
A DFT Technique for Testing High-Speed Circuits

with Arbitrarily Slow Testers

by

Muhammad A. Nummer

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2001

c�Muhammad A. Nummer 2001

I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or individuals for

the purpose of scholarly research.

Muhammad A. Nummer

I further authorize the University of Waterloo to reproduce this thesis by photocopying or other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

Muhammad A. Nummer

ii

The University of Waterloo requires the signatures of all persons using or photocopying this

thesis. Please sign below, and give address and date.

iii

Abstract

Rapid advances in semiconductor technology have created many challenging requirements for

automatic test equipment (ATE). As a result, design-for-testability (DFT) and built-in-self-test

(BIST) techniques are becoming essential parts of any high-speed VLSI design. This thesis

presents a DFT technique for testing high-speed circuits with a low-speed clock in test mode.

With this technique, the test mode clock frequency can be reduced with no lower limit. This

technique imposes few requirements on ATEs and facilitates the testing process. A CMOS im-

plementation capable of achieving an accuracy of 50ps is presented. The effectiveness of this

technique is demonstrated using a 16-bit, 1.4GHz pipelined multiplier. Simulation results show

that we are able to do performance binning and detect delay faults as small as 50ps at frequencies

much lower than the rated operating frequency of the test vehicle.

iv

Acknowledgements

All praise is due to God, Most Gracious, Most Merciful, Whose bounties and blessings are ever

dominating throughout my life.

I would like to express my deepest gratitude and appreciation to my supervisor, Prof. Manoj

Sachdev. Prof. Sachdev has always been an invaluable source of support, guidance, and encour-

agement. I would also like to thank Prof. James Barby and Prof. Anwar Hasan for reading and

suggesting improvements to the presentation of this thesis.

My appreciation to all my colleagues in the VLSI research group who were of great help and

support. In particular I would like to thank A. Elsayed, A. Elraey, M. Allam, M. Shashaani, A.

Fahim, M. Anis, M. Elgebaly, M. Kamal, M. El Said, W. Chung, and I. Al-Mohandes.

My deep gratitude to my mother and father for their ever continuous support, encouragement,

and prayers. No words of appreciation could ever reward them for all they have done for me. I

would like to thank my wife, who shared with me every day throughout the course of this work.

Her support, patience, and understanding played a major role in helping me finish this thesis.

My daughter, Yumna, brought so much joy to my life which has been and continue to be a great

source of encouragement.

This research was supported in part by Communications and Information Technology Ontario

(CITO) and Gennum Corporation. This support is greatly appreciated.

v

Contents

1 Introduction 1

2 Background 5

2.1 VLSI Testing . 5

2.2 Faults and Physical Defects in CMOS ICs . 7

2.2.1 Failures, Faults, and Defects . 7

2.2.2 Fault Models for CMOS ICs . 7

2.2.3 Defects in CMOS . 11

2.3 Testing Marginal ICs . 13

2.3.1 What are Marginal ICs . 13

2.3.2 Marginal ICs and Timing Failures . 14

2.3.3 Causes for Timing Failures . 14

2.3.4 Test Techniques for Marginal ICs . 16

3 Testing High-Performance Circuit with Arbitrarily Slow Testers 21

3.1 CDFF for Testing High-Performance Circuits at Low Speed 22

3.2 Using CDFF to Arbitrarily Reduce Test Mode Clock Frequency 24

3.2.1 Reducing Test Mode Clock Frequency 25

vi

3.2.2 Clock and Test Clock Generation . 26

4 Design of Clock Generation Circuit 29

4.1 Delay Element . 30

4.2 Programmable Delay Line . 33

4.3 Buffers, Gates, and Fixed-Delay Delay Line . 33

5 Test Vehicle: A 16-bit Pipelined Multiplier 34

5.1 Multiplier Design . 34

5.1.1 Partial Product Generation . 35

5.1.2 Summation Network . 37

5.1.3 Carry Propagate Adder . 38

5.2 Pipelining . 39

5.3 Performance Characterization . 39

6 Simulation Results 42

6.1 Clock Generation Circuit . 42

6.2 Performance Binning . 43

6.3 Delay Fault Simulation . 48

7 Conclusions and Future Work 53

Glossary of Terms 55

References 56

Bibliography 59

vii

List of Tables

1.1 ITRS Trends in yield, off-chip device speed, and tester accuracy [3]. 2

5.1 Critical path delays through multiplier stages. 41

6.1 Performance binning results for various process models. 48

6.2 Delay fault simulation results. 52

viii

List of Figures

3.1 Controlled delay flip-flop [18]. 22

3.2 CDFF operation. (a) Circuit model. (b) Normal mode. (c) Test mode. 23

3.3 Generating clock and test clock. (a) Block diagram. (b) Timing diagram. 27

4.1 (a) Circuit used to generate CLK1 and CLK2. (b) Signals at different points for

���=275ps. 31

4.2 Schematic diagram of the delay element used for the delay lines. 32

5.1 Parallel Multiplication . 35

5.2 Dot diagram of the multiplier. 36

5.3 4-2 compressor constructed with two full adders [2]. 38

5.4 Block diagram of the pipelined multiplier used as a test vehicle. 40

5.5 Data flow through all pipeline stages of the multiplier in test mode. 41

6.1 CLK1 for all possible values of S0-S3. 43

6.2 CDFF simulation results for ���=275ps. (a) �=100MHz. (b) �=10MHZ (c)

�=1MHz (d) �=100kHz. 44

6.3 Algorithm for performance binning using the proposed technique. 47

6.4 Algorithm for delay fault simulation. 49

6.5 Fault simulation for the critical path of SN L1 (a) �=100MHz. (b) �=100kHz. . . 51

ix

Chapter 1

Introduction

The on-chip clock frequency of high-performance state-of-the-art VLSI CMOS circuits has sur-

passed 1.5GHz. It is expected that the speed of such circuits will continue to increase for future

technology generations. The 1999 edition of the International Technology Roadmap for Semi-

conductors (ITRS) expects that the on-chip clock frequency will exceed 3GHz by year 2005 and

13GHz by year 2014 [3]. With smaller geometries, higher speeds, and increased interconnects,

it is more likely for small imperfections in the fabrication process to cause device failure.

According to the ITRS, most of the technology problems causing yield losses and cost in-

creases are related to the slower growth in automatic test equipment’s (ATE’s) capabilities versus

the ever increasing device clock frequency [3]. In the past, the accuracy of ATEs used to be 4-

5 times higher than the state-of-the-art ICs [18]. That is why it was easy to perform at-speed

functional testing. In the last two decades, however, while the clock frequencies of VLSI circuits

have improved at an average rate of 30% per year, the tester accuracy has improved only at a

rate of 12%. If this trend continues, tester timing accuracy will soon approach the cycle time

of high-performance devices making at-speed test almost impossible. Table 1.1 shows the ITRS

1

Introduction 2

Year 1999 2001 2003 2005 2008 2011 2014

Yield (%) 87 84 79 73 64 56 50

Off-chip device period (ps) 830 700 580 500 400 340 260

Overall ATE accuracy (ps) 200 160 130 100 100 100 100

Table 1.1: ITRS Trends in yield, off-chip device speed, and tester accuracy [3].

expected trends for yield, off-chip device speed, and the overall tester timing accuracy 1. It is

clear from this data that long before the tester timing accuracy reaches the cycle time of the de-

vices, yield loss 2 due to insufficient accuracy of the tester will become unacceptably high. As

yield for future technology generations becomes a major issue, the importance of performing a

test capable of ensuring acceptable quality levels becomes crucial. In the same context, if future

ATEs are not able to keep up with device speed, not only the yield but the out-going quality of

these devices will also be greatly affected.

The ATE cost per pin for high-performance circuits has remained approximately constant for

the past 20 years at around $10-12k. Recently, this value has begun to fall below $8k/pin and is

expected to continue to decrease in years to come. Nevertheless, it is expected that the demand

for higher speed, greater accuracy, more time sets, and increased vector memory will offset most

of the gains seen for reducing ATE cost [3]. According to the ITRS, it may cost more to test a

transistor than it costs to manufacture it by 2014.

Due to the slow advances and the high cost of ATE, we might not be able to test future high-

performance VLSI circuits. Therefore, it will be essential to design these circuits with design-for-

testability/built-in-self-test (DFT/BIST) techniques to reduce the reliance on traditional, high-

cost, full-feature testers. The requirements of ATEs designed to work with DFT/BIST techniques
1Overall tester timing accuracy aggregates timing error comprised of input edge placement accuracy, output edge

placement accuracy, and input to output timing accuracy.
2Yield loss is a measure of how many “good” devices are incorrectly considered “bad” due to tester inaccuracy.

Introduction 3

are much simpler than the traditional testers.

In this thesis, we propose a DFT technique for testing high-speed circuits with arbitrarily

slow testers. Testing high-speed circuits with slow testers has several advantages. It provides the

capability of detecting the subtle timing failures with relative ease resulting in improved quality.

Furthermore, with these techniques, the life time of an ATE can span multiple life cycles of a

product. As a result, using these techniques to test high-speed circuits is expected to reduce the

cost of testing and manufacturing.

The creation of a low frequency test mode in digital circuits was first introduced by Agrawal

and Chakraborty [1] in 1995. In their proposal, a quantifiable, externally controlled delay is

added such that high-performance testing can be carried out with relatively slow-speed testers.

They used a pulse-triggered flip-flop in which a dynamic latch is introduced inside a traditional

master-slave flip-flop. In 1999, Shashaani and Sachdev proposed the controlled delay flip-flop

(CDFF) [18] as an alternative to the pulse-triggered flip-flop. In this technique an additional test

mode clock is used to control the delay of the flip-flop. The main advantages of the CDFF over

the pulse-triggered flip-flop are the stable operation and improved performance in normal mode.

The remainder of this thesis is organized as follows. Chapter 2 gives a concise review of

VLSI testing. The chapter provides details on faults and physical defects in CMOS circuits. A

review of the techniques used for testing marginal ICs is provided. Chapter 3 introduces the

concept of testing high-performance circuits with slow speed testers. Details of using CDFFs are

given. This chapter introduces the technique proposed by this work, in which high-performance

circuits can be tested with arbitrarily slow testers. Chapter 3 also illustrates how to generate

clocks used for CDFFs in order to reduce the test mode clock frequency arbitrarily. Chapter

4 provides design details of the clock generation circuit. An overview of the 16-bit pipelined

multiplier used as a test vehicle is given in Chapter 5. Simulation results for the clock generation

Introduction 4

circuit, performance binning 3 for different process corners, and delay fault detection are given

in Chapter 6.

3Performance binning is a test procedure used to segregate devices in a number of bins depending on their

maximum operating frequency.

Chapter 2

Background

Advances in Very Large Scale Integration (VLSI) technology have enabled the implementation of

complex digital circuits in a single chip, reducing system size and power consumption. To design

such complex circuits, an array of computer aided design tools have been developed. These tools

dramatically reduce the time required to design new circuits, allowing significant advances in

improved system characteristics and performance. This in turn has intensified the complexity of

testing such chips to verify that they function correctly. Semiconductor manufacturing processes

are so complex that this verification cannot be done on a sampling basis; rather, each chip must

be individually tested [7].

2.1 VLSI Testing

The purpose of testing a VLSI device is to ensure, with reasonable confidence, that the device

functions according to the design specifications. This testing must be achievable within certain

economic constraints to keep the cost per device as low as possible.

Following Moore’s Law for the past two decades, the silicon die cost of integrated circuits

5

Background 6

has decreased as the number of transistors per die has continued to increase. In contrast, during

the same period, the cost of testing integrated circuits in high-volume manufacturing has been

steadily increasing. It is predicted that the cost of testing transistors may actually surpass the cost

of fabricating them within the next two decades [17]. As ICs become more highly integrated,

the job of diagnosing failures becomes increasingly difficult. Marching into the deep submicron

regime poses many challenges to the testing problem. With smaller geometries, higher speeds,

and increased interconnects, it is more likely to have an increase in the tendency for small im-

perfections in the fabrication process to result in actual failures. This is why it is very essential

to use advanced test techniques that enables the testing process to cope with the advances in

semiconductor technology.

Fundamentally, there are two ways in which a VLSI device can fail. It can fail parametrically

in that the technology dependent electrical parameters such as voltage, current, capacitance,

speed, or gain are out of the specifications. Or, it can fail functionally such that the device,

independent of its electrical characteristics, performs an incorrect logic function.

Generally, there are three main types of testing techniques. The first two are parametric

testing and functional testing. A VLSI device may fail a parametric test and still pass a functional

test and vice versa. The third is a group of tests called accelerated life tests. These tests simulate

many years of operation by stressing the device under test. A repeated functional test pattern

is applied to the device during this process so that the chip is being fully exercised during its

accelerated “life-time”. These tests will be described in more detail in section 2.3.4.

Background 7

2.2 Faults and Physical Defects in CMOS ICs

2.2.1 Failures, Faults, and Defects

A failure is said to have occurred in a circuit if it deviates from its specified behaviour [12].

A fault, on the other hand, is a physical defect that causes the circuit to seriously malfunction.

Although it may not be feasible, the testing objective is to detect all defects which affect the

circuit behaviour in any respect at the time of testing or during its lifetime. The defects that do

not affect the circuit behaviour at the time of testing may cause a fault in the future, and hence

become a major reliability concern.

2.2.2 Fault Models for CMOS ICs

There are many sources of faults in a circuit. Examples include breaks in signal lines and line

shorts to ground, supply, or other signal lines. Other sources include design rule violations and

errors in the design specifications. A fault model is a representative description of the effect the

fault has on circuit operation.

Stuck-At Fault Model

In this model, it is considered that any line in a circuit may have a fault, which causes it to remain

permanently either at logic 1 or at logic 0. If the logic value of a line remains at 1, the line is said

to be stuck-at 1, and if the value remains at 0, it is called stuck-at 0.

The stuck-at fault model is the most commonly used logic-level fault model [16]. Neverthe-

less, the stuck-at fault model cannot detect many physical defects in present day VLSI, which

mainly uses CMOS technology (82% of integrated circuits in 1998 [11]). Faults in CMOS cir-

cuits do not necessarily produce logical faults that can be described as stuck-at faults. Various

Background 8

studies since the late 1970s suggest that the basic failure modes in VLSI circuits are physical

short and open circuits [15]. These studies reported that only a small fraction of bridging and

open faults can be modeled as stuck-at faults. For example a bridging fault might not cause any

logical faults, rather it may cause delay or timing faults. A bridging may occur between two elec-

trical nodes. On the other hand, any part of a diffusion, polysilicon, or metal line may have an

open fault. Any contact between two layers may be open. This raised the need for comprehensive

fault models to include bridging and open faults.

Bridging Fault Model

In, general, bridging faults can be classified into three groups:

� Bridging within a logic element without feedback. This is a bridging fault between internal

nodes within a logic element. The most likely faults are recognized as (1) gate-to-drain

bridging, (2) gate-to-source bridging, and (3) source-to-drain bridging (sometimes referred

to as transistor stuck-on fault) [15].

� Bridging between two logic elements without feedback.

� Bridging faults between logical nodes with feedback. The presence of such feedback can

cause the circuit to oscillate or convert it to a sequential circuit [12].

Bridging faults between transistors in CMOS circuits are very difficult to test using logic

testing. Such kind of faults affect the dynamic behaviour of the circuit, reduce the noise margin,

and cause the circuit to age very quickly by drawing and dissipating very large currents. The

situation becomes more complex when the bridging fault has some finite resistance (resistive

short). It has been observed that the short resistance can vary from few ohms to about 4.7k� [6].

Test methods such as I���, delay test, very-low-voltage testing, or burn-in are normally used to

overcome the lack of deterministic testability of devices with bridging faults.

Background 9

Stuck-Open and Stuck-On Fault Models

These are transistor level fault models. It is only at this level that the complete structure is known.

That is why these models can give a realistic representation of CMOS faults.

A stuck-open fault implies that there is a permanent open between the drain and the source

of a transistor. The drain-source resistance of a stuck-open transistor is significantly higher than

the OFF resistance of a nonfaulty transistor. If the values of these two resistances are close to

each other, the transistor is considered to be stuck-off. Although only about 1% of the CMOS

faults are due to stuck-off/stuck-open transistors [12], considerable research has been directed

at detecting these faults. This is attributed to the fact that it has been demonstrated that in the

presence of these faults in a CMOS logic gate, the gate shows a memory effect under certain

input conditions [16], thus turning a combinational circuit into a sequential circuit.

If a transistor is stuck-on, it operates in the conduction mode regardless of the voltages at its

gate. This means that the drain-source resistance of a stuck-on transistor is always close to the

ON resistance of a nonfaulty transistor. If this resistance is much smaller than the ON resistance

of a nonfaulty transistor, the transistor is said to be stuck-closed. These faults can be modeled

as bridging faults between the source and the drain of a transistor and again it would be easy to

detect such faults using a parametric test.

Parametric and Transient Faults

A VLSI circuit might have faults that do not affect the logical behaviour of the circuit, but

degrade the performance and reliability of the circuit. These are called parametric faults. These

faults are considered to be major reliability threats in CMOS ICs. Parametric faults include shifts

in substrate leakage current, gate-oxide leakage current, and threshold voltage. Although delay

faults are also parametric faults, they are considered separately. The cause of a parametric fault

may be a physical defect or a variation in a process parameter. The general procedure to sensitize

Background 10

these faults is accelerated stress testing.

Another possibility is the intermittent or transient faults. This type of faults affect the circuit

behaviour at random. Although, the cause of such faults can be a physical defect, most probably

the cause is an environmental factor. Examples include external electromagnetic interference

and ionization radiation. These faults are not repairable because they do not cause any physical

damage to the hardware [16].

Delay Fault Models

The size of a defect determines whether the defect will affect the logic function of a circuit or

not. Smaller defects, which are likely to cause partial shorts or opens, have a high probability

of occurrence due to the statistical variation in the manufacturing process. Such defects cause

the circuit to fail to meet its timing specifications without any alteration of the logic function of

the circuit. These types of faults can be modeled as delay faults. Other reasons for delay faults

include transistor threshold voltage shifts and increased parasitic capacitance. To test a timing

fault, two popular models are used:

1. Single-gate delay fault model. A circuit has a gate delay fault if a localized timing failure

causes the propagation delay of at least one path through the circuit to exceed the specified

cycle time [8].

2. Path-oriented delay fault model. A circuit has a path delay fault if the propagation delay

of at least one path through the circuit exceeds the specified cycle time [8].

Although a single gate may satisfy the timing specifications, the circuit may still malfunction

because of the cumulative effect of delay variation. This illustrates the importance of the path-

oriented delay fault models. In-general, the delay in the longest and the shortest paths are exam-

ined for delay faults. If these delays are within the clock period, the circuit is considered to be

Background 11

nonfaulty; otherwise, the circuit has a delay fault.

Sometimes, the difference in timing is very small to be detected by a delay test. In such cases

other test techniques that magnifies the delay fault should be used.

2.2.3 Defects in CMOS

Defects are the actual source of most of the faults taking place in CMOS. To achieve higher

test accuracy, test techniques should be defect oriented rather than fault oriented. This is why

it is very important to categorize defects and build test strategies based upon their electrical

properties. This means that the test strategy should match the defect electrical properties rather

than the fault definition.

Hawkins et al. [10] suggested building test strategies based upon defect classes. According

to their proposal, all defects can be categorized into three groups:

1. Bridge Defect Classes. These include bridging defects at transistor node, logic gate I/O,

and power lines. They can happen in a combinational or a sequential circuit. The I-V

characteristics of these defects can be nonlinear or linear. Hawkins et al. showed that

the detection of these defects is more efficient with a parametric test (I���) than with a

Boolean test. Correct Boolean functionality exists for signal node bridge defects when the

defect exceeds a critical resistance. It has been found that the critical resistance can be as

low as 10� and as high as 5k� [10] depending on defect location, transistor size, transistor

W/L ratios, CMOS technology, and input logic patterns. This defect class is further divided

into three types:

� Bridge Type-1 Combinational Defect Class. These defects occur at specific locations

and include the six possible transistor node bridges, logic gate I/O node to power bus

bridges, and power bus to power bus bridges.

Background 12

� Bridge Type-2 Layout Defect Class. These occur at a variety of locations and include

bridges between two or more logic gates or between logic gate I/O and transistor

nodes.

� Bridge Type-3 Sequential Defect Class. This class includes transistor node bridges

of sequential circuits.

2. Open Circuit Defect Classes. These include open contacts, metallization opens, and opens

in diffusion or polysilicon. Hawkins et al. placed the different types of opens into six

classes:

� Open Type-1 Transistor-On Defect Class. This class causes the transistor to have a

stuck-on behaviour.

� Open Type-2 Transistor Pair-On Defect Class. This class represents an open that

causes a pair of transistors to be on.

� Open Type-3 Transistor Pair-On/Off Defect Class. In this class the open can be mod-

eled as a stuck-at fault.

� Open Type-4 Sequential Open Defect Class. This class represents large opens in se-

quential circuits which causes either degraded voltages (which might cause a Boolean

fault) or strong clamping to a supply voltage.

� Open Type-5 Transistor-Off Defect Class. This class has a memory effect in CMOS

ICs and is very difficult to detect.

� Open Type-6 Delay Defect Class. This defect class includes the delay effect in open

circuits having small cracks that allow tunneling and subsequent delay errors.

While the response of certain open circuit defects is not always predictable, the possible

responses are bounded. Therefore, test strategies for open circuit defects can take account

Background 13

of all six possibilities [10].

3. Parametric Delay Defect Class. This class defines the subset of defects causing delay

faults that are neither in the category of bridges or opens. These defects include shifts in

via resistance, threshold voltage, and transistor W/L ratios. Parametric delay faults are

hard to detect either by Boolean test or by I��� test. In order to detect such faults, delay

fault testing or at speed testing seem to be promising alternatives [16].

As can be seen from the previous discussion, there is no one single test method that can detect

all possible faults in CMOS ICs. Some faults are very easy to detect using a Boolean test. Others

require parametric tests or a combination of the two. Among the most difficult faults to detect

are faults causing what is called marginal ICs. This will be discussed in the following section.

2.3 Testing Marginal ICs

2.3.1 What are Marginal ICs

The objective of most functional and parametric test techniques is to detect chips that are not

working according to design specifications. If an IC passes both functional and parametric tests,

it is assumed to be functional.

However, some of the “functional” ICs may be in fact marginal ICs. Marginal ICs contain

flaws; defects in a chip that do not cause failures at normal operating conditions but degrade

chip performance, reduce noise immunity, or draw excess supply current [6, 9]. Marginal ICs

cause problems with reliability and must be detected before they are shipped. These chips can

cause intermittent failures in the sense that even if they may pass production tests, they can fail

to work in the field at different operating conditions. They may cause problems if the supply

voltage changes during operation due to IR drops or simultaneous switching noise. If these chips

Background 14

are used for low-power applications, and if the defect inside the chip is causing abnormal static

current flow, this may have serious consequences. The excess static current can cause early-life

failures and accelerated chip wearout.

2.3.2 Marginal ICs and Timing Failures

The most noticeable effects of marginal ICs on chip performance are timing failures in the form

of delay flaws. Timing failures occur when the delay of the manufactured component is different

from the designed delay. If the timing failure is such that the circuit fails to work at the designed

speed but continues to be functional at a lower speed, it is called a delay fault. On the other hand,

a circuit has a delay flaw (non-operational delay failure) if there is a timing failure but the circuit

continues to work at the designed speed [8].

2.3.3 Causes for Timing Failures

In this section causes for timing failures, of which delay flaws are a subset, are presented. The

main source for timing failures is manufacturing defects. They can also result from design de-

fects, such as violating layout design rules or aggressive device scaling. Normal device wearout

is another source for timing failures. Listed below are the different possible causes for timing

failures as identified by Chang and McClusky [5].

1. Transmission gate opens. This means that one of the transistors in a CMOS transmission

gate is malfunctioning and cannot pass any signal. This causes the transmission gate to

have a degraded signal at its output.

2. Threshold voltage shifts. The cause for this can be process variation or hot carrier effects.

Process variation causes global threshold voltage shifts. On the other hand, hot carrier

effects can cause either global or local threshold voltage shift. A higher threshold voltage

Background 15

causes the transistor to have a lower transconductance. As a result, the transistor has a

lower driving capability and causes an excess delay during a transition.

3. Diminished-drive gates. This situation is associated with gates whose output drives a high

fan-out, long interconnection wires, or both. The reason for the diminished-drive can be

improper design of the driver or weak gates having smaller gate widths caused by manu-

facturing defects. Some of these driving gates are designed to be parallelly connected to

avoid using large devices. If one of the branches in such a gate malfunctions (for example,

due to an open at its output), the other branches will be heavily loaded and might encounter

diminished-drive.

4. Gate-oxide and metal shorts. These were discussed in sections 2.2.2 and 2.2.3. They can

cause degraded signals and increased leakage currents.

5. Defective interconnect buffers. For deep-submicron technologies, the interconnect delay

is no longer a negligible part of the total delay. This is why buffers are sometimes used to

reduce the RC delay of long wires. If these buffers are defective, they might cause different

failure modes including degraded signals, high leakage current, longer gate delays, or

longer interconnect delays.

6. High resistance interconnects and via defects. Electromigration, via defects and stress

voids, can cause the resistance of an interconnect to increase resulting in a longer RC

delay.

7. Tunneling opens. These are opens due to small cracks. They allow the IC to be functional

at low frequencies but fail at high frequencies.

Background 16

2.3.4 Test Techniques for Marginal ICs

There are many test techniques that can be used for detecting marginal ICs. The common pro-

cedure in most of these techniques is to change the operating environment so as to provoke the

flaws within the chip. Nevertheless, some other techniques perform testing at normal operating

conditions.

Marginal Voltage Screening

In this technique, for each test pattern, the power supply voltage is lowered until a logic error

is observed at circuit output [9]. A voltage profile of good chips can be built this way. When a

marginal chip is tested it gives a different profile. The main disadvantage of this method is the

need for static voltage adjustment for each test set which is very time consuming.

Cut-Off Frequency Test

For a certain value for the supply voltage, there is a cut-off frequency above which the circuit

fails to function. This technique is based on searching for the cut-off frequency of good chips

at different values for the supply voltage including low voltages. A chip with flaws gives out of

range cut-off frequencies. This technique is also time consuming. No clear evidence is given

as to what flaws could be detected and how the voltage should be chosen for optimal defect

coverage [9].

Corner Testing

Corner testing is a frequently used technique in practice. In this techniques the chip is operated

under various worst-case operating conditions specified by the manufacturer. This is to insure

that it performs all of its designed functions under these conditions [9].

Background 17

Accelerated Life Tests

These tests subject devices to higher than usual levels of stress to speed up the deterioration of

the circuit under test. These stresses include voltage, temperature, humidity, corrosion, magnetic

field, current, pressure, radiation, vibration, salt, and loading. Kuo et al. [11] identified many

types of these tests. Here, some of the test that can be used to detect marginal chips are listed.

1. Burn-in. Burn-in test is the most commonly used technique for eliminating marginal chips

in production [9]. It uses time, bias, current, and temperature accelerating factors to ac-

tivate time-temperature-dependent failure mechanisms to the point of detection in a rela-

tively short period of time.

2. High Temperature Storage (HTS) Test. Essentially, this test is a bake at temperatures much

higher than burn-in. No bias is applied, and the device in not electrically activated. The

main purpose for this test is to detect the quality of molding and wiring material used in the

assembly process. Another version of this test is high temperature with bias (HTB) test.

This test is useful in detecting thin film, transistor, metal, and capacitor defects in MOS

devices.

3. Electrical Over-Stress (EOS). Oxide defects are not very responsive to temperature stresses.

However, voltage stressing forces defective oxides to fail prematurely. Stressing may take

the form of a continuous electrical over-stress combined with an elevated ambient temper-

ature as in HTB.

4. Temperature Cycling (T/C). T/C is performed by alternatively stressing devices at hot and

cold temperature extremes. It is used to monitor the reliability of metal and passivation.

Accelerated life tests are usually very expensive because special equipment and long test times

are required. They are widely used for process improvement in the development phase of a chip.

Background 18

In production, they are only done for particular types of chips [9].

Quiescent Power Supply Current (I���) Testing

Any CMOS gate consists of an NMOS pull-down network and a PMOS pull-up network. In a

fault-free situation, for any given input only one part conducts, connecting the output node to

either the V�� or the GND node. Thus the circuit does not provide a conducting path from V��

to GND. That is why in the fault-free situation, steady-state current in the circuit is very small

and is on the order of nA.

In the presence of various physical defects, including defects causing delay flaws, the magni-

tude of the steady-state current in a CMOS IC might increase a few orders of magnitude. Thus,

by monitoring this current it may be possible to determine whether or not a circuit has a defect

causing a flaw or a fault.

Many researchers have investigated the ability of I��� tests to detect different types of de-

fects and faults. Peters and Oostdijk [14] showed that defects on serial transistors and defects

between inputs, that are hard to detect by a voltage test, are easily detectable using I��� testing.

They also showed that a large number of gate-oxide shorts, that can not be detected using voltage

vectors, can be detected by I���. Vierhaus et al. [21] showed that defects that have only neg-

ligible functional effects (flaws) can have measurable overcurrents in the range of 10�A. Their

study was based on bridges and resistive shorts. Singh et al. [19] studied the detectability of

different classes of opens in CMOS using I��� testing. They indicated that a large majority of

open defects in CMOS are I��� detectable. Moreover, those that are not detected mostly display

a stuck-at behaviour and can be reliably detected by Boolean testing.

Background 19

Very-Low-Voltage Testing (VLV)

Very-low-voltage testing was first introduced in 1993 by Hao and McClusky [9]. This technique

makes use of the voltage dependence of CMOS ICs to provoke or trigger the flaws by testing the

chip at a reduced value of the supply voltage.

The propagation delay of a CMOS circuit increases monotonically as the supply voltage is

reduced from the nominal value to a value close to the threshold voltage. Increments in the

propagation delay due to a small change in the supply voltage are much more significant when

the supply voltage is small than when it is large. Supply voltage reduction causes the delay faults

to be more noticeable. Hence, these faults can be detected easily at frequencies much lower than

the operating frequency.

High Performance Testing

The objective of these techniques is to detect the degradation in chip performance (timing fail-

ures) due to the presence of flaws.

A simple form of timing testing is to apply patterns to the circuit under test at system speed.

This is called at-speed testing, and is usually only possible on fast ATE. With the advances

in CMOS technology, the speed of operation is becoming very high. Due to problems such as

power supply regulation, temperature variation, and electrical parasitics, tester timing inaccuracy

continues to rise as a function of the shrinking clock periods of high performance designs [17].

Although, high performance testing techniques can be very efficient in detecting timing

faults, they might not be able to detect delay flaws within weak ICs. This is because the dif-

ference in timing due to these flaws is usually very small and requires very high precision test

equipment to perform the test at normal operating conditions.

One way that allows the use of lower speed testers to test higher speed chips is the multi-

plexing of tester clock pins to extend its clock frequency range [18]. This is a standard feature in

Background 20

most modern testers. Other techniques are based upon the creation of a low frequency test mode

in circuits. More details about these techniques are given in the following chapter.

Chapter 3

Testing High-Performance Circuit with

Arbitrarily Slow Testers

The creation of a low frequency test mode in digital circuits was first introduced by Agrawal

and Chakraborty [1]. In their proposal, a quantifiable, externally controlled delay is added such

that high-performance testing can be carried out with relatively slow-speed testers. They used

a pulse-triggered flip-flop in which a dynamic latch is introduced inside a traditional master-

slave flip-flop. The resulting three-latch structure has two modes of operation; normal mode and

test mode. In normal mode, the intermediate latch must hold data for most of the clock period

while the other two latches remain transparent. In test mode, flip-flop delay can be modulated

by changing clock’s pulse width. This allows for testing combinational logic and interconnects

for delay faults with a lower clock frequency. Although the concept of adding delay in test

mode is elegant, this implementation has some important shortcomings as the dynamic latch

makes the flip-flop operation sensitive and timing critical. Shashaani and Sachdev proposed the

controlled delay flip-flop [18] as an alternative to the pulse-triggered flip-flop. In this technique

an additional test mode clock is used to control the delay of the flip-flop. The main advantages of

21

Testing High-Performance Circuit with Arbitrarily Slow Testers 22

the CDFF over the pulse-triggered flip-flop are the stable operation and improved performance

in normal mode. Details of the operation of the CDFF in normal and test modes are given in the

following section.

3.1 CDFF for Testing High-Performance Circuits at Low Speed

Figure 3.1 illustrates a gate level implementation of the CDFF. The transfer of data from the

master latch to the slave latch is controlled through a control logic and depends on the relative

timing of the clock (CLK) and the test clock (TCLK). To illustrate the operation of the CDFF, a

simple model of digital VLSI circuits is depicted in Figure 3.2(a). In this model, a combinational

block is sandwiched between two sequential blocks (registers, flip-flops,...etc). In normal mode,

TCLK is kept high ensuring normal flip-flop operation (Figure 3.2(b)). Under this condition, the

normal mode clock period (���) is given by:

��� � ����� � ���	
 � ����� (3.1)

QD

CLK

TCLK

Figure 3.1: Controlled delay flip-flop [18].

Testing High-Performance Circuit with Arbitrarily Slow Testers 23

t prop t setup

block
Combinational

combt

TCLK TCLK

D QD Q

CLK

D1 Q1 D2

CLK

Q2

CDFF CDFF

(a)
t comb t setupt prop

D1

Q1

D2

CLK

(b)
t offset t comb t setupt prop

D1

Q1

D2

CLK

TCLK

(c)

Figure 3.2: CDFF operation. (a) Circuit model. (b) Normal mode. (c) Test mode.

Testing High-Performance Circuit with Arbitrarily Slow Testers 24

where ����� is the propagation delay of the flip-flop, ���	
 is the time window allowed for the

combinational block to evaluate its input, Q�, and produce the input of the next sequential block,

D�, and ����� is the setup time of the flip-flop.

In test mode, a tester programmed time offset of the clock is used to generate TCLK. Con-

sequently, flip-flop output, Q�, appears after an additional delay equal to the time offset between

the two clocks. This scenario is illustrated in Figure 3.2(c). Under this condition, the test mode

clock period is given by:

��� � ����� � ���	
 � ����� � ������ (3.2)

where ������ is the time offset between the clock and the test clock. The test mode clock period

should be large enough to accommodate all delay terms in Equation 3.2. It is clear from this

equation that increasing ������ allows the circuit to be tested at a frequency lower than the normal

mode frequency. In other words, clock frequency can be reduced while the combinational circuit

delays are tested with the same delay margins.

3.2 Using CDFF to Arbitrarily Reduce Test Mode Clock Fre-

quency

In this section, we present a methodology for generating the clock and the test clock for a device

using CDFFs in a way that allows the test mode clock frequency to be reduced arbitrarily. This is

done through an on-chip clock generation circuit. When generating the clock and the test clock

for a circuit using CDFF to improve testability, one has to take into consideration the timing

requirements for correct operation. For the CDFF to function properly, the timing of the clock

and the test clock must be carefully adjusted to accommodate both the setup time (�����) and the

propagation delay (�����) of the flip-flop. For the combinational block, it is necessary to have the

Testing High-Performance Circuit with Arbitrarily Slow Testers 25

flexibility to change the value of ���	
 so as to determine, with reasonable accuracy, the delay

through this block and test the circuit for delay faults. This is also important to enable us to do

performance binning to know how well does the circuit meet its timing specifications.

3.2.1 Reducing Test Mode Clock Frequency

In test mode, reducing clock frequency while maintaining correct timing operation for all parts of

the circuit means that, if the clock frequency becomes very low, ������ has to be extremely large.

As suggested in [18], the test clock can be generated as a delayed version of the clock with a delay

of ������. The problem with this approach is that a slow tester is a low specification device. It is

normally difficult for such a device to provide very large time offset with state-of-the-art timing

accuracy. As an alternative, H. Speek et al. [20] suggested the use of two programmable duty-

cycle controllers and a programmable delay line to generate the clock and the test clock in test

mode. Using their design, reducing the test mode clock frequency to a very small value requires

a large delay line to generate the required delay with appropriate timing resolution.

Careful examination of the timing diagram in Figure 3.2(c) shows that, instead of generating

the test clock by delaying the clock in test mode, the clock can be generated by delaying and

inverting the test clock. Generating the clock this way makes ������ (which is the key factor in

reducing the test mode clock frequency) independent on the relative timing of the two clocks and

allows its value to be increased arbitrarily. Increasing ������ while keeping all the other terms in

Equation 3.2 unchanged implies a reduction in test mode clock frequency without affecting the

time window allowed for the evaluation of the combinational block. It is clear that by doing this,

the test mode clock frequency can be reduced with no lower limit.

Testing High-Performance Circuit with Arbitrarily Slow Testers 26

3.2.2 Clock and Test Clock Generation

Figure 3.3(a) depicts a block diagram of a system for generating the clock and the test clock. The

input clock, IPCLK, is a rated frequency signal in normal mode and a low frequency, 50% duty

cycle signal in test mode. A multiplexer (MUX) is used to select the mode of operation through

the mode select input (���). For normal mode operation (���=LOW), IPCLK passes through

the MUX to the CLK driving network while TCLK is kept high. In test mode (���=HIGH), two

delay lines are used to generate both CLK and TCLK. This is illustrated by the timing diagram

in Figure 3.3(b). A delay line is used to generate a clock with pulse width T�� (CLK1). This

clock is is selected by the MUX to be the test clock, TCLK. CLK1 passes through the second

delay line (with delay T��), resulting in CLK2. The MUX selects CLK2 to be CLK in test mode.

Figure 3.3(b) also shows the D and Q signals of a CDFF to illustrate the relationships amongst

the various timing parameters of the system in Figure 3.2(a) on one side and the delays T�� and

T�� and the frequency of IPCLK, � , on the other side . These relationships can be expressed by

the following two equations.

��� � ��� � ����� � ���	
 � ����� (3.3)

��� � ��� � ��� � ������ (3.4)

Assuming fixed � , �����, and �����, these equations suggest that a change in either ���, ���, or

both, leads to an equal change in ���	
. This allows the combinational block to be tested for delay

faults by changing the time slot allowed for the evaluation of its inputs. For constant ��� and ���,

changing � causes only ������ to change without affecting the operation of either the flip-flop or

the combinational block. In order to ensure correct flip-flop operation with variable � �� � ���,

we characterize the CDFF to find the limiting values of ��� and ���. For the flip-flop used in

our study, simulations show that when ��� falls below 122ps, the flip-flop ceases to function

properly. This is attributed to the fact that ��� has to be large enough to allow the propagation of

Testing High-Performance Circuit with Arbitrarily Slow Testers 27

CLK1

CLK2
d2Delay Line (T)IPCLK

d1
Delayed_IPCLK

HIGH

N/T

Delay Line (T)

To clock driving
network

CLK2

NormalMUX

IPCLK

HIGH

CLK2

CLK1 Test

IPCLK

Mode

0

1

CLK TCLK

CLK1

N/T
CLK

TCLK

(a)

Td1

Td2 Td1 Td2+

t offset

t prop
t comb t setup

CLK1

Delayed_IPCLK

IPCLK

CLK2

D

Q

+

(TCLK in test mode)

(CLK in test mode)

(b)

Figure 3.3: Generating clock and test clock. (a) Block diagram. (b) Timing diagram.

Testing High-Performance Circuit with Arbitrarily Slow Testers 28

data from the master to the slave. This value of ��� is equal to the worst case propagation delay

of the flip-flop. The limiting value of ��� is 53ps which is equal to the setup time of the flip-flop.

Chapter 4

Design of Clock Generation Circuit

The main objective of our design is to have the capability of testing high speed combinational

blocks having delays as low as 400ps with a 50ps timing accuracy. Moreover, as explained

before, we need to provide the ability to do performance binning in order to know how well

does the DUT meet its timing specifications. To achieve these objectives, we designed the clock

generation circuit such that it allows ���	
 to be varied from 400ps to 1150ps. Referring to

Equation 3.3 and considering the limiting values of ��� and ��� (����� and ����� of the CDFF,

respectively), the minimum and maximum values of ������� are found to be 575ps and 1325ps,

respectively. As stated before, ���, ���, or both can be varied to achieve these requirement. It is

clear that keeping one of them constant while varying the other should save hardware required

for programmable delay lines.

Two factors should be taken into consideration when choosing the values of ��� and ���.

Firstly, due to interconnect delays, the propagation of extremely small pulses might be difficult

to achieve. Secondly, it might be difficult to maintain a very small time delay between the two

clocks due to clock skew across the chip. Our implementation is designed such that ��� can be

varied from 275ps to 1025ps, while ��� is held constant at 300ps. Although a 275ps pulse width

29

Design of Clock Generation Circuit 30

might seem very small, propagating such a small pulse is within the capability of state-of-the-art

circuits. Building the TCLK driving network as a replica of the CLK driving network should

help minimize the skew between the two clocks.

Two delay lines are used to generate CLK1 and CLK2 (TCLK and CLK in test mode). This

is shown in Figure 4.1(a). This circuit is designed in 0.18�m CMOS technology. Figure 4.1(b)

shows the signals at different points in the circuit when ��� is equal to 275ps.

4.1 Delay Element

Each delay line consists of a chain of delay elements each having a delay of 50ps. The design

of the delay element is very crucial to ensure accurate delays regardless of process, temperature,

and supply voltage variations. The delay element used in our design is shown in Figure 4.2. It

consists of two inverters with current control transistors M1 and M6. Referring to Figure 4.1(b),

it can be shown that the delay for only the negative edge of IPCLK is critical for correct timing

of CLK1 and CLK2. Therefore, the delay element is designed such that the delay is 50ps for

negative going input only. This makes the sizing of transistors M3 and M4 not critical and these

two transistors have close to minimum sizes. This is important to minimize the loading of the

previous stage and consequently help reduce the delay for the negative going edge of the input.

The delay of the delay element is controlled by controlling the currents through transistors

M1 and M6. This is done by two control voltages, �� and ��. If �� and �� are set to ��� and

��� respectively, currents through M1 and M6 will be maximum resulting in minimum delay for

the delay element. Alternatively, if �� and �� are set to ��� � ��� and ��� � ��� respectively,

where ����� is the threshold voltage of the PMOS/NMOS transistor, currents through M1 and

M6 will be small resulting in a large delay. The sizes of M1 and M6 should be large enough

to provide currents sufficient to achieve the required delay. Area overhead due to large control

Design of Clock Generation Circuit 31

Vp Vn

Vp

=delay throught the∆
MUX and the inverter

16:1 MUX

∆Delay=Td2+

Delay= ∆
B_IPCLK

∆

Vn

CLK1

CLK2

IPCLK

16

Delay=Td1+
D_IPCLK

∆Delay=Td1+Td2+
DD_IPCLK

S0-S3

DB_IPCLK

Inputs
Selection
Delay

4x16 Decoder

(a)

4 4.5 5 5.5 6 6.5 7

0

1

2

IP
C

LK

4 4.5 5 5.5 6 6.5 7

0

1

2

B
IP

C
LK

4 4.5 5 5.5 6 6.5 7

0

1

2

D
IP

C
LK

4 4.5 5 5.5 6 6.5 7

0

1

2

C
LK

1

4 4.5 5 5.5 6 6.5 7

0

1

2

D
B

IP
C

LK

4 4.5 5 5.5 6 6.5 7

0

1

2

D
D

IP
C

LK

4 4.5 5 5.5 6 6.5 7

0

1

2

C
LK

2

Time (ns)

(b)

Figure 4.1: (a) Circuit used to generate CLK1 and CLK2. (b) Signals at different points for

���=275ps.

Design of Clock Generation Circuit 32

Input

Vp

Output

Vdd

Vss

Vn

M1

M2

M3

M4

M5

M6

Figure 4.2: Schematic diagram of the delay element used for the delay lines.

transistors can be reduced considerably by sharing the current control transistors among multiple

delay elements. In our design, only three PMOS (for M1) and three NMOS (for M6) transistors

are used for all 32 delay elements used in the delay lines.

Optimum sizing of transistors M2 and M5 is important to provide sufficient currents without

excessively loading the previous stage. For �� � ��� and �� � ���, transistor sizes are selected

such that the delay element has a delay of 50ps under worst case conditions (slow-NMOS and

slow-PMOS transistor models, � � ����� , and ��� is 10% less than its nominal value).

Design of Clock Generation Circuit 33

4.2 Programmable Delay Line

A programmable delay line is used to generate two delayed signals, D IPCLK and DD IPCLK,

as shown in Figure 4.1(a). The delay line consists of a chain of delay elements whose outputs are

tapped and fed to a multiplexer. Two of these signals are selected by a decoder to be the outputs

of the multiplexer. The delay of D IPCLK (used to generate CLK1) is set to the required value

of ���, while DD IPCLK (used to generate CLK2) always has a fixed delay of 300ps (���) with

respect to D IPCLK. This means that the delay chain has to be designed to have a minimum delay

of 275ps (������) and a maximum delay of 1325ps (������ ����). Having a fixed delay between

the two outputs allows the same decoder to be used to select both signals simultaneously.

Due to the propagation delay of the multiplexer, the delays of its outputs are larger than those

generated from the delay chain. In order to minimize the impact it has on the timing of the delay

line’s outputs, the multiplexer is designed to have minimum delays. On the other hand, the design

of the decoder is not timing critical. Hence, it is built with minimum size transistors.

4.3 Buffers, Gates, and Fixed-Delay Delay Line

As shown in Figure 4.1(a), IPCLK is buffered to generate B IPCLK which is NORed with

D IPCLK to generate CLK1. A fixed-delay line is used to generate DB IPCLK to have a delay of

300ps (���) with respect to IPCLK. CLK2 is generated by ORing DB IPCLK and DD IPCLK.

In order to balance and minimize their effect, the OR and NOR gates are designed to have equal

delays as well as small rise and fall times. Proper sizing of the buffers is important to adjust

the minimum delay of the programmable delay line as ������ is not a multiple of the delay el-

ement’s delay (������ is 275ps while the delay element’s delay is 50ps). Furthermore, these

buffers are crucial to compensate for the delays through the multiplexer and the inverters (� in

Figure 4.1(a)).

Chapter 5

Test Vehicle: A 16-bit Pipelined Multiplier

Multiplication is one of the basic arithmetic operations. In fact, 8.72% of all instructions in

a typical scientific program are multiplies [2]. That is why multipliers are essential building

blocks in any microprocessor. Moreover, digital signal processing (DSP), image data processing,

and many other applications require performing high-speed multiplications. In such cases, the

multiplier determines the system performance and the operating speed. In order to verify the

benefits of the technique proposed in this thesis, a 16-bit pipelined multiplier is designed and

utilized as a test vehicle.

5.1 Multiplier Design

In general, parallel multiplication is done in three steps [4]. These steps are shown in Figure 5.1.

In the first step, the multiplicand (M) and the multiplier (K) are used to generate partial products

whose number depends on the type of encoding algorithm used. The second step is to add

the partial products together in a summation network which reduces the partial products to two

operands. The product is generated in the final step by adding the resulting two operands using

34

Test Vehicle: A 16-bit Pipelined Multiplier 35

a carry propagate adder. For the multiplier used in this study, these steps are illustrated through

the dot diagram in Figure 5.2.
M

ultiplier

Partial Product Generator

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�� ���

���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Summation Network

������������������������������������

������������������������������������

����

����

��
��
��
��

��
��
��
��

����

����

��
��
��
��

��
��
��
��

Multiplicand

Partial Products

Two Operands

Carry Propagate Adder

Product

Figure 5.1: Parallel Multiplication

5.1.1 Partial Product Generation

The first step in performing multiplication is the generation of the partial products. Each partial

product is a multiple of the multiplicand, based upon the value of certain bits of the multiplier.

Partial product generation can be done in parallel in constant time regardless of the size of the

Test Vehicle: A 16-bit Pipelined Multiplier 36

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

HAFA4/24/24/24/2 4/2 4/2 4/24/2 4/2 4/2 4/2 4/2 4/2 4/2FA

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
�� ��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

��
���
���
���
���

���
���
���
���

��
��
��
��

�������������������������������������� ����

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���������������������������������� ������

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
��� ���

���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

���� ���� ����������

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��

��
��
��
��

����

����

��
��
��
��

����

����

��
��
��
��

��
��
��
��

Partial Product Selection Table

Multiplier Bit Selection

0

Multiplicand

0

1

��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

����

��
��
��
��

��
��
��
��

��
��
��
��

HA4/24/2 4/2 4/2 4/24/2 4/2 4/2 4/2 4/2 4/2 4/2FA 4/2 FA FA HAHAHAHA

FA4/24/2 4/2 4/2 4/24/2 4/2 4/2 4/2 4/2 4/2 4/2FA FA FA FAHAHAHAHAHAHA 4-bit CLA

24-bit CLA

M
ultiplier

MSB

LSB

HA = Half Adder

FA = Full Adder

Product

Multiplicand

4/2 = 4-2 Cpmoressor

Par
tia

l P
ro

du
ct

s

Figure 5.2: Dot diagram of the multiplier.

Test Vehicle: A 16-bit Pipelined Multiplier 37

multiplier (assuming that the multiplicand and multiplier are available at the the inputs of the

multiplier at the same time). The number of partial products depends on the encoding algorithm

used for the multiplier.

In our design, no encoding is used to generate partial products. This results in a number of

partial products equal to the size of the multiplier (16). This is illustrated in the dot diagram in

Figure 5.2. Each partial product is represented by a row of dots. Each dot represents one bit in the

partial product. As shown, the partial products are selected form the set �0,M� depending on the

corresponding bit in the multiplier. If the multiplier bit is 0, all bits in the partial product are set

to zeros. Alternatively, if the multiplier bit is 1, partial product bits are set to the corresponding

bits in the multiplicand. It is obvious that the partial product generation logic is a simple AND

gate.

5.1.2 Summation Network

The partial products are added in the summation network using 4-2 compressors as the main

component. A 4-2 compressor accepts 4 partial sums and reduces them to two [13]. In order to

reduce the 16 partial products to 2 operands, three levels of 4-2 compressors are needed. This is

shown in the dot diagram in Figure 5.2.

The 4-2 compressor used in our design is constructed using two full adders as shown in

Figure 5.3. It has five inputs and three outputs. A 4-2 compressor accepts an input carry (���)

from the cell in the lower bit position and produces an output carry (� ��) which is fed to the

cell in the higher bit position. From the structure of the 4-2 compressor shown in Figure 5.3, it is

clear that ��� is not a function of ���. This means that the carry does not ripple though the cells

of the same level in the summation network. In fact, ��� for all 4-2 compressors are generated

in parallel. The “Sum” output of a 4-2 compressor has the same weight of the current bit position

while the “Carry” output has the weight of the higher bit position.

Test Vehicle: A 16-bit Pipelined Multiplier 38

Full Adder

Full Adder

A B C D

SumCarry

CinCout

A B C

Sum

Carry

CBA

Sum

Carry

Figure 5.3: 4-2 compressor constructed with two full adders [2].

5.1.3 Carry Propagate Adder

A carry-lookahead adder with conditional sum select is used to generate the product from the

two operands resulting from the summation network. The adder uses groups of four bits. For

every groups, two sums are generated; one assumes a group input carry of 0, while the other

assumes an input carry of 1. Three levels of carry-lookahead are used to generate all the carries.

These carries are used to select the correct sum by multiplexing the two sums generated for every

group.

Test Vehicle: A 16-bit Pipelined Multiplier 39

5.2 Pipelining

The multiplier is implemented with five pipelined stages, as shown in Figure 5.4. The first stage

is used to generate the 16 partial products and reduce them to 8 partial sums after the first level of

the summation network. The second and third levels of the summation network are implemented

in the second and third stages of the pipeline. The final addition is done in the last two stages.

Pipeline stages are separated by registers to control the timing of data flow through the mul-

tiplier. Timing analysis of the first and last stage (SN L1 and CLA L2 in Figure 5.4) shows

that these stages can be tested for delay faults even if the input and output registers (R0 and

R5) are implemented using regular flip-flops rather than CDFFs. With this arrangement, R0 is

clocked using CLK in normal mode and TCLK in test mode while R5 is clocked using CLK in

both modes. The other four registers are built using CDFFs. The timing diagram in Figure 5.5

shows the test mode data flow through the pipeline for two consecutive test vectors under these

conditions (for simplicity, ����� and ����� of the flip-flops are not shown). On positive edges of

TCLK, data propagates from the multiplier input through R0 to the input of SN L1. Moreover,

these edges cause data stored in registers R1, R2, R3, and R4 to propagate to the input of the

next stage. Positive edges of CLK cause R1, R2, R3, and R4 to capture and hold their inputs.

Same edges cause input of register R5 to propagate directly to multiplier output. Building R0

and R5 using regular flip-flops reduces the hardware associated with CDFFs without degrading

the benefits of using CDFFs to enhance the testability of all pipeline stages.

5.3 Performance Characterization

Performance characterization of the multiplier is carried out in order to find its maximum operat-

ing frequency and the critical path through each stage of the pipeline. These results are shown in

Table 5.1. The delays shown include the propagation delay of the register feeding the stage and

Test Vehicle: A 16-bit Pipelined Multiplier 40

Register_0 (R0)

2nd Level of Summation Network (SN_L2)

Register_5 (R5)

Register_4 (R4)

Register_3 (R3)

Register_2 (R2)

Register_1 (R1)

PP Generators & 1st Level of Summation Network (SN_L1)

1st Level of Carry Lookahead Adder (CLA_L1)

2nd Level of Carry Lookahead Adder (CLA_L2)

3rd Level of Summation Network (SN_L3)

MUX

A B

Product

N/T

TCLK

CLK

32

16 16

Figure 5.4: Block diagram of the pipelined multiplier used as a test vehicle.

Test Vehicle: A 16-bit Pipelined Multiplier 41

SN_L1 HOLD SN_L2 SN_L3HOLD HOLD HOLDCLA_L1 CLA_L2Input 2

SN_L1 HOLD SN_L2 SN_L3HOLD HOLD HOLDCLA_L1 CLA_L2Input 1 Product 1

Product 2

Td1+Td2

CLK

TCLK

n+7n+6n+5n+4n+3n+2n+1n

Figure 5.5: Data flow through all pipeline stages of the multiplier in test mode.

the setup time of the register accepting the output of the stage. As shown in Table 5.1, the first

stage (SN L1) has the largest delay and the operating frequency of the multiplier is determined

by this stage. This delay is equal to 715ps which translates to a maximum operating frequency

of 1.4GHz.

Pipeline stage Critical path delay (ps)

SN L1 715

SN L2 690

SN L3 690

CLA L1 708

CLA L2 645

Table 5.1: Critical path delays through multiplier stages.

Chapter 6

Simulation Results

Several simulations are carried out to test our design and to verify the possibility of reducing

test mode clock frequency. Performance binning and delay fault simulations are done on the test

vehicle to verify the capability of the technique to predict the maximum operating frequency of

the DUT and to detect delay faults at frequencies much lower than the operating frequency.

6.1 Clock Generation Circuit

Figure 6.1 shows CLK1 for all possible combinations of decoder inputs. Simulations show that

our design is capable of accurately controlling the value of ��� to achieve the required design

goals. The maximum deviation in the delays of the programmable delay line is �15.8% which

is acceptable given the small delay values. For all values of ���, simulations show that ��� is

always constant at 298ps.

Signals from the clock generation circuit are used to test the CDFF at a wide range of fre-

quencies. These results are shown in Figure 6.2 for ���=275ps and at frequencies of 100MHz,

10MHz, 1MHz, and 100kHz. These results show that any increase in the period of IPCLK is

42

Simulation Results 43

5.2 5.4 5.6 5.8 6 6.2 6.4 6.6

x 10
−9

−0.5

0

0.5

1

1.5

2

Time (s)

C
LK

1
(T

C
LK

 in
 te

st
 m

od
e)

CLK1 for all combinations of decoder inputs

Figure 6.1: CLK1 for all possible values of S0-S3.

reflected as an equal increase in the CLK-Q delay of the flip-flop. This means that reducing

the test mode clock frequency affects only the CLK-Q delay of the CDFF and has no effect on

the time window allowed for the evaluation of the combinational block. These results show that

generating CLK and TCLK using the proposed technique allows the test mode clock frequency

to be reduced arbitrarily without degrading the testability of the DUT.

6.2 Performance Binning

The proposed technique can be used to do performance binning of high-speed circuits. A simple

algorithm for this task is shown in Figure 6.3. As discussed before, binning can be done by

changing the value of ��� � ���. In this algorithm ��� � ��� is varied between a minimum

and a maximum value with step ���� � �������. DUTs are segregated in a number of bins with

Simulation Results 44

0 5 10 15 20 25 30

0

1

2

f=100MHz, T
d1

=275ps, T
d2

=300ps

IP
C

LK

0 5 10 15 20 25 30

0

1

2

T
C

LK

0 5 10 15 20 25 30

0

1

2

C
LK

0 5 10 15 20 25 30

0

1

2

D

0 5 10 15 20 25 30

0

1

2

Q

Time (ns)

(a)

0 50 100 150 200 250 300

0

1

2

f=10MHz, T
d1

=275ps, T
d2

=300ps

IP
C

LK

0 50 100 150 200 250 300

0

1

2

T
C

LK

0 50 100 150 200 250 300

0

1

2

C
LK

0 50 100 150 200 250 300

0

1

2

D

0 50 100 150 200 250 300

0

1

2

Q

Time (ns)

(b)

Figure 6.2: CDFF simulation results for ���=275ps. (a) �=100MHz. (b) �=10MHZ (c) �=1MHz

(d) �=100kHz.

Simulation Results 45

0 0.5 1 1.5 2 2.5 3

0

1

2

f=1MHz, T
d1

=275ps, T
d2

=300ps

IP
C

LK

0 0.5 1 1.5 2 2.5 3

0

1

2

T
C

LK

0 0.5 1 1.5 2 2.5 3

0

1

2

C
LK

0 0.5 1 1.5 2 2.5 3

0

1

2

D

0 0.5 1 1.5 2 2.5 3

0

1

2

Q

Time (us)

(c)

0 5 10 15 20 25 30

0

1

2

f=100kHz, T
d1

=275ps, T
d2

=300ps

IP
C

LK

0 5 10 15 20 25 30

0

1

2

T
C

LK

0 5 10 15 20 25 30

0

1

2

C
LK

0 5 10 15 20 25 30

0

1

2

D

0 5 10 15 20 25 30

0

1

2

Q

Time (us)

(d)

Figure 6.2: CDFF simulation results for ���=275ps. (a) �=100MHz. (b) �=10MHZ (c) �=1MHz

(d) �=100kHz (cont.).

Simulation Results 46

numbers ranging from �	�� to �	����, where �	�� is the number of steps between ���������	��

and ���� � ����	��. For a given DUT, the test is first applied using the maximum value of

��� � ���. If the device fails the test under this condition, it is placed in bin number �	�� � �,

which indicates that the circuit does not work at the low end of frequency range covered by the

test. Otherwise, the test is repeated with a smaller value of ��� � ���. This process continues

until the DUT fails the test or the minimum value of ��� � ��� is reached. A device passing

the test with minimum value of ��� � ��� is placed in bin �	��, which indicates that the DUT

works at the high end of frequency range. The circuit might work at still higher frequencies. The

maximum operating frequency of devices in bin �	�� can be found through a clock generation

circuit capable of generating even smaller values of ��� � ���. This discussion shows that the

choice of the minimum and maximum values of ���� ��� is critical. These values determine the

range of operating frequencies which can be covered when doing performance binning using this

technique.

As an example of applying the algorithm in Figure 6.3, performance binning is performed

on the pipelined multiplier using CLK and TCLK from the clock generation network. Hence,

the values of �	�� and �	�� are 0 and 15 respectively. Simulations are carried out under fault-

free conditions. Performance binning simulations are first done using typical process models.

These simulations are then repeated for all process corners. As stated in section 6, for typical

process models, SN L1 has the maximum critical path delay among all stages of the pipeline.

For simplicity, we assume that this remains the case for all process corners. Hence, binning is

carried out using test vectors that activate the critical path through SN L1.

Performance binning results are given in Table 6.1. The value of ��� given in the table is the

minimum value allowing the multiplier to produce correct output. For typical process models,

these results show that the minimum value of ���� ��� necessary for correct operation is 725ps.

This value is slightly higher than the 715ps given in Table 5.1. This is attributed to the finite

Simulation Results 47

Set Td1+Td2 to (Td1+Td2) + i.(Td1+Td2)min step

Is i = i ?min

Yes

End

Yes

Place DUT in bin i

i = i+1

Start

Pass?

Apply Test

maxSet bin number, i, to i

No

i = i-1

No

Figure 6.3: Algorithm for performance binning using the proposed technique.

Simulation Results 48

Process Models ��� (ps) ��� � ��� (ps) Bin #

Typical 425 725 3

Fast NMOS, fast PMOS 275 575 0

Fast NMOS, slow PMOS 425 725 3

Slow NMOS, fast PMOS 425 725 3

Slow NMOS, slow PMOS 625 925 7

Table 6.1: Performance binning results for various process models.

resolution of the clock generation circuit as it can only predict the performance to the closest

50ps. Table 6.1 also shows that for fast NMOS and fast PMOS models, the multiplier functions

properly even for the minimum value of ���.

6.3 Delay Fault Simulation

Delay fault simulations are carried out using typical process models. Delay faults are inserted

in the test vehicle one at a time using buffers. Using active elements to generate extra delays

ensures the existence of a pre-determined delay fault without degrading the quality (rise and

fall times) of the delayed signals. Using performance binning results for typical process models

given in Table 6.1, ��� is always set to 425ps. Figure 6.4 shows the algorithm used for fault

simulation. Delay faults are inserted in 50ps increments until a value causing malfunction of the

DUT is reached. Delay faults are inserted in the critical path as well as one quasi-critical path in

all stages of the pipeline except SN L3. This is because of the similarity between this stage and

SN L2 in terms of their structure and critical path characteristics.

For every target path, two vectors are used to test the circuit. The first vector initializes

the DUT while the second vector activates the faulty path of the stage to be tested. Initialization

Simulation Results 49

Insert a 50ps delay fault

Correct
output?

Start for a given path

Set Td1 to 425ps

Simulate with vectors
for the target path

Yes

No

Fault detected

Figure 6.4: Algorithm for delay fault simulation.

Simulation Results 50

vectors are chosen such that they always result in correct output even under faulty conditions. For

correct multiplier operation, activation vectors should result in correct output with the sixth rising

edge of CLK (refer to Figure 5.5). For a faulty circuit, failure to get the correct output at this edge

of CLK means that we are able to detect the fault. The test is done at two frequencies; 100MHz

and 100kHz. Figure 6.5(a) and (b) show examples of test results at these two frequencies for a

50ps delay fault in the critical path of SN L1. These graphs show CLK, TCLK and P3 for fault-

free and faulty SN L1 operation (P3 is the only bit of the product affected by the delay fault in

the critical path of SN L1). As shown, we are able to detect the delay fault at both frequencies.

Similar results are obtained for all other stages.

Table 6.2 shows delay fault simulation results for all paths tested in our study. The left half

of the table gives the delays of the different paths and the amount of delay fault that has to

be inserted in the target path in order to cause the DUT to malfunction. The right half of the

table gives the test vectors used for each path as well as the fault-free and faulty product of the

multiplier. As is apparent from column 3 and 4, the extent of delay fault that goes undetected

is a function of the delay (slack) in a given path. A path with smaller delay will have a larger

undetectable delay fault. For example, in the case of path # 6, the path delay is 460ps. It will take

a delay fault of 300ps to cause a timing failure. On the other hand, for path # 1, it will take a delay

fault of only 50ps to cause the timing failure. In general, delay fault detection is dependent on the

target path delay. Most of the delay fault testing techniques have similar limitations. Balancing

path delays is the most commonly used method to alleviate this problem.

Simulation Results 51

0 10 20 30 40 50 60 70 80

0

1

2

f=100MHz, T
d1

=475ps, T
d2

=300ps

C
LK

0 10 20 30 40 50 60 70 80

0

1

2

T
C

LK

0 10 20 30 40 50 60 70 80

0

1

2

P
3

cl
ea

n

0 10 20 30 40 50 60 70 80

0

1

2

P
3

fa
ul

ty

Time (ns)

(a)

0 10 20 30 40 50 60 70 80

0

1

2

f=100kHz, T
d1

=425ps, T
d2

=300ps

C
LK

0 10 20 30 40 50 60 70 80

0

1

2

T
C

LK

0 10 20 30 40 50 60 70 80

0

1

2

P
3

cl
ea

n

0 10 20 30 40 50 60 70 80

0

1

2

P
3

fa
ul

ty

Time (us)

(b)

Figure 6.5: Fault simulation for the critical path of SN L1 (a) �=100MHz. (b) �=100kHz.

Simulation Results 52

Path # Pipeline Path Delay Vector Input Input Product Product

stage delay (ps) fault (ps) type A B (fault-free) (faulty)

1 SN L1 715 50 Init. 0002 FFFF 0001 FFFE 0001 FFFE

Activ. 0000 FFFF 0000 0000 0000 0008

2 SN L1 670 100 Init. 000C FFFF 000B FFF4 000B FFF4

Activ. 0008 FFFF 0007 FFF8 0007 FFF0

3 SN L2 690 50 Init. 0001 FFFF 0000 FFFF 0000 FFFF

Activ. 0000 FFFF 0000 0000 0000 0040

4 SN L2 665 100 Init. 0070 FFFF 006F FF90 006F FF90

Activ. 0040 FFFF 003F FFC0 006F FF80

5 CLA L1 708 50 Init. 0000 FFFF 0000 0000 0000 0000

Activ. FFFF FFFF FFFE 0001 FFFD 0001

6 CLA L1 460 300 Init. FFFF FFFF FFFE 0001 FFFE 0001

Activ. 0000 FFFF 0000 0000 0001 0000

7 CLA L2 645 100 Init. 0000 FFFF 0000 0000 0000 0000

Activ. FFF0 FFFF FFD0 0200 FFC0 0200

8 CLA L2 450 300 Init. FFF0 FFFF FFD0 0200 FFD0 0200

Activ. 0000 FFFF 0000 0000 0010 0000

Table 6.2: Delay fault simulation results.

Chapter 7

Conclusions and Future Work

We have presented a DFT technique for testing high-speed circuits with few requirements on

ATEs. The technique uses CDFFs to control the delay of the DUT in order to facilitate its

testing. This technique allows such circuits to be tested with arbitrarily low-frequency, 50% duty

cycle input clock.

The circuit used to generate CLK and TCLK in test mode has been presented along with

various design and implementation issues. Simulation results show that using this design, pulse

widths as small as 275ps for TCLK can be efficiently achieved. The accuracy of the design is

50ps which is 3-4 times better than the state-of-the-art ATE.

Simulations of the CDFF with clocks from our design show the validity of this methodology.

These simulations prove that the test mode clock frequency can be reduced with no lower limit

while keeping the time window allowed for DUT evaluation constant.

We tested the proposed technique with a 16-bit pipelined multiplier as a test vehicle. Testing

results show that performance binning of the DUT can be carried out using a simple algorithm.

Fault simulation results verify the ability of the technique to detect delay faults using a clock

frequency much lower than the rated frequency.

53

Conclusions and Future Work 54

There are several areas of improvement and extension for this work. Using two clocks for

the CDFF means that we have to build two clock driving networks. Redesgning the flip-flop in

a way that eliminates the need for two clocks would help in reducing the circuit overhead and

simplify the design process.

The current design manily targets delay faults in the combinational blocks of a sequential

circuit. Extending the technique to cover the sequential blocks as well as the clock driving net-

work(s) would be a major achievements towards providing a comprehensive delay fault coverage

for all parts of the DUT.

Finally, it is essential to develop techniques to ensure the functionality and performance of

the clock generation network. This is particularly important as the detectability of delay faults in

the DUT depends mainly on the correct timing of the clocks generated form the clock generation

network.

In conclusion, the main contributions of this research are:

� eliminating the restriction on lowering the test mode clock frequency for circuits using

CDFFs to improve testability.

� developing a simple on-chip clock generation methodology that can achieve a state-of-the-

art resolution regardless of the timing accuracy of the tester.

Glossary of Terms

ATE – Automatic Test Equipment.

BIST – Built-in-self-test.

CDFF – Controlled-Delay Flip-Flop.

CMOS – Complementary Metal Oxide Semiconductor.

DFT – Design-for-Testability.

DUT – Device Under Test.

ITRS – International Technology Roadmap for Semiconductors.

VLSI – Very Large Scale Integration.

55

References

[1] V. D. Agrawal and T. J. Chakraborty. “High-Performance Circuit Testing with Slow-Speed

Testers”. Proc. of International Test Conference, pages 302–310, 1995.

[2] Hesham A. Al-Twaijry. “Area and Performance Optimized CMOS Multipliers”. PhD

thesis, The Department of Electrical Engineering, Stanford University, August 1997.

[3] Semiconductor Industry Association. “International Technology Roadmap for Semicon-

ductor, 1999 Edition”, 1999.

[4] Gary W. Bewick. “Fast Multiplication: Algorithms and Implementation”. PhD thesis, The

Department of Electrical Engineering, Stanford University, February 1994.

[5] Jonathan T.-Y. Chang and Edward McClusky. “Detecting Delay Flaws by Very-Low-

Voltage Testing”. Proc. of 1996 International Test Conference, pages 367–376, June 1996.

[6] Jonathan T.-Y. Chang and Edward McClusky. “Quantitative Analysis of Very-Low-Voltage

Testing”. 14th VLSI Test Symposium, pages 332–337, April 1996.

[7] Robert J. Feugate and Steven M. McIntyre. “Introduction to VLSI Testing”. Prentice Hall,

1988.

56

References 57

[8] P. Franco. “Testing Digital Circuits for Timing Failures by Output Waveform Analysis”.

Technical Report 94-9, Center for Reliable Computing, Stanford Univerity, September

1994.

[9] H. Hao and E. J. McCluskey. “Very-Low-Voltage Testing for Weak CMOS Logic ICs”.

Proc. of International Test Conference, pages 275–284, 1993.

[10] Charles F. Hawkins, Jerry M. Soden, Alan W. Righter, and F. Joel Feruson. “Defect Classes

- An Overdue Paradigm for CMOS IC Testing”. Proc. of 1994 International Test Confer-

ence, pages 413–425, February 1994.

[11] Way Kuo, Wei-Ting K. Chien, and Taeho Kim. “Reliability, Yield, and Stress Burn-in”.

Kluwer Academic Publishers, 1998.

[12] Parag K. Lala. “Digital Circuit Testing and Testability”. Academic Press, 1997.

[13] M. Mehta, V. Parmar, and Jr. E. Swartzlander. “High-Speed Multiplier Design Using Multi-

Input Counter and Compressor Circuits”. Proc. of the 10th IEEE Symposium on Computer

Arithmetic, pages 43–50, 1991.

[14] Frank Peters and Steven Oostdijk. “Realistic Defect Coverage of Voltage and Current

Tests”. Digest of papers, 1996 IEEE International Workshop on IDDQ Testing, pages 4–8,

October 1996.

[15] Rochit Rajsuman. “Iddq Testing for CMOS VLSI”. Artech House Inc., 1995.

[16] Manoj Sachdev. “Defect Oriented Testing for CMOS Analog and Digital Circuits”. Fron-

tiers in Electronic Testing. Kluwer Academic Press, 1998.

References 58

[17] Sanjay Sengupta, Sandip Kundu, Sreejit Chakravarty, Praveen Parvathala, Rajesh Gali-

vanche, George Kosonocky, Mike Rodgers, and TM Mak. “Defect-Based Test: A Key

Enabler for Successful Migration to Structural Test”. Intel Technology Journal, Q1, 1999.

[18] M. Shashani and M. Sachdev. “A DFT Technique for High-Performance Circuit Testing”.

Proc. of International Test Conference, pages 267–285, 1999.

[19] Adit D. Singh, Haroon Rasheed, and Walter W. Weber. “IDDQ Testing of CMOS Opens:

An Experimental Study”. Proc. of 1995 International Test Conference, pages 479–489,

1995.

[20] H. Speek, H. G. Kerkhoff, M. Sachdev, and M. Shashaani. “Bridging the Test Speed Gap:

Design for Delay Testability”. Proc. of the IEEE European Test Workshop, pages 3–8, 2000.

[21] H. T. Vierhaus, W. Meyer, and U. Glser. “CMOS Bridges and Resistive Transistor Faults:

IDDQ versus Delay Effects”. Proc. of 1993 International Test Conference, pages 83–91,

October 1993.

Bibliography

[1] Dimitri Kececioglu and Feng-Bin Sun. “Burn-In Testing, its Quantification and Optimiza-

tion”. Prentice Hall PTR, 1997.

[2] A. Keshavarzi, K. Roy, and C. F. Hawkins. “Intrinsic Leakage in Low Power Deep Submi-

cron CMOS ICs”. Proc. of International Test Conference, pages 146–155, 1997.

[3] G. Moyer, M. Clements, W. Lui, T. Schaffer, and R. Cavin, III. “The Delay Vernier Pattern

Generation Technique”. IEEE Journal of Solid-State Circuits, 32(4):551–562, April 1997.

[4] W. Needham, C. Prunty, and E. H. Yeoh. “High Volume Microprocessor Test Escapes, An

Analysis of Defects Our Tests are Missing”. Proc. of International Test Conference, pages

25–34, 1998.

[5] P. Nigh, W. Needham, K. Butler, P. Maxwell, R. Aitken, and W. Maly. “So What is an

Optimal Test Mix? A Discussion of The SEMATECH Methods Experiment”. Proc. of

International Test Conference, pages 1037–1038, 1997.

[6] P. Nigh and A. Gattiker. “Test Method Evaluation Experiments and Data”. Proc. of Inter-

national Test Conference, pages 454–463, 2000.

[7] M. Nummer and M. Sachdev. “A Methodology for Testing High-Performance Circuits at

Arbitrarily Low Test Frequency”. IEEE VLSI Test Symposium, pages 68–74, April 2001.

59

Bibliography 60

[8] N. Ohkubo, M. Suzuki, T. Shinbo, T. Yamanaka, A. Shimizu, K. Sasaki, and Y. Nakagome.

“A 4.4 ns CMOS 54�54-b Multiplier Using Pass-Transistor Multiplexer”. IEEE Journal of

Solid-State Circuits, 30(3):251–257, March 1995.

[9] M. Sachdev. “Deep Sub-micron IDDQ Testing: Issues and Solutions”. Proc. of European

Design and Test Conference, pages 271–278, 1997.

[10] H. Speek, H. G. Kerkhoff, M. Shashaani, and M. Sachdev. “A Low-Speed BIST Framework

for High-Performance Circuit Testing”. Proc. of the 18th IEEE VLSI Test Symposium, pages

349–355, 2000.

[11] T. W. Williams, R. H. Dennard, R. Kapur, M. R. Mercer, and M. Maly, M. . “	��� Test:

Sensitivity Analysis of Scaling”. Proc. of International Test Conference, pages 786–792,

1996.

