

Transistor-Level Fault Analysis and Test Algorithm Development

for Ternary Dynamic Content Addressable Memories

Derek Wright and Manoj Sachdev

Dept. of Electrical & Computer Engineering
University of Waterloo, Waterloo, Ontario, Canada

dwright@alumni.uwaterloo.ca, msachdev@uwaterloo.ca

Abstract
Content addressable memories (CAMs) are gaining
popularity with computer networks. Testing costs of CAMs
are extremely high owing to their unique configuration. In
this paper, we carried out a transistor-level fault analysis
and devise a search path test algorithm. The proposed
algorithm is of the order (nl / log2n) compared to the
brute-force algorithm of complexity (nl). For the analyzed
CAM, the search path test complexity is reduced by 30x.

1. Introduction
Content addressable memories (CAMs) are semiconductor
memories. They differ from regular static and dynamic
random access memories (RAMs) by providing additional
searching functionality. In a RAM, information is stored
and retrieved at a location determined by an address
provided to the memory. A CAM builds on this
functionality by introducing searching capabilities. Every
location in the memory can be compared to a search
pattern and the CAM will respond with either a “match”
or “mismatch” signal. This could be accomplished in
RAM by successively searching every location in memory
until a match is found. However, this is extremely
inefficient. CAMs perform the search in parallel on every
location at once, thus dramatically reducing the search
time.

Though they have been in existence since the 1960s,
CAMs have recently become increasingly important.
Traditionally, CAMs existed as embedded units in
microprocessors as the translation lookaside buffer (TLB).
However, the growth of the Internet and the demand for
increased bandwidth of networks has necessitated search
capabilities that traditional RAMs can barely meet. The
solution is being found in stand-alone CAMs used in
network processors and routers.

The increasing importance of CAMs is evident from
articles such as [1]. There is no search throughput

performance penalty when using CAMs with a network
processor as opposed to RAMs. This allows wire-speed
packet forwarding at OC-192 and OC-768 rates. These
data rates require up to 100M searches per second which
would be enormously difficult to achieve without a CAM.
The CAM’s ternary nature allows longest-prefix matches
(LPM) for Classless Inter-domain Routing (CIDR). The
future of CAMs lie in increasing their density, speed, and
word length to support the exponentially increasing
demands placed on networks.

In spite of obvious CAM benefits, there are challenges in
design and manufacturing of CAMs. A significant amount
of resources are spent on reducing the power consumption
of CAMs and developing efficient test algorithms. CAMs
are power hungry devices owing to sheer complexity,
parallel search requirements, and performance
specifications [2,3,4]. Similarly, the test complexity of
CAMs comes from the combination of memory and logic.
The traditional memory test algorithms are necessary but
not sufficient for adequate testing of CAMs.

BL

WL

Access
Transistor

Storage
Capacitor

BL1

WL

M1

BL2

ML

SL2 SL1

M2

M3

M4

M5

M6

a)

b)

BL

WL

Access
Transistor

Storage
Capacitor

BL

WL

Access
Transistor

Storage
Capacitor

BL1

WL

M1

BL2

ML

SL2 SL1

M2

M3

M4

M5

M6BL1

WL

M1

BL2

ML

SL2 SL1

M2

M3

M4

M5

M6

a)

b)
Figure 1 DRAM and DCAM Cells

2. Previous Work on CAM Testing
Until recently, CAMs were mostly considered an exotic
type of semiconductor memory. Consequently, most
research into memory testing was directed to SRAMs and
DRAMs with very little emphasis on CAMs. The only
previous works of note are [5] - [8] which focus on testing
binary static CAMs, and [9] which focuses on TLBs,
which are also static binary CAMs.

In this paper, we examine the testability aspects of ternary
CAMs. A realistic defect analysis was carried out on an
industrial design. From this analysis an algorithm to
identify realistic faults was developed. Although this
algorithm was developed for ternary dynamic CAMs, it is
equally well suited to ternary static implementations since
the search path can be used in conjunction with any static
or dynamic storage cell.

This paper is organized as follows: In the next section, an
overview of dynamic CAMs is given. It focuses on the
unique properties of ternary CAMs. In Section 4, a spice
model of the CAM is presented. The spice model is used
to perform the transistor-level fault analysis. In Section 5,
the algorithmic aspects of CAM testability are described.
A MATLAB model is utilized to demonstrate the
effectiveness of the algorithm. Finally, in Section 6,
conclusions are drawn.

3. Ternary Dynamic CAMs: Background
Figure 1 shows a 1-T dynamic RAM (DRAM) cell and a
6-T dynamic CAM (DCAM) cell. In a DRAM cell, the bit
line (BL) is connected to the capacitor when the word line
(WL) is high, thus enabling read and write functionality.
In a DCAM, the read and write functionality remains the
same. The additional four transistors are used for the
match operation. The matchline (ML) is precharged to
VDD. The storage nodes are loaded with complementary
data. The search lines (SL) are charged to the value which
is being searched. The four search transistors essentially
perform an XNOR operation. In the case of SL data
matching the stored data, the matchline does not
discharge. If the bits mismatch, then the matchline is
discharged through two of the four search transistors.
When n bits are placed in parallel with a common
matchline, if any one bit mismatches, the matchline will
discharge. Only if all stored (n) bits and complement
match n pair search lines will the matchline remain
charged.

The ternary nature of the CAM cell is evident when “0” is
stored on both capacitors. This turns off both the lower
transistors in the search transistor paths. Regardless of the
values on the search lines, the matchline is unable to
discharge. This effectively represents a “don’t care”
condition being stored, hence the name “ternary”: “1”,

“0”, and “don’t care”. Table 1 shows the different states
that can be stored in the ternary DCAM cell. The search
lines can both be set to “0” as well. This equates to
searching for a “don’t care” condition, which will always
match since the matchline cannot discharge through either
discharge path.

Table 1 DCAM Storage States

Value BL1 BL2
Zero (0) 0 1
One (1) 1 0
Don’t Care (X) 0 0
Not Used 1 1

4. DCAM Spice Model and Fault Analysis
A complete spice model of a DCAM was constructed for
fault analysis in 0.18 µm CMOS technology. The block
diagram of this model is illustrated in Figure 2. This
model is based on a commercial design [10]. It contains
an array of 16 words by 144 bits ternary dynamic CAM.
The basic cell is the same as shown in Figure 1. The bit
lines and search lines run vertically throughout the array
and the word lines and matchlines run horizontally. The
model consists of the 16 words divided into two groups of
eight with one dummy word above and below the bit line
sense amplifier (BLSA) block. BL and SL drivers are
located at the top and bottom of each block of eight words
to speed charging and discharging of the highly capacitive
lines. WL drivers and address decoders are on the left of
the CAM array. Basic control was achieved using an
asynchronous state machine with four states: Idle, Read,
Write, and Search. Timing was implemented using three
separate delay chains with attached static logic for each
operation. Although only one is typically used, it was
easier to design each delay chain individually and for the
purposes of this research it was not critical that only one
be used. The model could operate with a minimum
operation time of 7.2 ns, or at 139 MHz.

8 x 144

CAM Array

P
re

-s
ea

rc
h

 M
L

S
A

 &
 L

at
ch

es

W
L

 D
ri

ve
rs

M
ai

n
-s

ea
rc

h
 M

L
S

A
 &

 L
at

ch
es

BL Drivers

BL Drivers

BLSA

BL Drivers

BL Drivers

Control
Logic

8 x 144

CAM Array

Address
Latches

SL Latches & Drivers

BL
Latches

(DB)
8 x 144

CAM Array

P
re

-s
ea

rc
h

 M
L

S
A

 &
 L

at
ch

es

W
L

 D
ri

ve
rs

M
ai

n
-s

ea
rc

h
 M

L
S

A
 &

 L
at

ch
es

BL Drivers

BL Drivers

BLSA

BL Drivers

BL Drivers

Control
Logic

8 x 144

CAM Array

Address
Latches

SL Latches & Drivers

BL
Latches

(DB)

Figure 2 CAM Spice Model

The BLSA is a simple voltage-mode sense amplifier
consisting of two tristate cross-coupled inverters. The
matchline sense amplifier (MLSA) is current-mode and a
simplified diagram is shown in Figure 3. During normal
operation φPRE is high, tying ML to ground. During a
search operation, ML is quickly precharged using φFP to a
voltage set by VREF. This voltage is less than VDD in order
to reduce the voltage swing on ML and save energy. The
IREF is realized using a current mirror set at a current less
than a one-bit miss (the minimum current drawn from ML
during a mismatch), and greater than the leakage current
drawn during a match. If IREF is not supplying enough
current then the word is a mismatch and the sense point
(SP) will discharge. Otherwise, SP will remain charged
indicating a matching word. Further energy savings are
achieved by separating the search operation into two
phases: Pre-search and Main-search. Pre-search performs
the search operation on a small subset of the bits and only
if they all match will the main-search proceed. Energy is
saved since if the pre-search is a mismatch the main-
search operation is not executed on that word. This
necessitates the division of the ML into pre- and main-
search MLs. The pre-search ML is connected to 36 of the
144 bits and the main-search ML is connected to the
remaining 108 bits. If the first 36 bits mismatch then the
main-search ML is not precharged. This dramatically
reduces power consumption at the cost of a minor increase
in complexity.

…..…. φPRE

φEN

VREF

IREF φFP

Out
Sense
point
(SP)

ML

Word composed
of DCAM cells

MLSA Area

Matchline Area

…..…. φPRE

φEN

VREF

IREF φFP

Out
Sense
point
(SP)

ML

Word composed
of DCAM cells

MLSA Area

Matchline Area

Figure 3 Current-mode Matchline Sense Amplifier

Transistor-level faults modeled included gate, source, and
drain contact failures, subthreshold conduction due to
poor Leff control and wide Vth spread, and gate oxide
failures that lead to gate-source or gate-drain conduction.
Each of these defects in the extreme case is represented as
either a short or an open, but intermediate cases occur
where the defect is best modeled as a resistance (see
Figure 4). Even though the functionality may be
preserved, these faults are more insidious since the timing
is affected by increased RC time constants.

Transistor-level fault analysis was performed on the 6-T
CAM cell. Due to the symmetry of the cell, only one
storage node, its access transistor and two search path
transistors were analyzed (see Figure 5). Examining

possible transistor-level faults yielded five possible
circuit-level representations for the faults. These five
circuit-level fault representations were applied to each of
these three transistors. Adding the possibility of a storage
capacitor ground fault revealed 16 unique faults to be
examined.

Gate

Drain Source

Gate oxide
defect

G

SDGate

Drain Source

Gate oxide
defect

G

SD

Figure 4 Example Defect and Circuit Equivalence

Analysis and simulation of these faults gave a detailed
look into the possible failure modes for the DCAM cell
and also helped determine how easily detectable these
faults were. Some faults resulted in total failure of the cell
whereas other faults resulted in failure only under very
specific operating cases. This allowed the development of
test methods that attempt to catch the subtle faults. These
methods are presented in Table 2. The last operation in
each method in the column “Detection Method” refers to
the result under correct operating conditions. For
example, if for Defect #11’s method a “mismatch” is
detected, then there is a fault. When a “wait” is required,
no time is specified since the length of time waited
changes the range of faults detected. Sometimes a long
wait period is not achievable due to the dynamic nature of
the circuit, the control circuitry used, etc.

BL1

WL

M1

ML

SL2

M2

M3BL1

WL

M1

ML

SL2

M2

M3

Figure 5 Fault Analysis Half-Cell

Using these defect models, simulations were performed to
verify the effectiveness of the detection methods (Table 2)
for corresponding defects. For some defects, there are
multiple ways to detect the defect. However, certain
methods were able to detect a wider range of defect
resistances resulting in a more robust test method.

Figure 6 illustrates the detection method for Defect #2
(Table 2). In a defect free case, when BL and WL have
appropriate values the storage capacitor should charge to
VDD. This voltage controls the gate of the M2 transistor.

In the presence of the defect, the stored charge becomes a
function of the defect resistance. As the defect resistance
increases, lesser charge is stored in a given time reducing
the drive of M2. At a certain resistance value, M2 fails to
conduct. This behavior is illustrated in the graph in Figure
6. As shown in the figure, at the resistance value of 10kΩ
and above, the M2 exhibits the stuck-open (SOP)
behavior for write times of 2.5 ns which is limited by the
control signals.

Table 2 Possible DCAM Cell Faults

Description Detection Method

1
Storage Capacitor
Defect

(a) Write “1”; (b) Wait; (c)
Read “1”

2
M3 Source/Drain
Contact Defect

(a) Write “0”; (b) SL2 = “1”;
(c) Search for Match

3
M3 Gate Contact
Defect

(a) WL = “1”; (b) Wait;
(c) WL = “0”, BL1 = “1”,
SL2 = “1”; (d) Search for
Match

4
M3 Gate to Drain
Oxide Failure

(a) Write “0”; (b) Read “0”

5
M3 Gate to Source
Oxide Failure

(a) Write “0”; (b) Read “0”

6
M3 Subthreshold
Conduction

(a) Write “0”; (b) WL = “0”,
BL1 = “1”,SL2 = “1”; (c) Wait
(d) Search for Match

7
M2 Source/Drain
Contact Defect

(a) Write “1”; (b) SL2 = “1”;
(c) Search for Mismatch

8
M2 Gate Contact
Defect

(a) Write “1”; (b) SL2 = “1”;
(c) Wait; (d) Write “0”;
(e) Search for Match

9
M2 Gate to Drain
Oxide Failure

(a) Write “1”; (b) SL2 = “1”;
(c) Wait; (d) Read “1”

10
M2 Gate to Source
Oxide Failure

(a) Write “1”; (b) Wait;
(c) Read “1”

11
M2 Subthreshold
Conduction

(a) Write “0”; (b) SL2 = “1”;
(c) Search for Match

12
M1 Source/Drain
Contact Defect

(a) Write “1”; (b) SL2 = “1”;
(c) Search for Mismatch

13
M1 Gate Contact
Defect

(a) Write “1”; (b) SL2 = “1”;
(c) Wait; (d) SL2 = “0”;
(e) Search for Match

14
M1 Gate to Drain
Oxide Failure

(a) SL2 = “0”; (b) Search for
Match

15
M1 Gate to Source
Oxide Failure

(a) Write “1”; (b) SL2 = “1”;
(c) Search for Mismatch

16
M1 Subthreshold
Conduction

(a) Write “1”; (b) SL2 = “0”;
(c) Search for Match

Most of the techniques presented in Table 2 will require
precise timing of on-chip control signals to control lines
such as word lines, bit lines, search lines, and matchlines
to achieve a wide range of fault detection. However,
timing is usually fixed owing to nominal operating

conditions, so alternate algorithms were created that use
the higher functions typically available to the tester: Read,
Write, and Search. The high-level test algorithms
developed in this paper are designed assuming that weak
defects will ultimately result in stuck-on (SON) or SOP
faults. This assumption limits the robustness of the fault
detection methods because the timing of the internal
control signals is fixed. However, even with these timing
limits in place, most faults can be grouped into SON or
SOP as was shown in Figure 6.

Write “1”

BL

WL

t

Storage
Capacitor

Good

Bad

Write “1”

BL

WL

t

Storage
Capacitor

Good

Bad

Figure 6 Write Time vs. Defect #2 Resistance

5. Testability Issues in CAMs
CAM cell testing can be roughly divided into two
categories: (i) The first part of the complexity is the same
as that of any DRAM. It encompasses the access transistor
and the storage capacitor. This is a mature research topic
with a significant amount of research done on the subject.
(ii) The second part of the test complexity comes from the
search operation. The output of the search is available on
the matchlines. All search paths (144x2) of a given word
are connected to the corresponding matchline. Therefore,
each search path must be uniquely tested. In a complex
CAM, there could be 18 M such paths [10]. Therefore,
CAM testing is expensive.

The additional CAM test complexity is to identify and
repair a faulty cell. In CAMs it is easier to identify the
faulty address (row), but it is more time consuming to find
the individual faulty bit (column).

5.1 DRAM Testing

The storage section of the CAM cell is identical to a
DRAM cell. Since DRAMs have been ubiquitous for

decades, a great effort has been directed towards
discovering and solving their testability issues. A look at
the various possible defects that can occur in a DRAM is
documented in [6]. An example of a modern test interface
for embedded DRAMs is [7].

The testing of DRAMs applies equally to the access
transistors and storage capacitors of the CAM. If the
storage capacitor is faulty, it may not be able to retain
charge. Gate oxide capacitors may have cracks in the
oxide which could allow conduction to ground. Other
capacitors may have faults with similar effects. The access
transistors may suffer from any combination of the faults
previously covered. Tests for DRAM cells can be equally
applied to testing these portions of the CAM cell.

5.2 Search Path Testing

The search path consists of the matchline and the four
discharge transistors of the cell. A successful test
algorithm will detect if any one of these transistors is SON
or SOP, but an efficient test algorithm will do it quickly.

The algorithm presented in this paper exploits the fact that
the search function returns address information. It detects
discrepancies between the expected returned addresses
and the actual returned addresses. This algorithm will
detect all SL and BL transistor SON and SOP faults. It
was assumed during the development of this algorithm
that the CAM is able to return all matched addresses
sequentially, as was the CAM being modeled. In the case
of a CAM that only returns the highest priority match, all
matching addresses can be returned in sequence by
writing mismatching values to the returned address. When
a matching address is returned, the complement of the
search value is written to the address, thus ensuring a
mismatch. The next highest priority address will then be
returned. Once the searching is complete the original
values can be re-written to the affected addresses.

5.2.1 Algorithm Overview

To help in visualizing the match operation, Figure 7a)
shows a symbolic representation of the search path
transistors. BL1, BL2, SL1, and SL2 represent the
transistors located in the search path. For example, if the
cell is storing a “1”, BL1 = “1” and BL2 = “0” as shown
in both Figures 7b) and 7c). In Figure 7b), the bit being
searched for is also a “1” since SL1 = “1” and SL2 = “0”,
so there is a match condition and there is no path for the
ML to discharge. However, if a “0” is being searched for
as in Figure 7c), SL1 = “0” and SL2 = “1” and there is
now a path for the ML to discharge indicating a mismatch.
Though the bit lines are not directly tied to the gates of the
transistors in the search path, the symbols BL1 and BL2
are used to indicate the values stored on the capacitors
since these values initially came from the bit lines. This is

also why this search path configuration can be used with
static memory architectures. As long as the gates of BL1
and BL2 are driven by the value stored in the memory
cells, the type of memory cell becomes irrelevant.

SL2 SL1

BL1 BL2

ML

a) b) c)

0 1

1 0

Match

1 0

1 0

Mismatch

SL2 SL1

BL1 BL2

ML

SL2 SL1

BL1 BL2

ML

a) b) c)

0 1

1 0

Match

0 1

1 0

Match

1 0

1 0

Mismatch

1 0

1 0

Mismatch

Figure 7 Search Path Symbolic Representation

0 SOP

0 1

ML
ML cannot discharge

0 SOP

0 1

ML
ML cannot discharge

Figure 8 Search Path with SOP Fault

0 1

1 SON

ML
ML discharges

0 1

1 SON

ML
ML discharges

Figure 9 Search Path with SON Fault

If every address contains a unique word, then searching
for one of these unique words should return only one
address. However, if an unexpected address is returned,
this indicates an SOP fault. This occurs because the ML
could not discharge through the SOP fault and returns a
false match. This is illustrated in Figure 8.

If the expected address is not returned, this indicates an
SON fault. Even though all the stored bits in the expected
address match the bits on the SLs, the SON fault allows
the ML to discharge indicating a false mismatch. This is
illustrated in Figure 9.

The algorithm will test every CAM cell’s four search path
transistors. The algorithm proceeds as follows: 1) Write
unique values to every address. 2a) Check for SOP faults
by looking for erroneous matching addresses. 2b) Check

for SON faults by looking for missing returned addresses.
3) Repeat the procedure using inverted values when
writing and searching.

0123

0000
0001
0010
0011

.

.

.
1100
1101
1110
1111

0000
0001
0010
0011

.

.

.
1100
1101
1110
1111

0000
0001
0010
0011

.

.

.
1100
1101
1110
1111

0000
0001
0010
0011

.

.

.
1100
1101
1110
1111

456789
1

0
1

1
1

2
1

3
1

4
1

5

0
1
2
3
.
.
.

12
13
14
15

Bit
A

d
d

re
ss

Logical Columns

0123

0000
0001
0010
0011

.

.

.
1100
1101
1110
1111

0000
0001
0010
0011

.

.

.
1100
1101
1110
1111

0000
0001
0010
0011

.

.

.
1100
1101
1110
1111

0000
0001
0010
0011

.

.

.
1100
1101
1110
1111

456789
1

0
1

1
1

2
1

3
1

4
1

5

0
1
2
3
.
.
.

12
13
14
15

Bit
A

d
d

re
ss

Logical Columns

Figure 10 Memory Space with Logical Columns

An easy way to assign a unique word to each address
would be to write increasing values to each address
starting with “0”. Hence, if the address contains 16 bits
and the word length is 144 bits, only by assigning a
unique value to the first 16 bits, one can have a unique
pattern in the entire word space. The rest of the bits (128
padding bits) in every word can be kept as all zeros or
ones. However, the above mentioned procedure has some
short comings. In order to search for SOP faults in the
padding bits, it will take a long procedure to identify the
faulty location.

24 searches
(column 2)

0123456789101112131415

Bit

S
ea

rc
h

 W
o

rd
s

24 searches
(column 1)

24 searches
(column 3)

time

XXXX
…

XXXX
XXXX

…
XXXX
XXXX

…
XXXX
0000

…
1111

XXXX
…

XXXX
XXXX

…
XXXX
0000

…
1111
XXXX

…
XXXX

XXXX
…

XXXX
0000

…
1111
XXXX

…
XXXX
XXXX

…
XXXX

0000
…

1111
XXXX

…
XXXX
XXXX

…
XXXX
XXXX

…
XXXX

24 searches
(column 4)

24 searches
(column 2)

0123456789101112131415

Bit

S
ea

rc
h

 W
o

rd
s

24 searches
(column 1)

24 searches
(column 3)

time

XXXX
…

XXXX
XXXX

…
XXXX
XXXX

…
XXXX
0000

…
1111

XXXX
…

XXXX
XXXX

…
XXXX
0000

…
1111
XXXX

…
XXXX

XXXX
…

XXXX
0000

…
1111
XXXX

…
XXXX
XXXX

…
XXXX

0000
…

1111
XXXX

…
XXXX
XXXX

…
XXXX
XXXX

…
XXXX

24 searches
(column 4)

Figure 11 Search Patterns for Increasing Values

An alternative, efficient arrangement can be realized if we
divide the word length into logical columns of 16 bits
(same as address space) each. In each logical column the

same data pattern is repeated, as shown in Figure 10 for a
small 16 x 16 CAM. For example, if the address is 16 bits
and the word length is 144 bits, there will be 144/16 = 9
columns of increasing (or decreasing) 16 bit numbers.

Once these numbers are stored in memory, each column
will be searched individually for the correct increasing (or
decreasing) values by masking out the other columns in
the search word. This concept is illustrated in Figure 11
for a small, 16 x 16 CAM. The word is divided into logic
columns of 4 bits each.

A diagram of the flow of the algorithm is presented in
simplified form in Figure 12. It shows the general steps
and decisions executed to successfully implement the first
pass (ascending values) of the test algorithm. This
procedure would be repeated using descending values
with ascending address instead – essentially inverting all
test data.

5.2.2 Search Path Test Algorithm

This algorithm is composed of three steps, two of which
are summarized in Figure 12. Step 3 is to repeat Steps 1
and 2 respectively except that descending values are
stored and searched. An explanation of each step follows.

Step 1: This step is responsible for logically dividing the
word into w/log2n columns and filling each column of
each word with a value equal to that word’s address. This
is accomplished by taking the modulus of the actual bit
position in the word with respect to the number of bits in
the address. This yields the bit’s relative position within
its logical column. For example, if the logical column
width is 16 bits, bits 0-15, 16-31, 32-47, etc. are all
columns within the word. This means that bits 0, 16, 32,
etc. all have the same bit position relative to their column:
relative bit position 0. Once the relative bit position is
known, the value of that bit can be determined based on
the current address location. This is accomplished an “if”
statement that chooses either to place a zero or a one in
that bit location.

Step 2: Now that the address space is completely filled
with unique values, the search function will be used to
return useful information. Each column is searched
individually in ascending address order. To accomplish
this, the logical column is searched and the rest of the
search word is set to “don’t care” (“X”). The CAM is then
searched for the word contained in the search word. Two
tests are performed based on the address information
returned: A test for SOP faults and a test for SON faults.

Step 2a: The test for SOP faults checks the returned
matching addresses to see if addresses other than the one
expected are returned. If there are, then they are caused by
SOP faults in the words contained in the unexpected
returned addresses. If one of the BL or SL transistors has

an SOP fault, there is a transistor currently off that should
be on. Thus, the ML of that word cannot discharge
through that path. This results in that bit being perceived
as a “don’t care”. The exact location of the bit with the
SOP fault can be determined from the returned address. It
is at relative bit location log2(expected address XOR
unexpected address). For example, if address 9 was
expected, but address 13 was also returned, the defective
bit is at relative bit location log2(10012 XOR 11012) =
log2(01002) = log2(4) = 2. This means that the third
relative bit inside word with address 13 has an SOP fault.

Step 2b: The test for SON faults is slightly more
complicated than the test for SOP faults. If the returned
addresses do not contain the expected address at all, then
there is an SON fault that is causing the ML to discharge
when it should not. It causes a false mismatch. To find the
location of the SON fault, the same search word is
repeatedly searched, but each time one of the bits is
replaced with a “don’t care”. If the expected address is
returned during this process, then the SON fault is due to
one of the BL transistors in the bit that was masked when
the correct address was returned. However, if the expected
address is not returned during this process, this indicates
that one of the SL transistors at some location in the entire
word is SON and cannot mask properly. This address is
noted and a subsequent portion of the algorithm finds the
defective bit.

Step 2c: The opposite approach as Step 2b is used to find
the remaining SON faults in the addresses that were noted.
The search word is completely unmasked and set to the
expected contents at the faulty address and the stored
word will use masking to find the faulty bit location. A
number of search algorithms could be used to find the
faulty bit. Successively masking one bit at a time would

take on average 2
l searches. A binary tree search would

require ()l2log searches and so is more efficient. The
binary search tree algorithm would begin by re-writing the
data at the address being searched, except that half of the
word would be masked. When searched using an
unmasked search word, if the address is successfully
returned then the faulty bit is contained in the masked half
of the word. Otherwise it is contained in the unmasked
part of the word. The algorithm proceeds recursively by
further dividing the faulty half in to masked and unmasked
quarters, eighths, etc., until the faulty bit is found.

Step 3: Repeat Steps 1 and 2, but write and search using
complementary values. This ensures that each transistor is
tested for both SOP and SON faults.

Logically divide each
word into ll columns

log2(NN)

Write to each word
so that every column
contains the address

of that word

Search one column at a
time by masking unused
columns in search word

Perform search for next
value (beginning with 0)

Were any
extra addresses

returned?

SOP fault at
current address

Was the
expected address

returned?

BL SON fault at
current address

Could it
be detected by SL

masking?

Done searching?

Mark address for
further testing

END

Yes

No

Yes

No

No Yes

Scan marked
addresses for
SL SON faults

1

2a

2b

2c

No

Yes

Logically divide each
word into ll columns

log2(NN)

Write to each word
so that every column
contains the address

of that word

Search one column at a
time by masking unused
columns in search word

Perform search for next
value (beginning with 0)

Were any
extra addresses

returned?

SOP fault at
current address

Was the
expected address

returned?

BL SON fault at
current address

Could it
be detected by SL

masking?

Done searching?

Mark address for
further testing

END

Yes

No

Yes

No

No Yes

Scan marked
addresses for
SL SON faults

1

2a

2b

2c

No

Yes

Figure 12 Algorithm Overview

An assumption was made in the algorithm that the number
of bits in a word divided by the number of address bits is
an integer. This may not be the case, but the algorithm
needs only a simple modification to function properly.
The remaining bits will be correctly written to in Step 1.
Since bits are only searched as a part of a logically
divided column, an extra column with the same width as
the others must overlap the extra bits and also be
searched. The only consequence of this is that the bits that
are contained in both a regular column and the extra
column will be tested twice.

5.3 Algorithm Validation

A MATLAB model was created consisting scripts and
functions that simulate the higher-level functionality of the
CAM. All BLs and SLs are represented as arrays of ones
and zeros. Addresses are realized as array indices. This
higher level model allows fast debugging and evaluation
of possible search path test algorithms.

For example, the search function in MATLAB sets a
variable “ML” = 1 to represent precharging of a ML. It
then compares the SLs to the BLs bit by bit at an address
and sets “ML” = 0 if a mismatch occurs. All addresses are
searched sequentially and each matched address is
returned. Thus, though the MATLAB search function is
not a true representation of the CAM hardware, the
CAM’s functionality is mimicked in a thorough manner to
allow quick algorithmic validation. Algorithms were
validated in MATLAB using a 20-bit word and a 5-bit
address. Once debugged in the MATLAB, the algorithm
was verified using 144-bit words and 16-bit addresses.

The functions necessary for the algorithm presented in this
paper are write, search, and find. The function write
(word, addr) stores word at address addr. This represents
the write function in a CAM. In the algorithm, it is
assumed that search (word) returns an array of addresses
that contain word. This represents the search function
built into a CAM. The basic idea behind simulating the
search functionality is that the matchline of a given word
will discharge if (SL2 AND BL1) OR (SL1 AND BL2) is
true. This cannot be abbreviated as an XOR statement
since SL1 and SL2 are not necessarily complementary as
was shown in Table 1. Similarly, BL1 and BL2 are also
not necessarily complementary.

Finally, the find (condition) function parallels that of the
MATLAB find function which will return the indices of
an array for which the condition is true. For example,
find ([3 1 2 4 5 2] == 2) would return [3 6], and find ([4]
== 2) would return []. The use of this function dictates
that the tester used to test the dies must make decisions
during the execution of the test algorithm. The write and
search functions are implemented in hardware on the
CAM.

5.4 Algorithm Benefits and Weaknesses

The algorithm identifies both the row and the column
location of a faulty bit by exploiting returned address
information by the search function. Furthermore, the
algorithm could also determine the exact faulty transistor.
However, it is typically not needed in the redundancy and
repair scenario. Arguably, this function may be needed in
defect data collection and yield improvement. This
information is available and one may collect and use it.

A brute force algorithm similar to the one currently used
to test MOSAID CAMs was used as a basis for
comparison. It proceeds in two steps: 1) Test the ability
for an address to match. 2) Test each bit’s ability to
mismatch. Step 1 is accomplished as follows: Write all
zeros to the current address being tested, and then search
for all zeros to see if the current address is returned as a
match. Clear the address by writing all ones and proceed
to the next address. Repeat using complementary values.
Step 2 is accomplished as follows: Write 000…001 to the
current address being tested, and then search for all zeros
to ensure that the current address is a mismatch. Left shift
the “1” bit (000…010) and write the pattern to the current
address and repeat the search. Once all bits in the current
address have been searched, write all ones to that address
and proceed to the next address. This algorithm
individually tests each bit’s ability to match and mismatch
for both ones and zeros will have a total number of writes
and searches as follows:

()52 +ln writes + ()12 +ln searches (1)

where n = number of addresses and l = number of bits
in each word. The factor “2” arises from having to test
both the ones and zeros cases. This doubles the test
complexity. There are n writes required each time the
memory is cleared which occurs four times. Step 1
requires n writes to write test patterns, and Step 2
requires nl writes to write test patters. Repeating this
once results in a total of ()52 +ln writes. Step 1 requires
n searches to test each address, and Step 2 requires nl
searches to test each bit. Repeating this once results in a
total of ()12 +ln searches. For 64k addresses and 144 bit
words, this equals 19,529,728 writes and 19,005,440
searches.

The algorithm presented in this paper has an average total
number of writes and searches as follows:

() SONln ×+ 2log2 writes and

() () SONl
n

l
n ×+

2

2

log
log

2 searches, (2)

where SON = number of stuck-on faults in the SL
transistors. The fixed overhead of the algorithm with no

SL SON faults is n2 writes and
()

n

l
n

2log
2 searches.

The factor “2” arises from having to test both the ones and
zeros cases. This doubles the test complexity. Each pass
of the algorithm requires n writes to write test patterns,

and ()

n

l
n

2log
 searches where the number of logical

columns is ()n
l

2log
. The terms of the equations multiplied

by SON represent the average additional writes and
searches due to the SL SON fault. It is assumed that the
binary search tree algorithm is used. With no SON faults
and the same 64k x 144 bit structure, this equals 131,072
writes and 1,179,648 searches. Each SON fault requires
an additional 8 writes and searches to be detected.
Assuming that writes and searches take the same amount
of time, this results in the test complexity reduction by a
factor of 30.

The major weakness of this algorithm is that the detection
of SL SON faults requires some decision making by the
tester. The other algorithm steps can be executed as a
script and the results can be analyzed offline. One
possible solution to this would be to take the addresses
marked for SL SON fault testing and to test every bit in
sequence. The resulting data could be analyzed offline and
no decision making would be required of the tester.

6. Conclusions
In this paper, we analyzed the test complexity of a 9Mb
ternary dynamic CAM. A search path algorithm was
developed using realistic transistor-level defects. This
algorithm was validated using a high-level MATLAB
model. The new algorithm compared to the brute force
method is 30 times faster owing to reduced complexity.

7. Acknowledgements
This research is based on MOSAID’s 9Mb ternary
dynamic CAM and consequently would not have been
possible without resources provided by MOSAID. These
include technical documents, and more importantly,
numerous correspondences and conversations with several
key MOSAID employees. Most notably, thanks go to
Tomasz Wojcicki for giving his time and resources to this
project, Jin-Ki Kim for his in-depth technical knowledge
and helpfulness, and to Brent Taylor for detailed
information regarding CAM testing.

8. References
[1] K. Schultz, “A CAM Memory for 10Gbit and Terabit

Routers and Switches”, Electronic Engineering, vol.
72, no. 880, pp. 57-62, May 2000.

[2] E. Shen, and J. B. Kuo, “0.8V CMOS Content-
Addressable-Memory (CAM) Cell Circuit With A
Fast Tag-Compare Capability Using Bulk PMOS
Dynamic-Threshold (BP-DTMOS) Technique Based
On Standard CMOS Technology for Low-Voltage
VLSI Systems”, IEEE International Symposium on
Circuits and Systems, pp. 583-586, 2002.

[3] C. A. Zukowski, and S.-Y. Wang, “Use of Selective
Precharge for Low-Power Content-Addressable
Memories”, IEEE International Symposium on
Circuits and Systems, pp. 1788-1791, 1997.

[4] G. Thirugnanam, N. Vijaykrishnan, and M. J. Irwin,
“A Novel Low Power CAM Design”, 14th Annual
IEEE International ASIC/SOC Conference, pp. 198-
202, 2001.

[5] P. Sidorowicz, and J. Brzozowski, “Verification of
CAM Tests for Input Stuck-at Faults”, International
Workshop on Memory Technology, Design, and Test,
pp. 76-82, 1998.

[6] P. Sidorowicz, and J. Brzozowski, “An Approach to
Modelling and Testing Memories and its Application
to CAMs”, VLSI Test Symposium, pp. 411-416,
1998.

[7] P.Sidorowicz, “Modelling and Testing Transistor
Faults in Content-Addressable Memories”,
International Workshop on Memory Technology,
Design, and Test, pp. 83-90, 1999.

[8] K. Lin, and C. Wu, “Testing Content-Addressable
Memories Using Functional Fault Models and
March-Like Algorithms”, IEEE Transactions on
Computer Aided Design of Integrated Circuits and
Systems, pp. 577-588, 2000.

[9] S. Kornachuk, L. McNaughton, and R. Gibbins, B.
Nadeau-Dostie, “A High Speed Embedded Cache
Design with Non-Intrusive BIST”, International
Workshop on Memory Technology, Design, and Test,
pp. 40-45, 1994.

[10] MOSAID Technologies, “MOSAID Class-IC
DC9288 Feature Sheet”, February 2003,
http://www.mosaid.com/semiconductor/dc9288fs.pdf

[11] H.-D. Oberle, M. Maue, and P. Muhmenthaler,
“Enhanced Fault Modelling for DRAM Test and
Analysis”, VLSI Test Symposium, pp. 149-154, 1991.

[12] S. Miyano, K. Sato, and K. Numata, “Universal Test
Interface for Embedded-DRAM Testing”, IEEE
Design and Test of Computers, pp. 53-58, January-
March 1999.

