into short term and long term constraints.

In this section we only consider long term requirements. The two most important long term QoS constraints are:

• Processor sharing constraint: User i specifies a weight φi and expects to get at least a fraction of the server time

equal to φi. Thus this fairness constraint can be viewed as a fairness criterion similar to the generalized processor

sharing. For a stable system, obviously we need
∑

i φi ≤ 1.

• Data rate constraint: A user asks for a minimum data rate guarantee to sustain its applications. This is a more

appealing QoS criterion from the user standpoint, as most of the non-elastic applications need some minimum

data rate. However a user might request a minimum data rate but may experience very poor channel conditions.

Hence, it is not easy to specify the feasibility of the system under general minimum performance constraints

because we do not assume any knowledge of the channel conditions.

We have mentioned only few possible fairness or QoS requirements. But potentially there can be many more and

combinations of those constraints can also be specified. For example, a wireless node may specify two constraints, one

for maximum power consumption and the other for minimum data rate requirement. The main constituent of the energy

consumption is the energy consumed in radio electronics. To satisfy the maximum power consumption constraint, an

upper limit on the processor time share can be calculated. Thus rather than having a lower bound on the processor

share (as in GPS), there could potentially be an upper bound on the processor share to reduce the power consumption.

By putting an upper limit on the processor time share a mobile device can guarantee a maximum power drain.

Notation: We start by introducing the notation and then state the general constraints associated with all the users.

We use similar terminology and notation as in reference [7].

• N : This denotes the set of users, usually indexed by i. The users will be indexed from 1 to N .

• µi(t): This denotes the data rate for user i in timeslot t. Thus ~µ(t) = [µ1(t), · · · , µN (t)] denotes the vector of the

data rates for all users at time t.

• Ki: This denotes the set of constraints for user i. The constraints are usually indexed by j.

• fi, g
j
i : fi denotes the system utility function, and gj

i denotes the jth constraint function associated with user i. We

assume that the fi and gj
i are convex functions in their arguments.
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• Q(~µ(t)): This denotes a scheduling policy to select a user to serve in timeslot t, given ~µ(t).

We denote the indicator function by the letter I , thus I
Q( ~µ(t))=i

is 1 if in timeslot t user i is selected for service

by policy Q, otherwise zero. We assume that each user is only interested in long term QoS constraints. Omitting the

timeslot variable t by some abuse of notation, for a user i the j th long term QoS requirement constraint is stated as

follows: ∀i ∈ N , j ∈ Ki, E{gj
i (µi)IQ(~µ)=i} ≥ Gj

i

The above constraint is a long term constraint as the QoS requirement is to be guaranteed in expectation. Thus

assuming ergodicity over a long period of time, the QoS constraint would be satisfied on an average. For the processor

sharing constraint, the functions gj
i can be taken as unit functions, gj

i (µi(t)) = 1. Thus the processor sharing constraint

can be written as ∀i, E{IQ(~µ)=i} ≥ φi. In words, this constraint can be phrased as, on the long term a user i should

get a base station time share greater than or equal to φi. Similarly for the data rate constraint, gj
i can be taken as

gj
i (µi(t)) = µi(t) and hence the data rate constraint can be written as ∀i, E{µiIQ(~µ)=i} ≥ Ri (Ri being the minimum

data rate requested by user i).

We define a general system objective as follows: maxQ

∑

i∈N E{fi(µi(t))IQ(~µ(t))=i}.

The above objective is also a long term objective in which the system utility is to be maximized in an expected

sense. Thus assuming ergodicity, over a long period of time the average system utility should be maximized. Usually

the objective of the system is to maximize the total system throughput. In that case the utility functions f i can be taken

as fi(µi(t)) = µi(t). Intuitively this would force the optimal policy to choose a user having a better channel (higher

data rate) to maximize the system throughput.

Problem Formulation and Solution: The single interface scheduling problem with multiple constraints can be for-

mulated as an optimization problem as follows.

P 1: maxQ

∑

i∈N

E{fi(µi)IQ(~µ)=i} such that ;∀i ∈ N , ∀j ∈ Ki E{gj
i (µi)IQ(~µ)=i} ≥ Gj

i

Theorem 1: The solution Q∗ of the above single interface constrained opportunistic scheduling problem, if one

exists, is of the following form:

∃λj
i ≥ 0 s.t. Q∗ = argmaxi{fi(µi) +

Ki
∑

j=1

λj
i g

j
i (µi)} where E{gj

i (µi)IQ(~µ)=i} > Gj
i ⇒ λj

i = 0 (1)

Proof: The proof follows directly by formulating the Lagrangian and follows the same steps as in the proof of

the Theorem 2 in Section III-B of this paper. The details are omitted for the sake of space.
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The constants λ’s are the Karush-Kuhn-Tucker (KKT) multipliers and depend on the multidimensional distribution

of the µi(t)’s. The optimal policy is always of an argmax type for the type of constraints and objectives we have

defined. The arguments for the argmax are the weighted and shifted sums of functions of the current data rate for each

user. If all the users specify only the processor sharing constraint, the optimal policy becomes argmax i{µi + λi}.

Thus the optimal policy (for processor sharing constraints) adds a bias equal to the KKT multipliers to the data rate

values. If all the users specify only a minimum data rate constraint, the optimal policy becomes argmax i{µi(1+λi)}.

Thus the optimal policy (for minimum data rate constraints) multiplies the data rate values by the KKT multipliers.

These two special cases have been studied in [7]. In general, in the solution to the generalized opportunistic scheduling

problem, we affine translate the functions of the data rates and then use an argmax rule to obtain the optimal policy.

An example of a single interface opportunistic scheduling problem with multiple constraints is as follows. Suppose

that the system objective of the opportunistic scheduling problem is to maximize the goodput. By goodput we mean

that we consider the transmission of only user data and not any headers (overhead associated with the transmission).

Assume that the header size is of H bytes per transmission. Also assume that all the users specify two constraints.

The first constraint is the usual processor sharing constraint with weight φi for user i, and the second is a minimum

goodput rate constraint (i.e., the data rate without headers) of Ri. Thus the problem can be formulated as follows.

maxQ

∑

i∈N

E{(µi − H)IQ(~µ)=i} such that ∀i, E{IQ(~µ)=i} ≥ φi; E{(µi − H)IQ(~µ)=i} ≥ Ri

The solution of this problem is,

Q∗ = argmaxi{µi + λ1
i + λ2

i (µi − H)} i.e., Q∗ = argmaxi{µi(1 + λ2
i ) + λ1

i − Hλ2
i }

The λ’s are the KKT multipliers as defined in Theorem 1.

We now discuss various issues related to the calculation of the optimal solution for the opportunistic scheduling

problem formulated in Problem P1. The first issue is how to calculate the KKT multipliers in a real system so that

we obtain the desired optimal scheduling policy. In [7] the authors present a stochastic approximation algorithm to

calculate such constants. The algorithm is outlined in Section IV-D. The basic idea behind this type of algorithms is

to start with all zero KKT constants. Then in each timeslot, along a sample path, a correction term proportional to the

error term (the difference between the actual constraint bound Gj
i and the so far achieved average constraint value) is
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added. A similar approach can be taken to calculate the λ′s in Equation 1. Such algorithms are not computationally

complex and hence can be used in each timeslot. The results of [7] show that these algorithms converge quite fast.

Note that if the system is unfeasible, i.e., the constraints cannot be satisfied then the stochastic approximation method

will not converge. Thus we must guess the feasibility heuristically if the stochastic approximation algorithm seems to

diverge. In fact, in this sense the optimal solution is limited because it does not give any information about the system

feasibility. Also, after the arrival of a new user or after the departure of a user, all the KKT multipliers change and

must be recalculated.

The solution for the opportunistic scheduling assumes that all the users are greedy and hence the solution method-

ology is good for the heavy traffic scenario. Also note that the optimal solution with the processor sharing constraints

does not guarantee the exact generalized processor sharing (which guarantees the distribution of excess server capacity

among the active users in proportion to their weights) if some users are inactive. Also other types of guarantees, e.g.,

short term fairness constraints and buffer overflow constraints cannot be provided with this approach.

B. Opportunistic Scheduling over Multiple Interfaces

The next generation of wireless communication devices will be equipped with more than one interface. Each inter-

face provides different characteristics. Such devices have been already discussed in the literature but within a context

of connectivity and mobility. A device may have more than one interface because a single technology might not be

sufficient in terms of coverage or because in different environments different technologies might be more suitable.

We consider a general opportunistic scheduling problem over multiple interfaces with long term user QoS constraints

(similar to the QoS constraints described in the previous subsection) and physical constraints. The physical constraints

are imposed by the system structure and must be satisfied in each timeslot. For example, consider the different inter-

faces as different physical antennas. There are K physical interfaces (antennas) for each user. The communication

bandwidth is divided in K bands and each antenna can be tuned to any band. Thus each antenna can be used for any

interface, but an antenna can be used for only one interface at a given time. Thus in the above case, a physical constraint

can be specified as follows. If an interface k is assigned to user i in a given timeslot, then another interface l cannot

be assigned to user i and another user j cannot be assigned to the interface k in the same timeslot. This is precisely

the scenario in the multi-beam satellite systems. In such systems, there are K beams and N earth based stations. A
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beam can be used to serve any one of the stations in a given timeslot. At most one beam could be used to serve a

station. A more complex example of physical constraint can be a modified version of the above physical constraint

as follows. Suppose that the base station is limited by the maximum total power it can use for transmission in any

given timeslot. In this example, the base station has to choose a power distribution among the different interfaces such

that the total transmitted power must be less than the maximum allowed power consumption. problem in multi-beam

satellite networks is considered in [11].)

We denote by K the set of interfaces and index the interfaces by the letter k. Thus ~µi = (µ1
i , · · · , µK

i ) and [µ]

is the N × K matrix where µk
i denotes the current data rate for user i ∈ N over interface k ∈ K. For notational

convenience only, we assume that each user has only one QoS constraint (referenced by gi). A stationary policy

~Q = (Q1, · · · , QK) denotes a vector function on [µ], which assigns each interface to a particular user in each timeslot

according to the specified rule Q. Though other physical constraints can also be taken into account in a similar fashion,

in the following discussion we assume the following physical constraint: any feasible policy cannot assign two users

to the same interface or two interfaces to the same user in any timeslot, i.e., k 6= k̂ ⇔ Qk([µ]) 6= Qk̂([µ]).

Problem Formulation and the Solution: The multiple interface opportunistic scheduling problem can be defined as

follows.

P 2:
maxQ

∑

i∈N

∑

k∈K

E{fi(µ
k
i )IQk([µ])=i}

such that ∀i,
∑

k∈K

E{gi(µ
k
i )IQk([µ])=i} ≥ Gi and k 6= k̂ ⇔ Qk([µ]) 6= Qk̂([µ])

In words, the objective of this problem is to maximize the expected system utility subject to the physical constraints

and to that on the long term, the user QoS constraints will be satisfied.

Now define the function Kargmaxi,k(fi,k) which is a solution of the following optimization problem.

maxai,k

∑

i∈N

∑

k∈K

E{ai,kfi,k} (2)

s.t. ai,k ∈ {0, 1}, k 6= k̂ ⇔ ai,k + a
i,k̂

≤ 1 and i 6= î ⇔ ai,k + aî,k ≤ 1

In words, Kargmaxi,k(fik) is a function defined as follows: Choose at the most K entries from the matrix [fik]

of N × K entries, satisfying the physical constraints, such that the sum of the selected terms is maximum. For the

constraints we have considered, we choose a maximum of one entry per column and per row. Hence, this special case
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of Kargmaxi,k is an assignment problem, or a weighted bipartite graph matching problem. The nodes from one part

of the graph represent users and the nodes from another part represent the interfaces. The weights of each link are

specified by the term fi,k.

Theorem 2: The solution ~Q∗ of the multiple interface constrained opportunistic scheduling problem defined in

Problem P2, if one exists, is of the following form.

∃λi ≥ 0 s.t. ~Q∗ = Kargmaxi,k{fi(µ
k
i ) + λigi(µ

k
i )} where

∑

k∈K

E{gi(µ
k
i )IQk([µ])=i} > Gi ⇒ λi = 0 (3)

Where, the Kargmaxi,k(fik) is the function defined as above.

Proof: Consider any feasible policy Q. Then there exist nonnegative constants λi such that the following holds.

∑

i∈N

k∈K

E{fi(µ
k
i )IQk=i} ≤

∑

i∈N

k∈K

E{fi(µ
k
i )IQk=i} +

∑

i∈N

k∈K

λi

[

E{gi(µ
k
i )IQk=i} − Gi

]

=
∑

i∈N

k∈K

E
[

(

fi(µ
k
i ) + λigi(µ

k
i )

)

IQk=i

]

−
∑

i∈N

k∈K

λiGi

≤
∑

i∈N

k∈K

E
[

(

fi(µ
k
i ) + λigi(µ

k
i )

)

IQ∗k=i

]

−
∑

i∈N

k∈K

λiGi (4)

=
∑

i∈N

k∈K

E{fi(µ
k
i )IQ∗k=i} +

∑

i∈N

k∈K

λi

[

E{gi(µ
k
i )IQ∗k=i} − Gi

]

=
∑

i∈N

k∈K

E{fi(µ
k
i )IQ∗k=i}

(4) follows from the definition of ~Q∗ in (3) and by the property of the Kargmax function defined in (2).

Thus the same solution structure is carried over from the optimal policy for the single interface opportunistic schedul-

ing problem to the optimal policy for the multiple interface opportunistic scheduling problem. The constants λ ′s could

be calculated with the same stochastic approximation algorithm as the one discussed in the previous section on the

single interface problem. We note that even when the constants in the optimal solution are given, Kargmax solves

an assignment problem in every timeslot. Even for simple constraints the optimal policy for the multiple interface

opportunistic scheduling problem involves complex computations in each timeslot. As opposed to this, the optimal

policy for the single interface opportunistic scheduling problem simply selects the largest entry. In a special case where

each user has the same data rate over all the interfaces in every timeslot (different users still have different data rates)

the optimal policy is of the form Kargmaxi(fi(µi) + λigi(µi)), where Kargmax becomes a function which simply
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selects the K highest entries. We note that for different physical constraints, Kargmax is a different function and the

solution of an optimization problem in itself. For example, for the physical constraints such as the power allocation

constraints discussed earlier, Kargmax is a function which chooses a power allocation strategy in each timeslot such

that the sum of the selected fi(µ
k
i ) + λigi(µ

k
i ) terms is maximum. In such cases, we could either use to solve this

problem an exact but complex optimization approach or a simpler but approximate approach.

C. Throughput Optimal Scheduling Rule over Multiple Interfaces

In this subsection only, we do not assume that the users are greedy. Hence the base station might not always have

data to be sent on the downlink to a given user. We assume that the data to be transmitted to the users is queued at

the base station on separate queues (one queue per user). In this section, when we discuss stability we mean that all

the queues should remain finite. It is important to design scheduling policies that yield stability. It may not be always

possible (because of the traffic generated for some users could be too large) but if there exists a scheduling policy that

yields stability, we want to find it. Intuitively this can be ensured if, for each queue, the service rate is greater than

the incoming traffic rate. In simple static queuing systems this translates into ensuring that each user gets a time share

of the server large enough to yield a service rate greater than its incoming traffic rate. But in time-varying dynamic

systems, ensuring only this is not enough as there is no simple linear relation between the amount of the processor

share and the corresponding service rate a user gets. Hence, it is also important to optimally time the service offering

for a user when the channel conditions are good for that user. Finding such stable policies might depend on knowing

the average incoming traffic rates for each user and any method which requires the exact incoming rates to be known to

obtain a stable scheduling policy critically depends on estimating the incoming rates. Throughput optimal scheduling

policies on the other hand, are policies which guarantee stability under any incoming traffic rates, as long as there is at

least one such stable scheduling policy. Thus for these policies there is no need to estimate any incoming rate. Note

that in this kind of problems, there are no per user QoS constraints to satisfy.

For the single interface case a throughput optimal scheduling rules has been given in [1]. In this section we generalize

the throughput optimal scheduling rules termed as M-LWWF, i.e., Modified Largest Weighted Work First to multiple

interface systems. The rule for the single interface case is stated as follows: In any given timeslot, serve a user having

the maximum aiqi(t)µi(t) with the ai’s are any positive (nonzero) constants and qi(t) is the queue size for a user i at
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time t. Thus Q∗ = argmaxi{aiqiµi} is a throughput optimal scheduling rule for the single interface case.

For the multiple interfaces case we generalize this result as follows.

Theorem 3:

~Q∗(t) = Kargmaxi,k{aiqi(t)µ
k
i (t)} (5)

is a throughput optimal scheduling rule for the multiple interface case, i.e., if there exists any scheduling rule that

makes all user queues stable then the above rule also makes all user queues stable.

Proof: Refer to the appendix in [5]. The details are omitted due to lack of space.

Note that we do not assume that the users are greedy as we have assumed in Theorems 1 and 2. Thus this throughput

optimal scheduling rule, on a long term, provides a service rate at least equal to the incoming rate for each user

irrespective of the channel conditions assuming that it is at all possible. Note that this throughput optimal scheduling

policy is different from the optimal opportunistic scheduling policy as given in equation (3) with QoS constraints

based on the average data rates. For throughput optimal scheduling rules, if one user misbehaves it affects all the other

users performance, possibly making all the queues unstable. But the policy given in equation (3) is robust against

misbehavior of some users. In such cases it still provides the required data rate for the remaining users. For more

details on throughput optimal rules refer to [2, 11, 14].

D. Numerical Results

We simulated the opportunistic scheduling policies for typical settings of a CDMA-HDR (1xEV-DO) system. The

data rate for each user is determined by the Signal to Noise Ratio (SNR) as shown in Table I taken from [3].

The SNR for each user is modeled as an autoregressive log-normally distributed channel. Specifically, s i(t + 1) =

γsi(t) + (1 − γ)ni(t + 1); where si(t) denotes the channel SNR (db) in timeslot t for user i and the ni(t) denote the

channel variations (noise terms) assumed to be normally distributed independent rv’s. These n i(t) rv’s have a standard

deviation of 15 in all cases. γ, the auto-regression coefficient is set to 0.7.

We use a stochastic approximation method to calculate the values of the constants λ’s. For simplicity assume that

each user has only one constraint (gi). Then a simple stochastic approximation algorithm to calculate λi is given as

follows: We start with λi(0) = 0 for all i. After each timeslot t we modify the λi(t) values as follows: λi(t + 1) =
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TABLE I

DATA RATE VS SNR FOR AN HDR USER

SNR (db) -12.5 -9.5 -8.5 -6.5 -5.7 -4.0

Data rate (kbps) 38.4 76.8 102.6 153.6 204.8 307.2

SNR (db) -1.0 1.3 3.0 7.2 9.5

Data rate (kbps) 614.4 921.6 1228.8 1843.2 2457.6

TABLE II

SIMULATION DETAILS FOR CASE 1. SYSTEM THROUGHPUT=1258 KBPS

User Mean Variance Requested Requested Served Served λφi
λRi

SNR (db) SNR (db) φi Rate (kbps) φi Rate (kbps) λφi
λRi

0 5 15 0.3 700 0.401 813 0 0

1 -2 15 0.6 200 0.599 445 971 0

λi(t) +
(

gi(µi)IQ∗(t)=i − Gi

)

δ, where δ is a small step-size. A more detailed discussion on the implementation of

stochastic algorithms for opportunistic scheduling policies can be found in [7].

We present simulation results for three cases: two related to our opportunistic scheduling problem over a single

interface with multiple constraints, and one related to our scheduling problem over multiple interfaces. In the first two

cases, each user has two constraints. The first constraint is a processor sharing constraint and the second constraint is

a data rate constraint. In the third case each user has only one processor sharing constraint.

Case 1: There are two users in the system and the results of the simulation are presented in Table II. The simulation

is run for 100, 000 timeslots. The simulation results show various interesting aspects of the opportunistic scheduling

problem. First note that user 0 has a much better channel than user 1. The processor share requirement of user 0 is

much less than that of user 1 while its rate requirement is much larger than that of the user 1. The QoS requirements

of both the users are satisfied which means that the system is feasible. The processor share given to user 0 is much

larger than its requirement and hence the λ associated with the processor share constraint for user 0 is zero as expected.

Similarly the λ associated with the rate constraint for user 0 is zero. For user 1 the processor share given is just equal

to the required processor share. Hence the λ associated with it is nonzero. But as the rate constraint associated with

user 1 is satisfied by a large margin the λ associated with it is zero.

Case 2: Now we simulate a system with 10 users to study the effect of increased number of users of the performance

of optimal opportunistic scheduling policy. The user details are given in Table III.

In this simulation all the even numbered users have identical requirements (a processor share requirement of 0.06

and a data rate requirement of 70 kbps) and they experience a better channel than the other users. All the odd numbered

users have identical requirements (a processor share requirement of 0.12 and a data rate requirement of 20 kbps).

We note that the results of the simulation are similar to those of the previous simulation. As there are ten users
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TABLE III

SIMULATION DETAILS FOR CASE 2. SYSTEM THROUGHPUT=1972 KBPS

User Mean Variance φi Rate (kbps) φi Rate (kbps) λφi
λRi

SNR (db) SNR (db) Requested Requested Served Served λφi
λRi

0 5 15 0.06 70 0.072 174 0 0

1 -2 15 0.12 20 0.119 198 1222 0

2 5 15 0.06 70 0.073 176 0 0

3 -2 15 0.12 20 0.119 198 1186 0

4 5 15 0.06 70 0.073 176 0 0

5 -2 15 0.12 20 0.119 196 1241 0

6 5 15 0.06 70 0.113 276 0 0

7 -2 15 0.12 20 0.119 196 1217 0

8 5 15 0.06 70 0.075 181 0 0

9 -2 15 0.12 20 0.119 196 1244 0

TABLE IV

SIMULATION DETAILS FOR CASE 3.

Mean SNR Mean SNR φi φi Rate

User Interface 0,1 Interface 2,3 Requested Served λφi
Served

(db) (db) (kbps)

0 -2 -2 0.5 0.48 426 749

1 -2 -2 0.5 0.48 458 753

2 -2 2 0.5 0.49 6 933

3 -2 2 0.5 0.49 151 940

4 2 -2 0.5 0.49 45 934

5 2 -2 0.5 0.49 49 940

6 2 2 0.5 0.53 0 1081

7 2 2 0.5 0.54 0 1115

in the system, the system throughput has been increased due to the increased multi-user diversity gain. Also the λ’s

associated with both the constraints for all the even numbered users are zero as both the constraints are satisfied by a

large margin. But the λ’s associated with the processor sharing constraint for the odd numbered users have nonzero

(large) values as expected. Note that the even numbered users have not all received the same extra processor share.

This shows that the opportunistic scheduling policy has not distributed the remaining extra processor share evenly

among all the users (which would be the case for GPS).

Case 3: Now we simulate the opportunistic scheduling policy (solution to problem P2) for a multiple interface

system with four interfaces and eight users. The simulation parameters and the results are given in Table IV. While

the users 0, 1 have a bad channel (mean SNR = −2 db) for all the interfaces, the users 6, 7 have a good (mean SNR = 2

db) channel on all the interfaces. The users 2, 3, 4, 5 have a bad channel for two interfaces and a good channel for the

other two interfaces. As before, for all users the SNR variance is fixed to 15 while the auto-regression coefficient is set

to 0.7. All users require a processor sharing constraint with φi = 0.5, i.e., on an average each user must be selected

on any interface once in two timeslots. As expected using our policy all of the constraints are approximately satisfied.

Because the system is just feasible (i.e.,
∑

φi = 4) there are slight discrepancies between the φi requested by the users

and φi served by the policy due to the stochastic behavior of channel SNR. Note that the λ’s associated with users 6, 7

are zero while those associated with users 0, 1 are large to balance out the effect of different channel conditions for

different users. The λ’s for users 2, 3, 4, 5 are small compared to those for users 0, 1 and most of the time they get
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Fig. 3. A scheduling policy conforming to short term fairness

constraints.

user 0 1 2 3 4 5 6 7 8 9

φi 0.05 0.15 0.05 0.15 0.05 0.15 0.05 01.5 0.05 0.15

mean SNR (db) -4.0 -4.0 -2.0 -2.0 0.0 0.0 2.0 2.0 4.0 4.0

TABLE V

USER DETAILS FOR THE SECOND SIMULATION SCENARIO

served on the interfaces on which they have a better channel.

IV. OPPORTUNISTIC SCHEDULING WITH SHORT TERM FAIRNESS CONSTRAINTS

In this section we only consider processor sharing constraints, though our approach can be generalized for other

types of QoS constraints. The users are assumed to be greedy.

A. Problem Formulation

Let us assume that each user i has an associated weight φi such that
∑

i∈N φi ≤ 1. Let us group the timeslots into

successive non-overlapping windows of M timeslots each. Then a scheduling policy in which every user gets service

for at least Mφi timeslots in any such window is said to follow the short term fairness constraint with STF (short term

fairness) window of size M (refer to Figure 3). Note that Weighted Round Robin which allocates Mφ i consecutive

timeslots to user i is an example of such a policy. The maximum number of timeslots between two consecutive service

offerings for a user is called the starvation period for that user. The objective of our opportunistic scheduling problem

is to maximize the system throughput. Thus the opportunistic scheduling problem with short term fairness constraints

(with a STF window of size M ) can be formulated as the following optimization problem.

P 3: max

M−1
∑

t=0,i∈N

E[µi(t)IQ(t)=i] such that ∀i,

M−1
∑

t=0

IQ(t)=i ≥ Mφi

Henceforth we shall assume that
∑

i∈N φi = 1 though the case
∑

i∈N φi < 1 can be handled in a similar manner. Also

we assume that Mφi is an integer for all i. This limits the values of M and the possible values of φi’s. In words, the

above optimization problem can be stated as follows: Among all scheduling policies which select each user Mφ i times

in M consecutive timeslots find the one which maximizes the system throughput. A policy which satisfies the above
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short term fairness constraints (with a STF window of size M ) guarantees that no user will experience a starvation

period greater than 2M − 1 and each user will get its fair share of Mφi timeslots in successive non-overlapping

windows of M timeslots.

We are not imposing any structure on the channel characteristics. The optimal scheduling policy will depend on

many parameters including the channel state model, the current channel state for each user, the number of users, the

STF window size M , the current timeslot, and the state of the short term fairness constraints. In real systems it is

difficult to know (or estimate) many of the parameters involved in the channel state model. Hence in general the

solution of the above opportunistic scheduling problem is difficult to obtain. However we can simplify the above

problem into some special cases and study the optimal scheduling policy for these special cases. We do that in the next

section.

B. Special Cases

1) M = ∞: Let us consider the special case in which the STF window (M ) is equal to ∞. This special case can be

thought of as a long term processor sharing fairness constraint which is defined as follows: On an average, user i must

get a time share of the base station that is greater than or equal to φi. This obviously does not guarantee anything over

a finite time period. Then the opportunistic scheduling problem with this long term fairness constraint can be defined

as follows:

max
∑

i∈N

E{µi(t)IQ(~µ(t))=i} such that ∀i, E{IQ(~µ)=i} ≥ φi

It has been shown in Section III-A that the above problem has a solution of the form Q∗(t) = argmaxi{µi(t) + λi}

(with λi > 0 ⇒ E{IQ(~µ)=i} > φi). λi is the non-negative Lagrange multiplier associated with the constraint of user

i. We call this policy the Long-Term (LT) optimal scheduling policy. We have described a method to estimate the

constraints λi’s in a real system in Section III-D.

2) N i.i.d. users: ∀i, φi = 1/N, M = N : This case considers the shortest possible STF window. When all users

have the same weight φi, then the smallest STF window size is equal to the number of users N . We assume that the

data rates for all the users are identically and independently distributed (i.i.d.) in each timeslot. We also assume that
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M = N and ∀i, φi = 1/N . Thus our original optimization problem P3 becomes,

max

N−1
∑

t=0,

∑

i∈N

E[µi(t)IQ(t)=i] s.t.∀i,

N−1
∑

t=0

IQ(t)=i = 1 (6)

In words the above optimization problem can be stated as follows: Find a scheduling policy which selects each user

once in N consecutive timeslots and maximizes the system throughput. Let Q∗ be an optimal policy for the above

optimization problem when the data rates for all the users are i.i.d. in each timeslot. Also define, A∗(0) = N and

A∗(t) = A∗(t − 1) − Q∗(t − 1) where A∗(t) denotes the set of unserved users at time t for the current window, and

A∗(t) − Q∗(t) denotes the relative complement of Q∗(t) w.r.t. A∗(t). Then we claim,

Theorem 4: ∀t = {0, · · · , N−1}, Q∗(t) = argmaxi∈A∗(t){µi(t)} is the optimal opportunistic scheduling policy

for the problem P3 with M = N, φi = 1/N and i.i.d. users. We call this policy the Opportunistic Round Robin policy.

In words the optimal opportunistic scheduling policy selects at the beginning of a new STF window, the user with

the highest data rate. Then it considers this user to be inactive till all the other users get selected (i.e., in this special

case till the end of the window). Once all the users get selected once in a window of M timeslots, the policy considers

all the users to be active once again and repeats this whole procedure.

Proof: Let Q = (Q(0), · · · , Q(N − 1)) be any other feasible policy. Then, µQ∗(0)(0) ≥ µQ(0)(0) by the choice

of Q∗. Now Q∗(1) operates on A∗(1) = N − Q∗(0) and Q(1) operates on A(1) = N − Q(0). But, A(1) and

A∗(1) have the same number of unserved users and hence are statistically similar due to the assumption of identical

users (to satisfy the fairness constraint the served user cannot be served again before the end of the window.) Thus

E(µQ∗(1)) ≥ E(µQ(1)), and so on ∀t.

3) N independent users: ∀i, φi = 1/N, M = N : In this case we relax the assumption that all the users are identi-

cal. We assume that the user data rates are independent of each other and also across time. Under these conditions, we

claim that there exist 2N − 2 constants and an associated argmax decision policy which is an optimal opportunistic

scheduling policy for the problem P3.

Theorem 5: If φi = 1/N , and if the data rates of all the users are independent of each other and across time then

Q∗(t) = argmaxi∈A∗(t){µi(t) + V ∗
A∗(t)−{i}} (7)

A∗(0) = N , A∗(t + 1) = A∗(t) − Q∗(t)
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is the optimal opportunistic scheduling policy for the optimization problem P3. Here, V ∗
B is the optimum expected

reward value, i.e., the sum of the data rates of the selected users in all of the timeslots in a window of |B| timeslots,

associated with the optimal policy for a problem P3, with a set of B users, and with φi = 1/|B|,M = |B|.

In words the above optimal policy can be described as follows. Suppose at the beginning of the timeslot t the set

of unserved users is A∗(t). Now suppose a policy selects user i ∈ A∗(t) for service in this timeslot. Then the system

would get a reward (i.e., a data rate) of µi(t) in this timeslot. In the remaining window of |A∗(t)| − 1 timeslots the

expected optimal reward that the system would get is (by definition) V ∗
A∗(t)−{i}. Hence the optimal policy in this

timeslot selects a user with the maximum µi(t) + V ∗
A∗(t)−{i} value to maximize the total expected data rate. Note that

the constants V ∗
B can be thought as the expected total reward, i.e., the sum of the data rates in a window of |B| timeslots

that the system would get by following an optimal policy. Also note that these constants are not similar to the constants

λi from the first special case in IV-B.1. Only one λi constant is associated with a user i in the optimal long term policy,

while VA∗(t)−{i} depends on the user i, the time index, and A∗(t). There are more than one such constants associated

with each user. We prove our claim by constructing such a policy recursively.

Proof: Clearly if N = {i}, i.e., for a singleton set the policy Q∗(t) = i, i.e., selecting user i in every timeslot

is trivially optimal. Hence we assign the optimal reward associated with this single user system V ∗
i = E(µi). Now

consider a two user system with M = 2, φ0 = φ1 = 1/2. In timeslot 0 if the policy selects user 0 then the total

expected reward in the current STF window would be µ0(0) + E(µ1(1)) otherwise µ1(0) + E(µ0(1)). Clearly the

optimal policy should select user 0 if µ0(0)+E(µ1(1)) > µ1(0)+E(µ0(1)) or otherwise select user 1. Similarly, the

rest of the proof follows from an induction argument. Suppose that for the set of users N the policy Q∗ as defined in

Equation 7 is optimal. If we add another user then the optimal policy would be to choose a user in timeslot 0 optimally

and then use the optimal policy for the remaining N users in the next N timeslots. This claim is valid because we

assume the independence across the users and time. The theorem follows directly after this claim and the recursive

definition of set A∗(t).

For specifying the optimal policy we need 2N − 2 constants, i.e., the number of (unordered) subsets of N minus 2

(corresponding to the null set and the set N ). Thus this optimal policy is much more complex than the optimal policy

in the previous case (under the identical users assumption). Theoretically it is possible to calculate the VA∗(t)−{i}
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constants given the distribution of the data rate for each user. Estimates of theses constants which asymptotically

converge to the true constants can be obtained along a sample path.

C. Heuristic Policy

Until now we have analyzed three special cases of the opportunistic scheduling problem P3. The long term optimal

policy selects a user having the maximum “µi(t) + λi(t)” in each timeslot while the first (respectively the second)

special short-term optimal policy selects a user with the maximum “µi(t)” (resp. “µi(t)+V ∗
A∗(t)−{i}”). The long term

policy adds a bias to the data rate values while the short-term policies remove a user from the set of active users if it has

got its fair share in the current STF window. This motivates us to define the following heuristic policy for the general

opportunistic scheduling problem P3. The Heuristic Policy (HP) with a STF window of size M is defined as follows.

∀t = {0, · · · ,M − 1}, Q(t) = argmaxi∈A(t){µi + λi} (8)

where the λi’s are the constants derived from the LT policy. A(0) = N , Ni(0) = 0, and Ni(t), A(t) are defined

recursively as Ni(t) = Ni(t − 1) + IQ(t−1)=i, A(t) = A(t − 1) − Q(t − 1)INi(t)=Mφi
.

The Heuristic Policy can be described with the following steps.

• Step 1: Initialization at the beginning of a new STF window: The set of initial active users is the set A(0) = N .

The fair share of user i is initialized to Mφi.

• Step 2: User selection: In each timeslot the user from the set of active users A(t), having the largest µ i(t) + λi

value is selected for service.

• Step 3: Book-keeping: A counter that keeps track of how much service (i.e., number of timeslots) the selected

user has got in the current window is incremented by one. If the counter is equal to the fair share of that user then

that user is removed from the set of active users. Step 2 is then repeated for the next timeslot.

At the end of the current STF window the Heuristic Policy restarts from Step 1 with a new non-overlapping STF

window.

D. Numerical Results

Now we compare the Long Term policy (LT) and our Heuristic Policy (HP) in terms of average system throughput

and short term fairness. We simulate these policies for HDR users.
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Fig. 4. Throughput vs STF window for the LT and the HP

policies for i.i.d. HDR users, no. of timeslots = 10,000.
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Fig. 5. Throughput vs STF window for the LT and HP

policies. 10 HDR users with different channel conditions

and different φi’s, no. of timeslots = 10,000.

The implementation of HP simulates the long term optimal policy to calculate the constants λi’s on the fly which

is not computationally heavy. We have simulated a heuristic similar to HP but with λi = 0 for all i to understand the

importance of the λi’s. We observed that the throughput of this heuristic is much lower than the throughput of the HP

which shows the importance of the λi’s.

We first consider the case of i.i.d. HDR users with equal φi’s. We assume that the SNR values for each user in

each timeslot are independent and identical log-normal random variables (rv) with mean 0 and standard deviation

5 (for more details please refer to [3, 7]). The data rate for each user is determined by the corresponding SNR value

according to Table I. The throughput versus STF window (M ) curves obtained via simulation for 10 (and 20) users with

equal φi’s over 10,000 timeslots are shown in Figure 4. (Note that we also simulated the Weighted (non opportunistic)

Round Robin policy and found that it has a very low throughput (720 kbps in this scenario) compared to the other

opportunistic policies.)

We make the following observations. The throughput of HP increases as the short-term fairness window increases as

expected. After a particular value of M , increasing the STF window does not increase the throughput by a large value,

i.e., the throughput reaches the saturation stage. But increasing the window size beyond this value only increases the

maximum guaranteed starvation period which is equal to 2M −1. Hence ideally the STF window should not be greater

than this knee value. As the number of the users in the system increases the average system throughput also increases

due to the multi-user diversity (but the throughput per user decreases).

To understand the behavior of these policies under realistic channel conditions, we consider a case when the users
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Fig. 7. Normalized processor share given to each user by

the LT and the HP policies. 10 HDR users with different

channel conditions and different φi’s

have different channel distributions and different φi’s. We assume that there are 10 users (see Table V) in the system.

The channel SNR for each user is modeled as an autoregressive log-normally distributed channel as in section III-D.

Users 0, 1 have mean SNR of -4, users 2, 3 of -2, and so on. γ, the auto-regression coefficient is set to 0.7. The users

with the same mean SNR have different φi of either 0.05 or 0.15. Thus, user 0 has a φ0 = 0.05 and user 1 has a

φ1 = 0.15. The throughput versus M is plotted in Figure 5. Figure 6 plots the empirical frequency distribution of

the starvation periods. For each policy we calculate the number of times a particular value of the starvation period

is experienced by the users. Thus the y axis value of 70 versus the x axis value of 30 would mean that all users

cumulatively have experienced a starvation period of 30, 70 times in the course of the simulation. (We have plotted

this graph for starvation period values up to 250 only to show the details clearly. However the tail for the LT policy

goes up to 400.) From Figure 6 we notice that LT policy does not give any guarantees on the maximum starvation

period. HP with M = 50 does guarantee a starvation period of less than 99 timeslots while with LT, users would

experience starvation periods of up to 400 timeslots or even more (up to 1000) if the channels are highly correlated

(γ = 0.9) or if the simulation is run for a longer duration, or if there are more users.

From Figure 5, we observe that increasing the STF window size increases the throughput of HP. But there is a large

difference between the average system throughput of the LT policy (run for 10,000 timeslots) and the average system

throughput for HP even with large STF window sizes. This may suggest that HP is not good in terms of maximizing the

average system throughput. Hence we look at the processor share each user has received (i.e., the number of timeslots

each user has received) under the LT policy and HP (see Figure 7). We notice that LT policy is biased towards users
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with relatively low φi and better channel. Notice that the LT policy offers more timeslots to users 4, 6, 8, 9 than their

fair share at the expense of users 0, 1. The reason behind this unfair behavior of the LT policy is as follows. The

simulation starts with ∀i, λi = 0. Hence the LT policy selects a user having a better channel and lower φi more

often than its fair share during the initial stages. Because the simulation is run only for 10,000 timeslots (instead of

an infinite number of timeslots) this unfair behavior at the initial stage leads to unfair behavior of the long term policy

over a finite number of timeslots. This also explains the large difference between the throughput of the HP and the long

term optimal policy in Figure 5 even for large values of STF window M . Note that as the duration of the simulation

increases the throughput of the LT policy decreases and there is not much difference between the throughput for the

LT policy with 10,000,000 timeslots and the HP policy with relatively large M . In real systems we expect that the

users have finite activity periods (10,000 timeslots would correspond to 17 seconds in a HDR system and 100,000 to

approximately 3 minutes). Hence the long term policy is not necessarily a fair policy on any reasonable finite horizon.

We also note that the set of active users can change (rather frequently in real systems) and that the channel conditions

may also change (non-stationarity); in such situations the LT policy will be even more unfair.

V. CONCLUSIONS

In this paper, we studied several opportunistic scheduling problems. We generalized the opportunistic scheduling

problem given in [7] to include multiple general user QoS requirements and showed that the optimal solution is an Index

policy. We then studied an opportunistic scheduling problem for multiple interface systems with QoS constraints and

the physical constraints imposed by the system structure. We showed that the optimal policy for this problem is also an

Index policy. We then generalized the throughput optimal scheduling policy to the case of multiple interface systems

with general physical constraints. To guarantee short term fairness we defined an opportunistic scheduling problem

and proposed a heuristic opportunistic scheduling policy to solve it. Via simulations we compared its performance to

the performance of the long term optimal policy and concluded that the throughput performance of the heuristic policy

is comparable to that of the long term optimal policy while guaranteeing short term fairness.
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