
Efficient Adaptive Voltage Scaling System Through
On-Chip Critical Path Emulation

Mohamed Elgebaly and Manoj Sachdev
Department of Electrical and Computer Engineering

University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
{mgebaly, msachdev}@vlsi.uwaterloo.ca

ABSTRACT
Conventional voltage scaling techniques rely on the charac-
terization and monitoring of a unique critical path. How-
ever, the uniqueness of the critical path is a difficult re-
quirement to establish in modern VLSI technologies due to
the growing impact of process variations and interconnect
parasitics on delay. This paper presents an on-chip critical
path emulator architecture which tracks the changing crit-
ical path. The ability to emulate the actual critical path
recovers most of the large margin added by conventional
systems to guarantee a robust operation at all conditions.
Due to the reduced margin, the proposed architecture is up
to 43% and 23% more energy efficient compared to con-
ventional open-loop and closed-loop voltage scaling systems
respectively.

Categories and Subject Descriptors
B.7 [Hardware]: Integrated Circuits

General Terms
Design, Performance

Keywords
Low-power, adaptive voltage scaling, CMOS

1. INTRODUCTION
Voltage scaling systems are very effective in saving power

and energy due to the quadratic dependence on voltage.
Whenever maximum performance is not required, supply
voltage can be scaled so that the critical path can still meet
timing while saving power. The actual performance of the
core running under scaled voltage has to be characterized
to guarantee a fail-safe operation while maintaining the re-
quired performance.

Characterizing system performance depends on the un-
derlying voltage scaling methodology. The conventional ap-
proach to perform voltage scaling uses a target operating

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’04, August 9–11, 2004, Newport Beach, California, USA.
Copyright 2004 ACM 1-58113-929-2/04/0008 ...$5.00.

voltage for each required operating frequency. To guaran-
tee a robust operation, the frequency-voltage relationship is
determined via chip pre-characterization at worst case con-
ditions. This technique is utilized in open-loop dynamic
voltage scaling (DVS) systems where the frequency-voltage
relationship is stored in a look-up table (LUT). Since such
LUT is pre-loaded with voltage-frequency points, DVS sys-
tems are not able to adapt to process variations or environ-
mental conditions.

Alternatively, the critical path of the system can be du-
plicated to form a ring oscillator which adaptively responds
to environmental and process variations. Also, the criti-
cal path replica can be replaced by fan-out of 4 (FO4) ring
oscillator [1] or a delay line [2]. In both cases, a closed-
loop mechanism based on adaptive voltage scaling (AVS) is
formed by monitoring the actual silicon speed. Therefore,
worst case pre-characterization is no longer required. Since
there is a direct relationship between the actual performance
of the core and the speed of the ring oscillator (or the de-
lay of the delay line), AVS systems adaptively adjust supply
voltage to nearly the minimum level required to meet per-
formance targets. A safety margin is added to account for
any mismatch between the ring oscillator (or the delay line)
and the actual critical path.

The methodologies described above work efficiently as long
as the critical path is unique. However, this requirement is
difficult to establish in modern VLSI technologies. In fact,
the critical path can change with the changing supply volt-
age. Furthermore, at a fixed supply voltage, the critical path
can change based on process and temperature conditions. In
order to eliminate such safety margin, Ernst et.al [3] pro-
posed the Razor approach based on a speculative timing
pipeline. At each pipeline stage, an extra latch is intro-
duced which works at a slow clock speed to detect whether
the pipeline is failing as a result of voltage scaling. When an
error is detected, the whole pipeline is flushed and voltage
is increased by a certain step. The additional latches are
introduced where sub-critical paths become critical at worst
case voltage operation. If the number of sub-critical paths is
limited, the overhead of the razor approach can be ignored.
However, in order to guarantee a robust operation, system
characterization at all conditions is required. This may re-
quire an increased number of razor flip-flops. Therefore, the
overhead of the error detection circuitry may increase and
the error probability may also increase resulting in a reduced
efficiency.

Identifying the critical and sub-critical paths in a digital
system is growing in complexity as a direct consequence of

375

14.1



the current trend towards aggressive device scaling. Pro-
cess variability and interconnect parasitics will have an in-
creasing impact on performance in future technologies. The
ITRS technology roadmap predicts that delay due intercon-
nect wires in the 65 nm technology node will be 8× that
of the 180 nm technology. Meanwhile, logic delay at 65 nm
feature size is predicted to approach 20% compared to cur-
rent technologies [4]. Moreover, the wide-spread use of dual-
and multi-threshold technologies to suppress leakage power
adds further complications in the determination of a unique
critical path for a system.

This paper describes a technique to mitigate the nega-
tive impact of wire delay on performance characterization
for voltage scaling systems. The proposed technique uses
an emulated critical path that has nearly the same voltage
scaling behavior of the actual critical path at all conditions.
Before further discussion of this technique, a few terms used
throughout this paper are defined below.

• Reference path: a path that has the largest delay at
worst case and nominal supply voltage.

• Potential critical path: a path which becomes critical
at a certain voltage or at a certain process/interconnect
corner.

• Logic speed : the actual on-chip logic speed. Logic
speed is used to indicate how fast the actual process is
compared to worst case.

• Interconnect speed : the actual on-chip interconnects
speed. Interconnect speed is used to indicate the con-
dition of the actual interconnect parasitics compared
to worst case.

• Interconnect delay ratio: ratio of the delay caused by
interconnect wires in a certain path to the total delay
of that path.

2. ADAPTIVE VOLTAGE SCALING FOR
DEEP SUB-MICRON TECHNOLOGIES

The impact of interconnect parasitics on identifying a
unique critical path is shown in Fig. 1. For a scaled supply
voltage, delays of different paths implemented in the CMOS
0.13µm technology with different interconnect delay ratios
are shown. The top set of delay plots represents delays for
the slow logic process corner whereas the bottom set shows
delays of the same paths at the fast process corner. For the
slow process, the critical path, shown as a solid curve, is the
reference path with an interconnect delay ratio of 50% at
nominal supply voltage (Vdd = 1.3 V in the CMOS 0.13µm
technology). The dashed curves represent a number of po-
tential critical paths with delays close to the reference path
delay. Since, logic delay scales faster with voltage than in-
terconnect delay, delay scaling is different from one path
to the other according to the contribution of logic and in-
terconnects to the total delay of each path. When supply
voltage is scaled based on performance needs, some poten-
tial critical paths become critical and their delays exceed
that of the reference path. Once this happens, conventional
systems which rely on characterizing or the monitoring the
reference path alone tend to fail since supply voltage is not
able to deliver the required performance. In order to accom-
modate for the changing critical path, a delay margin has

to be added to the reference path delay to guarantee that it
remains the most critical at all supply voltages and for all
interconnect parasitic variations.

Another factor that adds more complexity when design-
ing a voltage scaling system is process variations and the
impact of environmental conditions on performance. For
example, at a certain voltage, a critical path at one process
corner would not necessarily remain critical for another pro-
cess corner or at a different temperature. Fig. 1 shows this
trend. The reference path at slow corner is no longer critical
at the fast process (solid curve is moved down). As a result,
conventional systems require enough safety margin to reli-
ably scale supply voltage at any condition without causing
a system failure.

0.8 0.9 1 1.1 1.2 1.3
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Vdd (V)

N
or

m
al

iz
ed

 D
el

ay

Slow
Fast

Potential critical path

Reference path

Figure 1: Reference path for the slow process
changes due to the impact of interconnect delay and
process variations.

Considering the case where the reference path at slow pro-
cess corner is due to 50% interconnect and a sub-critical
path is due to majority logic, the delay margin is increased
as voltage is scaled down as shown in Fig. 1. Therefore, it
is not sufficient to characterize and design the system based
on worst case. One solution could be to use the logic path as
the reference and add a small margin at the full scale volt-
age supply. This might not be sufficient if the logic process
happens to be fast while interconnects remain at worst case
as shown by the bottom set of delay plots in Fig. 1.

Both the conventional DVS and AVS systems tend to be
power inefficient as interconnect delay contribution increases
with technology scaling. Using either system requires a large
delay and voltage margin. such margin reduces the power
saved via supply scaling. Alternative to the conventional
approach, a closer examination of the actual system behav-
ior under different supply voltages and different operating
conditions is necessary.

3. CRITICAL PATH EMULATOR
ARCHITECTURE

The objective of the proposed architecture is to emulate
the critical path of a system at all conditions and at all
supply voltages. Emulating the real critical path can be
performed if the actual logic and interconnect speeds are
measured on-chip. Consequently, the effect of process and

376



{

{
{

n−2I n−1

k
Logic cells
Inter. cells
Logic cells
Inter. cells

Logic cells
Inter. cells

Interconnect speeds

D IiLj

Lm

I

n

m

nA/D
CLKin

Logic/
Interconnect

R
eg

is
te

r

j

0

1

0

D
d−1

D

0

1

L

L

L

I I

Comparator

C
om

pa
ra

to
r

T
o 

Lo
gi

c/
In

te
rc

on
ne

ct
 d

el
ay

 li
ne

s

D

Logic speeds

Interconnect
Sel Logic/

Register

m−1

Figure 2: Critical Path Emulator Architecture.

interconnect variations on changing the critical path can be
extracted. Based on the measured speeds, a critical path
emulator is built using two delay lines. One delay line is
composed of multiple stages of logic cells. This logic de-
lay line is configured to have approximately the same delay
as the logic delay portion of the actual critical path. Simi-
larly, the other delay line is constructed using buffered inter-
connect wire segments with an overall delay approximately
equal to the delay of interconnects in the real critical path.
The critical path emulator is monitored to form a closed-loop
feedback system. By measuring the speed of the critical path
emulator, which represents the actual speed of the system,
supply voltage is also adapted to the actual environmental
conditions.

3.1 Proposed Architecture
The proposed architecture is shown in Fig. 2. A logic and

interconnect variations estimator is used to measure the ef-
fect of on-chip process and interconnect variations on logic
and interconnect speeds relative to the worst case. This is
represented by the logic/interconnect A/D described below.
Logic and interconnect speed are represented by m and n-
bits respectively. Based on the values of both vectors, a sin-
gle LUT from the LUT matrix is selected. The data stored
in the selected LUT is used to construct two delay lines for
each target delay, one for logic and one for interconnects.
The target delay, D, is determined by the system’s software
and is set by the d-bit vector. For each of the d-bit values,
the number of logic delay cells represented by the vector j
is used to construct the logic delay line, whereas the num-
ber of interconnect delay cells, k, is used to construct the
interconnect delay line. The overall delay of the two delay
lines (critical path emulator delay) is approximately equal
to that of the actual critical path. Furthermore, voltage
scaling characteristics of the actual critical path and its em-
ulator are nearly the same since their logic and interconnect
delay compositions are approximately equivalent.

At system startup, on-chip process and interconnect vari-
ations are estimated by measuring logic and interconnect de-
lays relative to the worst case. A low-power high-resolution
A/D converter is used to determine logic speed [5, 6] as
shown in Fig. 3. FO4 inverters are used since their volt-
age scaling characteristics are nearly similar to most CMOS
logic gates [7]. To eliminate the effect of temperature on the
estimation process, supply voltage is adjusted such that per-
formance is temperature independent [8]. At this voltage,
temperature effect on delay is minimized leaving process and
interconnect variations as the major factor affecting perfor-
mance. As shown in Fig. 3, the output of the counter rep-
resents the high-order bits of the logic speed vector whereas
lower bits are represented by the output from the decoder.
Similarly, interconnect speed is also measured using buffered
interconnect segments. In order to avoid device mismatch-
ing between logic and interconnect buffers, the arrangement
shown in Fig. 3 is used. The two extra selectors are logic
cells and should scale with voltage nearly the same way as
the FO4 inverter [7].

The estimation process is performed in two steps. First,
the selector is set to measure logic speed. Then, the in-
terconnect A/D converter is constructed by connecting the
inverters through the long interconnect wire segments. To
exclude inverter delays in the interconnect delay line, logic
speed measured earlier is used to separate interconnect de-
lay from buffer delay and interconnect parasitic variation is
determined.

The output of the logic speed A/D is compared to the
pre-stored logic speeds as shown in Fig. 2. Based on this
comparison, the appropriate selection line in the logic speed
vector (L = L0L1 ... Ln−1) is activated to enable a row
in the LUT matrix. Similarly, measured interconnect speed
is used to activate the appropriate bit in the interconnect
speed vector (I = I0I1 ... Im−1) and the corresponding col-
umn is enabled. The architecture shown in Fig. 2 shows
an m logic × n interconnect speed intervals and the cor-

377



Direct/Long Wire

Speed
Logic/Interconnect

Sel

Long Interconnect

Direct Connection

FO4 FO4FO4

low−order

bits
high−order

C
ou

nt
er

bits

Decoder

Sel

Figure 3: Logic and Interconnect low-power high-
resolution A/D.

responding LUTs. Using the estimated process and inter-
connect variations, the proper LUT is selected. The details
of the LUT are shown in Fig. 2. For each target delay,
D, the corresponding number of logic cells, j, used to con-
struct the logic delay line is selected. Similarly, the k-bit
vector representing the number of interconnect delay cells is
determined.

The delay line of the critical path emulator is constructed
using the configuration shown in Fig. 4. The basic logic
delay cell used in the logic delay line is the FO4 inverter. The
interconnect delay cell is a long interconnect (e.g. minimum
width and 1 mm long) with repeaters (FO4 inverters) at the
driver and receiver ends of the wire. The logic delay line
is programmed using the j-bit vector while the interconnect
delay line uses the k-bit vector. The appropriate number of
delay cells is selected using a multiplexor as shown in Fig. 4.
The critical path emulator is configured by connecting the
output of the logic delay line to the input of the interconnect
delay line.

CLKin

k

MUX

MUX

Critical path
emulator output

j

delay cell
Logic Logic

delay cell

Interconnect
delay cell

Interconnect
delay cell

Interconnect
delay cell

delay cell
Logic

Figure 4: Implementation of logic and interconnect
delay lines.

The number of logic and interconnect delay cells stored
in the LUT shown in Fig. 2 can be determined through
technology characterization. This process has to performed
m×n times for the different process and interconnect splits.
Instead of this lengthy and costly process, accurate modeling
of both logic and interconnect delays is utilized. Using these
models, the critical path delay at different conditions and
different target speeds can be predicted and stored in the
LUTs.

3.2 Delay Modeling of Logic and
Interconnects

As previously mentioned, a simple, yet accurate, model
for delay of logic and interconnect delay lines can replace
characterization in the development of the critical path em-
ulator. In this work, the delay model for both logic and

interconnects is based on previously published models [9].
Additionally, accurate modeling of the rising/falling input
signals is used since the input ramp to one stage of the de-
lay line is the output from the previous stage.

Traditionally, rise/fall time is often categorized into a fast
and a slow input ramp. For our delay lines, since the input
ramp to one stage of the delay line reaches full scale sup-
ply voltage (Vdd) before the output reaches the Vdd/2 point,
input ramp is considered fast. The output transition time,
which is equal to the input rise/fall time to the next stage
of the delay line, is defined in [9] and is given by

tTLH = tr =

�
CLVdd

0.7 IDpmax � 8v2

D0p
(1 + λpVdd)

(4vD0p − 1)(2 + λpVdd)

tTHL = tf =

�
CLVdd

0.7 IDnmax � 8v2

D0n
(1 + λnVdd)

(4vD0n − 1)(2 + λnVdd)

(1)

where CL is the load capacitance, IDmax
is the maximum

drain current at VGS = VDS = Vdd, vD0 is the drain satura-
tion voltage at VGS = Vdd normalized by Vdd, and λ is the
channel length modulation. The subscripts, p and n refer to
the PMOS and NMOS parameters respectively.

Daga et al. [10] proposed an inverter delay model for fast
input ramps based on the alpha-power model and the con-
cept of inverter step response. The velocity saturation index
is considered to be unity in [10]. However, PMOSs usually
have a velocity saturation index which is greater than unity
and greater than NMOSs for current CMOS technologies.
In this paper, delay models provided in [10] are generalized
to include the non-unity velocity saturation index, α. Us-
ing the rise/fall time given in (1), the delay time of a FO4
inverter for the fast input ramp case is given by

tHL = tr � 1
2
−
�

1− vTN

αn + 1 ��� +
CLVdd

IDnmax

�
1 + 2

CGDP

CL �
tLH = tf � 1

2
−
�

1− vTP

αp + 1 ��� +
CLVdd

IDpmax

�
1 + 2

CGDN

CL � (2)

where vTN , vTP are the zero-bias threshold voltages nor-
malized by Vdd and CGDP and CGDN represent the input-
to-output coupling capacitances for the PMOS and NMOS
transistors respectively.

HSPICE simulations are compared to (2) for a FO4 de-
lay line implemented in 0.13µm CMOS technology. The
maximum error between the delay model and simulations is
4-5%. This small margin is considered when designing the
emulator.

The FO4 inverter delay model described by (2) is used
to model buffered interconnects. When buffers are inserted
at optimal distances to minimize interconnect delay, overall
delay of the buffered wire is found to be proportional to the
square root of the buffer delay [11]. The interconnect delay
is related to the buffer delay, tdbuf

, by the following relation

tdint
∝ � RCtdbuf

∝
√

RC
√

tHL (3)

where R and C are the resistance and capacitance per unit
length of the wire. Using (2) and (3) to model voltage scal-
ing behavior of both logic and interconnect delays takes into
account process and interconnect variations. Therefore, the
critical path at a certain process and certain parasitics cor-
ner can be predicted. Considering that worst case delay is
the reference case, an algorithm is devised to determine such
critical paths. This is described in detail below.

378



3.3 Algorithm
The algorithm used to generate the information stored in

the LUTs for different process and interconnect corners is
shown in Algorithm 1. Logic speed, L, and interconnect
speed, I, are used as indicators of process and interconnect
variations, respectively. In order to take process variations
into consideration, the entire logic speed range is divided
into increments with each increment is equal to Linc. Simi-
larly, the interconnect speed increment is Iinc.

The initial state of the algorithm is determined at worst
case logic and interconnect corners. All logic and intercon-
nect speeds are normalized to this reference case. In addi-
tion to the reference path, a set of potential critical paths is
determined. Delay models given by (2) and (3) are used to
predict the voltage scaling behavior of each path in the set.
The ratio of interconnect delay to logic delay, Iratio, for each
path is also recoded. Based on the logic and interconnect
unit delays at worst case in addition to Iratio of each poten-
tial critical path, the number of logic, l, and interconnect, i,
unit delays required to emulate each path are computed.

Algorithm 1 Critical path emulator

START:
L = I = D = 1.0
Find a set of potential critical paths
For each path in the set:
Compute (l, i)

for (L = 1.0 : L = Fast : L = L - Linc) do
for (I = 1.0 : I = Best : I = I - Iinc) do

Find the reference path
Find the subsequent potential critical paths
while (D <> Minimum) do

Find the critical path when (td = D):
Record its (l, i)
(j, k) ← (l, i)
D = Next D

end while
end for

end for

The next step is to determine which l and i to use in
emulating the actual critical path for each target delay, D,
specified by the system’s software and for each specific logic
speed, L, and interconnect speed, I. The delay of each path
in the set of potential critical paths is computed using (2)
and (3). Then, the path which has a delay equal to the tar-
get delay is selected. In this case, delay of all other paths
should be less than the target delay. Once the critical path
is selected, its (i, j) pair is stored as (j, k) and used for em-
ulation. The same procedure is repeated for the next delay
target. Once the generation of the critical path emulator at
all target delays is finished, the data required for one LUT
in the matrix shown in Fig. 2 is determined. Each LUT is
used to store the critical path emulator data for a specific
logic and interconnect speed range. The information needed
for the entire LUT matrix can be determined by repeating
the above for all logic and interconnect speed ranges. The
resulting delay of the critical path emulator closely tracks
that of the real critical path. More importantly, voltage
scaling behavior is nearly the same for both the real critical
path and its emulator.

4. RESULTS AND COMPARISON
The above architecture is designed in the CMOS 0.13µm

technology. A reference path at worst case with a certain
Iratio is selected. The effect of interconnect delay on the
selection of a unique critical path is illustrated through a
set of paths which have delays close to the reference and
lower Iratio (more logic delay). Since potential critical path
delays scale faster with voltage, a margin is required which
is proportional to Iratio of the reference path. The algo-
rithm described earlier is applied to these paths using the
CMOS 0.13µm technology parameters. Logic and intercon-
nect speeds are divided into 10 ranges each. The critical
path emulator information for the 10 logic splits and the
10 interconnect parasitic corners is extracted. Therefore,
m = n = 10 in Fig. 2, yielding a 100 different process and
parasitic corners stored in 100 LUTs. In this design exam-
ple, the number of bits used by the logic and interconnect
delay multiplexers is equal to 5 (e.g. j = k = 5). Con-
sidering 4 target delays, approximately 4-Kbits of ROM are
required to form all the LUTs.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

1

2

3

4

5

6

Vdd (V)

N
or

m
al

iz
ed

 D
el

ay

Slow

Fast

Vpenalty

4.0

Target

3.0

1.0

2.0

DelayPontential critical path

Critical path emulator

Figure 5: Delay of the critical path emulator exceeds
delays of all other paths for the entire voltage range
at both slow and fast process corners.

Fig. 5 shows paths delays at the slow and fast corners
and the resultant critical path emulator for each case. The
reference path delay has an interconnect delay ratio of 50%.
For both process corners, the critical path emulator, shown
as a solid curve, has a safety margin above all the other
paths at all target delays. Target delays, shown on the right
of Fig. 5, are set externally by the system’s software.

The proposed critical path emulator architecture closely
tracks the actual critical path at any given target delay.
Therefore, the large delay margin required to account for
worst case conditions can be saved. This delay margin is
translated to a voltage overhead resulting in an extra energy
dissipation which is given by

Energy Loss = 1− (Vfast/Vslow)2 (4)

where Vslow and Vfast are the supply voltages required to
achieve the target delay with and without using a delay mar-
gin respectively.

When logic and interconnect speed intervals are taken to
be equal to Linc and Iinc respectively, the error range in de-
termining the actual silicon condition becomes ±Linc/2 and

379



±Iinc/2 for logic and interconnect, respectively. Assuming
that Linc = Iinc = 10%, the maximum absolute error be-
comes 10% which is directly translated to a delay margin.
In addition, a delay margin of 5% is added to compensate
for model mismatch. Hence, the maximum delay margin re-
quired by the proposed system is 15%. From Fig. 5, this
delay margin corresponds to a voltage overhead of approxi-
mately 115 mV. Using (4), the maximum energy loss of the
proposed system is approximately 17%. This energy loss
can be reduced by increasing the granularity of process and
interconnect speed sampling. However, increasing the gran-
ularity entitles more LUTs and additional selection overhead
that reduces the energy efficiency.

Conventionally, the reference path is selected at the slow
process corner and worst interconnect parasitics. Therefore,
conventional open-loop systems require a delay margin to
compensate for two factors, process variations in addition to
the difference in voltage scaling characteristics between logic
and interconnects. Energy savings obtained by adapting
to process variations reach 27% when considering a sigma-
distribution and the 10 process split information used by the
proposed architecture [8].

When the critical and the potential critical path delays
are mainly due to logic delay, a replica of the critical path
is sufficient to emulate the actual delay. However, as the
interconnect delay ratio, Iratio, increases, the delay margin
required to accommodate for any sub-critical path formed
of pure logic delay also increases. This is due to the fact
that logic delay scales faster than interconnect delay. When
the reference path delay is assumed to have a certain Iratio

and the potential critical path delay is totally due to logic,
this delay margin can be derived from

[Margin + (1 − Iratio)] ∗ [tdl]V=Vmin
+ Iratio ∗ [tdi]V=Vmin�

1.0 ∗ [tdl]V=Vmin
+ 0 � = 1

where [tdl]V=Vmin
and [tdi]V=Vmin

are logic and intercon-
nect delays at the minimum supply voltage respectively.
Consequently, the delay margin can be expressed in terms
of Iratio as

Margin = Iratio � 1− � tdi

tdl � V=Vmin � . (5)

Based on (5), (4) is used to compute the energy efficiency
of the proposed architecture compared to both the conven-
tional open-loop and closed-loop systems as shown in Fig.
6. Since open-loop DVS systems are designed at worst case
process and parasitic conditions, the proposed system is up
to 43% more energy efficient. Compared to conventional
closed-loop systems, only the delay margin given by (5) is
required since process variations can be factored out. There-
fore, energy efficiency of the proposed system compared to
conventional closed-loop systems approaches 23%.

5. CONCLUSION
Conventional voltage scaling systems require a large de-

lay and voltage margins to mitigate the increasing impact of
process variations and interconnect delay on the determina-
tion of a unique critical path in modern VLSI systems. In
order to recover this large margin required by conventional
systems, an adaptive voltage scaling architecture with an
on-chip critical path emulator was presented. The proposed

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

Interconnect delay ratio (%)

E
ne

rg
y 

E
ffi

ci
en

cy
(%

)

Open−loop
Closed−loop

Figure 6: Energy efficiency of the proposed archi-
tecture compared to the conventional DVS and AVS
systems as a function of interconnect delay ratio of
the reference path.

system has the ability to adaptively track process and para-
sitic variations and environmental changes through a closed-
loop feedback mechanism. Efficiency of the proposed archi-
tecture compared to conventional systems depends on the
interconnect delay ratio of the reference path. The proposed
architecture is up to 43% and 23% more energy efficient com-
pared to open-loop and closed-loop systems, respectively.

Acknowledgment
The authors would like to thank Muhammad Nummer of the
University of Waterloo, Canada, and Amr Fahim and Inyp Kang
of Qualcomm Inc. for the enlightening discussions. This work
was supported by a strategic grant from the Natural Sciences
and Engineering Research Council (NSERC) of Canada.

6. REFERENCES
[1] T. Burd et.al, “A Dynamic Voltage Scaled Microprocessor

System,” JSSC, vol. 35, no. 11, pp. 1571–1580, Nov. 2000.
[2] J. Kim and M. Horowitz, “An Efficient Digital Sliding

Controller for Adaptive Power-Supply Regulation,” JSSC,
vol. 37, no. 5, pp. 639–647, May 2002.

[3] D. Ernst et.al, “Razor: A Low-Power Pipeline Based on
Circuit-Level Timing Speculation,” in Micro Conf., 2003.

[4] Semiconductor Industry Association, “Itrs, 2003 ed.
[http://www.public.itrs.net]” .

[5] A. Chandrakasan et. al, “Data-Driven signal processing: An
approach for energy-efficient computing,” in ISPLED, 1996,
pp. 347–352.

[6] G. Wei et.al, “A Variable-Frequency Parallel I/O Interface
with Adaptive Power-Supply Regulation,” JSSC, vol. 35, no.
11, pp. 1600–1610, Nov. 2000.

[7] R. Gonzalez and M. Horowitz, “Supply and Threshold
Voltage Scaling for Low Power CMOS,” JSSC, vol. 32, no. 9,
pp. 1210–1216, Aug. 1997.

[8] M. Elgebaly et.al, “Robust and Efficient Dynamic Voltage
Scaling Architecture,” in ASIC/SOC, 2003, pp. 155–158.

[9] T. Sakurai and R. Newton, “Delay Analysis of
Series-Connected MOSFET Circuits,” JSSC, vol. 26, no. 2,
pp. 122–131, Feb. 1991.

[10] J. Daga and D. Auvergne, “A Comprehensive Delay Macro
Modeling for Submicrometer CMOS Logics,” JSSC, vol. 34,
no. 1, pp. 42–55, Jan. 1999.

[11] R. Ho et.al, “The Future of Wires,” IEEE Proc., vol. 89,
no. 4, pp. 490–504, Apr. 2001.

380


	Main Page
	ISLPED'04
	Front Matter
	Table of Contents
	Author Index




